
Automated Measurement of Technical Debt: A Systematic Literature
Review

Ilya Khomyakov, Zufar Makhmutov, Ruzilya Mirgalimova and Alberto Sillitti
Innopolis University, Russian Federation

Keywords: Technical Debt, Measurement, Literature Review.

Abstract: Background: Technical Debt (TD) is a quite complex concept that includes several aspect of software devel-
opment. Often, people talk about TD as the amount of postponed work but this is just a basic approximation
of the concept that includes many aspects that are technical and managerial. If TD is managed properly, it
can provide a huge advantage but it can also make projects unmaintainable, if not. Therefore, being able of
measuring TD is a very important aspect for a proper management of the development process. However, due
to the complexity of the concept and the different aspects that are involved, such measurement it not easy and
there are several different approaches in literature.
Goals: This work aims at investigating the existing approaches to the measurement and the analysis of TD
focusing on quantitative methods that could also be automated.
Method: The Systematic Literature Review (SLR) approach was applied to 331 studies obtained from the three
largest digital libraries and databases.
Results: After applying all filtering stages, 21 papers out of 331 were selected and deeply analyzed. The
majority of them suggested new approaches to measure TD using different criteria not built on top of existing
ones.
Conclusions: Existing studies related to the measurement of TD were observed and analyzed. The findings
have shown that the field is not mature and there are several models that have almost no independent validation.
Moreover few tools for helping to automate the evaluation process exist.

1 INTRODUCTION

A keen competition among companies for customer
satisfaction is one of the reasons behind the contin-
uous pressure to produce high-quality and maintain-
able source code in continuously reduced timeframes
(Kan, 2002). Several studies has been performed
focusing on the activities of the developers (Coman
and Sillitti, 2007) (Coman and Sillitti, 2008) (Moser
et al., 2008) (Coman et al., 2014) and considering
code quality as the main criterion for releasing a prod-
uct could lead to consume an excessive amount of re-
sources (Corral et al., 2014). However, this criterion
is critical to achieve a high level of customer satisfac-
tion and the quality of the product is often a prereq-
uisite to achieve success. Consequently, companies
focusing on the quality of their product usually have
a better market success (Boehm et al., 2001).

There are situations in which it is required to re-
duce the development time to achieve a minimum
working product. This is a typical situation of startup
companies that have very aggressive schedules to de-

liver the product that allows them to survive. In such
context, the sub-optimal decisions that decrease the
quality of the system lead to a strategic TD (Tom
et al., 2013). This allows the company to deliver
the product for which the customer pays allowing the
company to survive. In any case, companies should
be aware that in the long run such sub-optimal deci-
sions require additional effort in the future to fix the
product (Coman et al., 2008) (Corral et al., 2013).

This phenomenon was originally described by
Ward Cunningham in 1992 (Cunningham, 1992) in-
troducing the concept of TD. There are many more
sources of TD that have been investigated recently
that involve communication, collaboration among
team members, documentation, and individual atti-
tudes (Tom et al., 2013) (Lenarduzzi et al., 2017).

Since TD is a way of measuring the effort needed
to achieve top quality in a software system compared
to the current status, it is of paramount importance
being able of measuring (or estimating) it. The im-
portance of such an activity is proved by the simple
fact that most of the software projects have some TD

Khomyakov, I., Makhmutov, Z., Mirgalimova, R. and Sillitti, A.
Automated Measurement of Technical Debt: A Systematic Literature Review.
DOI: 10.5220/0007675900950106
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 95-106
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

95

(Falessi et al., 2013). Being able to estimate TD al-
lows development teams and the manager to plan the
work properly.

It may also happen that TD is too high to be payed
(Chatzigeorgiou et al., 2015), requiring different ap-
proaches to address it (e.g., rewriting the system).
However, knowing that and how the system reach that
condition could help in the identification of past mis-
takes and improve the development.

Moreover, the measurement of TD should be per-
formed automatically to avoid increasing the load of
the developers and being able to monitor that continu-
ously. This is particularly useful in conjunction to the
usage of Agile approaches that can use such informa-
tion to adapt iterations continuously.

For all these reasons, being able of measuring au-
tomatically TD is of paramount importance to support
the daily work of developers. There are many differ-
ent approaches to TD in literature and this paper pro-
vides an extensive analysis pointing out the current
status of the research.

The paper is organized as follows: Section 2 de-
scribes the adopted methodology; Section 3 discusses
the findings; Section 4 investigates the related work;
Section 5 analyzes the threats to validity; finally, Sec-
tion 6 draws the conclusions and introduces future
work.

2 METHODOLOGY

The protocol adopted for this Systematic Literature
Review (SLR) is the one introduced by Kitchenham
and Charters (Kitchenham and Charters, 2007) for
performing such reviews in the software engineering
area.

The main goal of this work is to review existing
studies and highlight the aspects related to TD mea-
surement, therefore we have defined the following re-
search questions:
• RQ1: Which are the existing techniques for mea-

suring TD?
• RQ2: Which are the tools that support the automa-

tion of the measurement of TD?
• RQ3: Are there any empirical studies able to

demonstrate the usefulness of the identified tech-
niques?

• RQ4: Are there any empirical studies able to
demonstrate the usefulness of the tools identified?
To answer the research questions, we have

searched for papers using the three largest digital li-
braries: ACM Digital Library, IEEE Xplore, Google
Scholar.

Since only studies focusing on TD as main topic
are interesting for our purpose, we suppose that their
title or abstract include the key word technical debt.
Consequently, we used appropriate queries for each
library. The data have been extracted in August 2018,
when the study was started.

Only certain papers should be included to the fi-
nal result: containing abstracts, considering TD as a
main topic, written in English. No year constraint was
specified, since we aimed at collecting all appropriate
data despite of the date.

Many publications found in the digital libraries
were not appropriate for our study since we were
interested in primary studies published in referred
workshops, conferences, and journals. Therefore, we
excluded documents such as: summaries of work-
shops, tutorials, introductory descriptions of confer-
ences, research plans, presentations, not primary stud-
ies. Therefore, we excluded all the documents that
were not proper research papers.

Finally, we manually excluded all the papers not
related to our research that passed the previous filters
but still included in the list. The selection was per-
formed after reading the entire content of the papers.

3 RESULTS

We found 603 papers distributed as follows: ACM
Digital Library (111), IEEE Xplore (194), Google
Scholar (298).

As expected, there was a significant overlap in the
papers found in the different libraries. Therefore, the
first step was merging the results and removing dupli-
cates. Finally, at the end of the process, we selected
21 papers. The overall selection process is summa-
rized in Figure 1 (the numbers on the arrows show the
amount of papers that passed each phase):

• Step 1: Merging all Papers from Data Sources.
The initial list included 603 papers but many du-
plicates were present. The identification of the
duplicates was performed manually to avoid prob-
lems with minor character differences in the titles
and in the author names. At the end, we had a list
of 331 unique papers.

• Step 2: Applying Exclusion Criteria. At this
stage, we applied the exclusion criteria resulting
in a selection of 274 papers. At this stage we still
kept in the list the secondary studies.

• Step 3: Excluding not Primary Studies. At this
stage, we identified the secondary studies (e.g.,
systematic reviews, systematic mappings, etc.)
that were removed from the list and analyzed in

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

96

Figure 1: Steps of the selection process.

2011 2012 2013 2014 2015 2016 2017 2018

0

2

4

6

8

Figure 2: Distribution of papers related to TD measurement
over the years.

Section 4. The secondary studies identified are 10
and the list is reduced to 264 papers.

• Step 4: Considering Studies Related to Mea-
surement of TD. Reading the title and the ab-
stract of the 264 papers, we identified the studies
related to the measurement of TD. We identified
38 papers distributed between 2011 and 2018 as
described in Figure 2.

• Step 5: Quality Assessment. We read the 38 pa-
pers identified and we excluded 17 of them since
they were not dealing with the measurement of the
technical debt even if from the title or the abstract
they appeared appropriate for our investigation.

3.1 RQ1: Which are the Existing
Techniques for Measuring TD

The identified studies have been analyzed in terms of
proposed techniques, their requirements about input
data needed for the calculation of TD, the resulting
information, advantages and disadvantages of the ap-
proach. Table 5 summarises the techniques identified
while Table 1 compares the input required by the dif-
ferent techniques and Table 2 the output generated.

Letouzey (Letouzey, 2012) proposed a method for
TD evaluation named Software Quality Assessment
Based on Lifecycle Expectations (SQALE), which is
described as an answer to the need for an objective

and standardized open-source method with low false
positives. At the official website of the method 1,
there is a list of several tools able to analyze the code
written in different languages.

The method defines how to formulate and orga-
nize non-functional requirements that can affect code
quality defining a herarchical structure of character-
istics and sub-characteristics similar to the ISO qual-
ity model. SQALE has been developed to be auto-
mated and considers several properties of the code
but two main aspects are not taken into account. The
first one is that non-conformities for business or op-
erations are not considered important by any index
of SQALE (considering version 1.0 (Letouzey and
Ilkiewicz, 2012)). The second one is that there is
no definition of the level of implementation of the re-
quirements.

CAST (Curtis et al., 2012) presents a formula
with flexible parameters to measure TD. That flexi-
bility implies the possibility of adjusting the param-
eters to the specificity of a particular organization.
The approach defines five Health Factors that have
a different impact on the overall TD: Changeability
(30%), Transferability (40%), Robustness (18%), Se-
curity (7%), Performance Efficiency (5%).

Violations in each area are rated according to their
severity and a formula is applied for calculating the
final value of the debt. The approach has been eval-
uated on 745 business applications containing more
than 10 KLOC using the CAST proprietary Applica-
tion Intelligence Platform.

The SIG/TUViT approach (Nugroho et al., 2011)
is based on a sound and quantitative approach for
measuring software quality from source code. More-
over, the estimation of TD is based on empirical data
using a model that is quite simple.

Mayr at al. (Mayr et al., 2014) define a model that
provides a combination of the benefits of the flexible
approaches to quality changes and the simplicity of
the SIG model. The approach requires only informa-
tion from static code analysis. The output is simple
as well, being the hours of work required to pay the
debt.

Skourletopoulos et.al. (2015) (Skourletopoulos
et al., 2015) developed a fluctuation-based modelling
approach to TD. It measures the amount of profit not
earned due to the under-usage of a given service and

1http://www.sqale.org/

Automated Measurement of Technical Debt: A Systematic Literature Review

97

Table 1: Input of TD measurement techniques.

Technique (method)
Target
quality

level

Debt-
estimating

model

Number of
should-fix
violations

The hours
to fix each
violation

The cost
of labor

Source
code

Output data
from static

code analyzers

Candidate
cloud-based

mobile service

Past changes
in the history
of the system

Developer
activity data

SQALE X X - - - - - - - -
CAST - - X X X - - - - -
SIG X - - - X X - - - -
A benchmarking-based model X - - - X X X - - -
A fluctuation-based
modelling approach - - - - - - - X - -

Breaking Point for TD - - X X X - - - X -
LOC and Fan-In to Quantify
the Interest of SATD - - - - - X - - - -

A framework for design level TD - - - - - X - - - -
A framework for estimating
interest on TD - - - - - - - - - X

Modularity metrics for ATD - - - - - X - - X -
Detecting and quantifying SATD - - - - - X - - - -

considering the probability of over-usage of the se-
lected service that would lead to accumulated TD.
The hypothesis is that service capacity affects to ser-
vice choice, which is made with respect to the pre-
dicted fluctuations in the number of users over some
time and the way TD is gradually paid off. Con-
sequently, formulas for predicting appearance of TD
were developed, as well as tools for validating them.

Chatzigeorgiou et.al. (2015) (Chatzigeorgiou
et al., 2015) provide an estimation of a breaking point,
that is when debt becomes too large to be paid off.
The source code is initially assessed by fitness func-
tion based on the Entity Placement metric quantifying
coupling and cohesion. The approach is based on the
identification of the best design for a system. The cost
of reaching that best system with necessary refactor-
ings is calculated as well as number of versions lead-
ing to the breaking point. However, the authors point
out some issues to be considered:

• only coupling and cohesion dimensions exist for
the method, but TD has many other aspects

• maintenance effort means not just adding lines of
code, but deleting and modifying them

• future maintenance effort cannot be predicted
solely on the basis of past maintenance tasks

Kamei et al. (Kamei et al., 2016) propose measur-
ing the self-admitted TD interest with code metrics
like LOC (because it well correlates with code com-
plexity metrics) and Fan-In (showing how much one
piece of code affects another one). They have vali-
dated the approach on the Apache JMeter project.

Marinescu (Marinescu, 2012) proposes a frame-
work exploring TD symptoms at design level. The
construction of such framework includes four steps:

1. definition of the principles for finding design de-
fects

2. identification of a set of relevant design defects
3. estimation of the impact of each defect
4. the overall design quality is calculated

The framework also includes:

• a coarse-grain approach to monitor the evolution
of TD over time

• a more detailed approach that enables locating and
understanding individual flaws, which can lead to
a systematic refactoring

The approach has been applied in a case study
including 63 releases of two well known Eclipse
projects (JDT and EMF). However, the conclusions of
the case study cannot be generalized, considering the
restricted number of systems analyzed and the limited
number of design flaws that were included in the ac-
tual instantiation of the framework.

In the framework proposed by Singh et al. (Singh
et al., 2014), TD estimation is based on measures of
code maintainability obtained via static analysis and
interest estimation based on activity data obtained by
monitoring developer actions in the IDE. Main contri-
bution of the framework is the integration of a devel-
oper activity data with code metrics and to improve
the understanding of developer comprehension effort
resulting in an improved accuracy of the estimation.

Although the Architectural Technical Debt (ATD)
is difficult to measure, the Average Number of Mod-
ified Components per Commit (ANMCC) is a met-
ric proposed in (Li et al., 2014). However, commit
records may not exist anymore, therefore the authors
suggest to use Index of Package Changing Impact
(IPCI) and Index of Package Goal Focus (IPGF) in-
stead of ANMCC. The advantage of using such two
new metrics is the possibility of obtaining them di-
rectly from the source code. Then validation of cor-
relation of that metrics with ANMCC is performed.
However, the weakness of whole study is relying only
on results of projects developed in C#.

Maldonado et al. (Maldonado and Shihab, 2015)
examine code comments to identify and evaluate Self-
admitted Architectural Debt (SATD). The strength of
the approach is the usage of heuristics to eliminate
comments which are not likely to affect TD. In addi-

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

98

Table 2: Output of TD measurement techniques.

Technique (method)
Design

symptoms
of TD

Remediation
Cost

Non-remediation
Cost

Relative
amount of TD

Breaking
Point

Number of
comments

SQALE X - - - - -
CAST - X - - - -
SIG - X X - - -
A benchmarking-based model - X - - - -
A fluctuation-based
modelling approach - - - X - -

Breaking Point for TD - X X - X -
LOC and Fan-In to Quantify
the Interest of SATD - - X - - -

A framework for design level TD X - - - - -
A framework for estimating
interest on TD - - X - - -

Modularity metrics for ATD - - - X - -
Detecting and quantifying SATD - - - - - X

Table 3: Tools able to support the automation of the measurement of TD.
Technique (method) Ref Tool Tool URL Open source
SQALE (Letouzey, 2012) SonarQube https://www.sonarqube.org/ yes

MIND https://sourceforge.net/projects/mindyourdebt/ yes
FindBugs http://findbugs.sourceforge.net/ yes

Breaking Point for TD (Chatzigeorgiou et al., 2015) JCaliper http://se.uom.gr/index.php/projects/jcaliper/ yes
A framework for design level TD (Marinescu, 2012) inFusion https://chocolatey.org/packages/infusion/ no
A framework for estimating interest on TD (Singh et al., 2014) Blaze monitoring tool https://sites.google.com/site/blazedemosite/home/about no
Modularity metrics for ATD (Li et al., 2014) TortoiseSVN https://tortoisesvn.net/ yes
LOC and Fan-In to Quantify the Interest of SATD (Kamei et al., 2016) Understand https://scitools.com/ no

JDeodorant https://github.com/tsantalis/JDeodorant yes
Detecting and quantifying SATD (Maldonado and Shihab, 2015)

SLOCCount https://www.dwheeler.com/sloccount/sloccount.html yes

tion, the method classify comments to different types
of SATD.

3.2 RQ2: Which are the Tools that
Support the Automation of the
Measurement of TD?

TD measurement techniques often require a large
number of input data that require a large amount of ef-
fort to be extracted. Therefore, tools are of paramount
importance to support development teams in the inte-
gration of TD measurement in their daily work. Ta-
ble 3 provides a summary of the available tools and
the methodology they implement.

SonarQube (Gaudin, 2009) implements the
SQALE method of TD evaluation. It is used for con-
tinuous inspection of code quality to perform auto-
matic reviews with static analysis of code to detect
bugs, code smells and security vulnerabilities in sev-
eral programming languages.

MIND (ManagIng techNical Debt) is an open
source tool which is, to the best of our knowledge,
the first tool supporting the quantification and visu-
alization of the interest (Falessi and Reichel, 2015).
Basically, it is a plug-in for SonarQube. MIND uses
a few metrics to count the interest:

• Defect Proneness

• Maximum Defects per 100 LOC Touched

• Extra Defect Proneness

• Maximum Extra Defects per 100 LOC Touched

• Relative Extra Defect Proneness

• Average Relative Extra Defect Proneness

• Violation Density

• Linkage

• Estimation Error

JCaliper (Chatzigeorgiou et al., 2015) was de-
signed to find the placement of entities that minimizes
the Entity Placement metric as a search-space explo-
ration problem. It automatically extracts the number,
type and sequence of refactoring activities required to
obtain the design without TD.

Blaze is a monitoring tool (Snipes et al., 2014)
recording temporal sequence of developer actions, in-
cluding code navigation actions and edit actions. The
log produced is subsequently analysed to figure out
class relationships and effort spent by a developer to
understand program elements.

TortoiseSVN allows extracting commit records
from standard SVN servers and any code repositories
supporting Subversion, such as GitHub. That records

Automated Measurement of Technical Debt: A Systematic Literature Review

99

are used by Li et al. (Li et al., 2014) to perform AN-
MCC metric checking.

JDeodorant (Tsantalis et al., 2008) is used in
(Kamei et al., 2016) for performing source code pars-
ing. In particular, the ability to extract a comment
and map it to its corresponding method is interesting.
Later in the paper, to calculate the interest that is in-
curred over time, 16 code metrics were extracted us-
ing the Understand tool (und,). JDeodorant (Tsantalis
et al., 2008) is also used in (Maldonado and Shihab,
2015) to parse the source code and extract the code
comments. However, before that, the SLOCCount
tool (Wheeler, 2001) is applied to calculate SLOC in
Java files.

3.3 RQ3: Are there any Empirical
Studies able to Demonstrate the
Usefulness of the Identified
Techniques?

The empirical studies performed to validate the iden-
tified techniques are summarized in Table 4.

(Griffith et al., 2014) assessed three methods
((Letouzey, 2012) (Curtis et al., 2012) (Marinescu,
2012)) to find out if they effectively describe the re-
lationship between the quality of the system and the
level of TD.

Izurieta et al. (Izurieta et al., 2013) uses Nugroho
et al. (Nugroho et al., 2011) to exemplify the method-
ology.

A Benchmarking-based Model of Mayr et al.
(Mayr et al., 2014) is closely related to their earlier
work on benchmarking-oriented quality assessments.
Also it calculates the remediation cost in a way simi-
lar to the approach of CAST (Curtis et al., 2012).

Relevant code structure metrics in the framework
for estimating interest on TD (Singh et al., 2014) were
selected in such a way that related to maintainability
and TD in (Nugroho et al., 2011). Similar to the prior
work, static code metrics are used.

3.4 RQ4: Are there any Empirical
Studies able to Demonstrate the
Usefulness of the Tools Identified?

In (Parodi et al., 2016), TD was measured using two
static code analysis tools (Findbugs (Ayewah et al.,
2008) and SonarQube (Gaudin, 2009)). The goal was
evaluating if the code produced with the Test Driven
Development approach has a lower TD than code pro-
duced using other techniques. This two tools are
widely used in the community for measuring TD.

Other studies tested SonarQube: (Luhr et al.,
2015) use it for measuring TD in a particle tracker
system; (Monteith and McGregor, 2013) use it for
several calculation of TD in the software supply
chain; (Britsman and Tanriverdi, 2015) describes a
case study in Ericsson, where they had to observe TD
measurement tools to use them for evaluation system
creation based on ISO standard 15939:2007.

4 RELATED WORK

Investigating the different approaches for measuring
TD could be valuable to practitioners and researchers
to provide a better understanding of the field and iden-
tify research gaps. However, we were not able to iden-
tify any secondary study related to the research ques-
tions we listed in Section 2. Instead, several others
deal with TD in general.

The systematic mapping study of Li et al. (Li
et al., 2015) was initiated to find and analyze publica-
tions between 1992 and 2013 of TD and its manage-
ment. After the selection of 92 studies authors clas-
sified 10 TD definition, identified 8 TD management
activities, and collected 29 tools for the latter.

Another systematic mapping study of TD defini-
tions, Poliakov (Poliakov et al., 2015) has performed
full review of 159 papers. 107 definitions were sepa-
rated into keywords. Consequently, the main achieve-
ment of the research is built keyword map, supple-
mented by synonyms and types of TD.

Another literature review has been done by Alves
et al. (Alves et al., 2016) based on three research
questions. They evaluated 100 studies of 2010 - 2014
and proposed initial taxonomy of TD types, list of in-
dicators for identifying TD, and existing management
strategies.

There is a study considering another aspect of the
phenomenon. Ribeiro et al. (Ribeiro et al., 2016)
state that the evaluation of appropriate time to pay
TD and applying an effective decision-making criteria
are an important management goals. Consequently,
authors identified 14 such criteria for development
teams. Also the results showed gaps where further
research can be performed.

Recently, Behutiye et al. (Behutiye et al., 2017)
considered a narrow field of study related to TD,
which means that they synthesized the state of the art
of TD and its causes, consequences, and management
strategies only in the context of agile software devel-
opment (ASD). In particular, after processing system-
atic literature review 38 primary studies, out of 346
studies, were identified and analyzed. Then five re-
search areas of interest related to the literature of TD

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

100

Table 4: Identified techniques and the related empirical studies.

Technique (method) Based on Ref Empirical
study

SQALE previous version (Letouzey, 2012) (Letouzey and Ilkiewicz, 2012) (Griffith et al., 2014)
CAST - (Curtis et al., 2012) (Griffith et al., 2014)
SIG SIG quality model (Heitlager et al., 2007) (Nugroho et al., 2011) (Izurieta et al., 2013)
A Benchmarking-based Model benchmarking-oriented method (Gruber et al., 2010), CAST (Curtis et al., 2012) (Mayr et al., 2014) (Mayr et al., 2014)
A Fluctuation-Based Modelling Approach - (Skourletopoulos et al., 2015) (Skourletopoulos et al., 2015)
Breaking Point for TD CAST (Curtis et al., 2012), previous version (Ampatzoglou et al., 2015a) (Chatzigeorgiou et al., 2015) (Chatzigeorgiou et al., 2015)
LOC and Fan-In to Quantify the Interest of SATD - (Kamei et al., 2016) -
A framework for design level TD - (Marinescu, 2012) (Marinescu, 2012), (Griffith et al., 2014)
A framework for estimating interest on TD SIG (Nugroho et al., 2011) (Singh et al., 2014) (Singh et al., 2016)
Modularity metrics for ATD - (Li et al., 2014) (Li et al., 2014)
Detecting and quantifying SATD previous version(Potdar and Shihab, 2014) (Maldonado and Shihab, 2015) -

in ASD, as well as 12 strategies for managing it have
been found. Authors identified eight categories re-
garding the causes and five categories regarding the
consequences of incurring TD in ASD.

In the case of work performed by Besker et al.
(Besker et al., 2016) ATD is considered as affecting
to system success and able to cause expensive reper-
cussions, so the goal is to create new knowledge with
interest in ATD. Research efforts should be synthe-
sized and compiled for that. The main contributing
outcome of the paper is a presentation of a novel de-
scriptive model, providing comprehensive interpreta-
tion of ATD phenomenon.

Finally, the last related work focuses on a specific
view of TD. Employing a method for syntactic liter-
ature review and applying it to seven digital library
studies sources Ampatzoglou et al. (2016) (Ampat-
zoglou et al., 2015b) analyzed financial aspect of TD.
Authors conclude that the communication between
technical managers and project managers is benefi-
cial, because a vocabulary will be provided, and high-
quality goals will be set up. In order to achieve this,
they introduced a glossary of terms and a classifica-
tion scheme for financial approaches.

5 THREATS TO VALIDITY

The main threats to validity identified are the follow-
ing:

• Although the applied guideline (Kitchenham and
Charters, 2007) recommends to consider about
seven digital libraries for performing an exhaus-
tive search, in our case only three have been cho-
sen. The reason of it is that other sources contain
very few unique papers compared to the ACM and
IEEE digital libraries. Moreover, to avoid missing
important papers we used Google Scholar that in-
dex almost everything.

• Constructing appropriate search string is a tricky
task, since the title of some studies we are inter-
ested in does not include our key words, we de-
cided to extend the search to the abstracts. Since
we are interested in studies focusing on TD, we

suppose that the key word is mentioned in the ab-
stract.

• A way of automatically merging the outcome lists
from that libraries is risky, since even a single dif-
ferent symbol in title might affect the result. For
that reason, duplicates were identified and elim-
inated manually during the creation of a merged
list.

• It may happen that some information has not been
considered in our study since some papers could
have been accidentally skipped or not present at
the time of the query (August 2018).

6 CONCLUSIONS AND FUTURE
WORK

This study provides an overview of the available ap-
proaches to the measurement of TD and the tools able
to support its automation. The research in the field is
very active but there is a lack of validation and evolu-
tion of the models. In particular, in almost all cases,
models are developed from scratch and not refining or
extending existing ones. This shows a very low level
of maturity of the field in which it is not clear which
is the best approach(s) to follow. Moreover, there is
a need of independent validation since nearly none of
the models have been independently evaluate but the
evaluation is usually performed by the proponents of
the approach.

About the tools, they usually require a complex
setup, they support a limited number of programming
languages, and the results provided are quite differ-
ent. They also use very different measurement units.
Finally, most of the tools are able to estimate only
the main TD (sometimes called remediation cost),
whereas also knowledge of its interest (sometimes
called non-remediation cost) would complete the pic-
ture.

Overall, both methodologies and support tools re-
quire a relevant amount of research to become really
usable in practice.

Automated Measurement of Technical Debt: A Systematic Literature Review

101

Table 5: Techniques with input, output, and calculation.

Technique Input Calculation Output Ref
SQALE 1. Target

quality level
(a list of non-
functional
requirements
that define right
code)
2. Debt-
estimating
model (as-
sociate each
requirement
with remedia-
tion function
turning number
of noncom-
pliances into
a remediation
cost)

Run the code through the anal-
ysis tools and use remediation
functions to work out remedia-
tion costs for each element.
TD is the sum of remediation
costs for all noncompliances.
This debt is called the SQALE
quality index (SQI).

Design symp-
toms of TD
(Pyramid -
an indicator
to represent
the specific
distribution of
TD for eight
characteristics)

(Letouzey
and Ilkiewicz,
2012)

CAST 1. Number of
should-fix vio-
lations in an ap-
plication
2. The hours
to fix each vio-
lation
3. The cost of
labor

((∑ high-severity violations) x
(percentage to be fixed) x (aver-
age hours needed to fix) x ($ per
hour)) + ((∑ medium-severity
violations) x (percentage to be
fixed) x (average hours needed
to fix) x ($ per hour)) + ((∑ low-
severity violations) x (percent-
age to be fixed) x (average hours
needed to fix) x ($ per hour))

Remediation
Cost

(Curtis et al.,
2012)

SIG 1. Source code
2. Target qual-
ity level
3. The cost of
labor

For the extraction of measure-
ment values from source code,
the Software Analysis Toolkit of
SIG is used.
RE = RF * (SS * TF) * RA

ME =
MF ∗ (SS∗ (1+ r)t ∗T F)

2(QualityLevel−3)/2

1. Remediation
Cost
2. Non-
remediation
Cost

(Nugroho et al.,
2011)

A
Benchmarking-
based Model

1. Static code
analyzers
output data (ref-
erence projects)
2. Source code
3. Target qual-
ity level
4. The cost of
labor

Tool support is available
(Ploesch et al., 2008) that
facilitates triggering code anal-
ysis tools as well as building
the benchmark database and
benchmark suite
1. the target quality level is
specified
2. # of maximum allowed
violations is calculated
3. # of violations to be fixed is
calculated
4. # of violations to be fixed *
the estimated effort for fixing *
an hourly cost rate

Remediation
Cost

(Mayr et al.,
2014)

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

102

Table 5: Techniques with input, output, and calculation (cont.).

Technique Input Calculation Output Ref
A Fluctuation-
based Mod-
elling Approach

Candidate
cloud-based
mobile service

Quantifying the TD during the
first year
T D1 = 12 ∗ [ppm ∗ (Umax −
Ucurr)−Cu/m∗(Umax−Ucurr)] =
12 ∗ (Umax − Ucurr) ∗ (ppm −
Cu/m)
from the second and onwards
T Di = 12 ∗ [Ki−2 ∗ [Umax −
Li−2]−Mi−2 ∗ [Umax − Li−2]] =
12 ∗ (Umax − Li−2) ∗ (Ki−2 −
Mi−2), i ¿ 1

Relative
amount of
TD

(Skourletopoulos
et al., 2015)

Breaking Point
for TD

1. Number of
should-fix vio-
lations in an ap-
plication
2. The hours
to fix each vio-
lation
3. The cost of
labor
4. Past changes
in the history
of the system
(LOC)

TD-Principal is calculated as a
function of first 3 input vari-
ables.
Interest = addedLOC ∗ (1 −
FitnessValue(optimum)

FitnessValue(actual)
)

versions =
Principal($)
Interest($)

1. Remediation
Cost
2. Non-
remediation
Cost
3. Breaking
point

(Chatzigeorgiou
et al., 2015)

LOC and Fan-
In to Quantify
the Interest of
SATD

Source code 1. Extracting comments and
mapping them to its correspond-
ing methods
2. Determination of the change
over time in these SATD meth-
ods
3. Determining metrics measur-
ing interest
4. Calculating the interest per
SATD instance

Non-
remediation
Cost

(Kamei et al.,
2016)

A framework
for design level
TD

Source code 1. Select a set of relevant design
flaws
2. Define rules for the detection
of each design flaw
3. Measure the negative in-
fluence of each detected flaw
instance
FlawImpactScore(FIS) f law instance =
I f law type ∗ G f law type ∗
S f law instance
4. Compute an overall score
DebtSymptomsIndex =
∑FIS f law instance

KLOC

Design symp-
toms of TD

(Marinescu,
2012)

Automated Measurement of Technical Debt: A Systematic Literature Review

103

Table 5: Techniques with input, output, and calculation (cont.).

Technique Input Calculation Output Ref
A framework
for estimating
interest on TD

Developer
activity data

1. Establishing sessions
2. Calculate metrics related to
comprehension effort within a
session
3. Interest(I) = Icurrent − Iideal
Static metrics show presence of
TD in classes Comprehension
effort metrics quantify effort to
comprehend the classes

Non-
remediation
Cost

(Singh et al.,
2014)

Modularity
metrics for
ATD

Past changes
in the history
of the sys-
tem (commit
records)
or
Source code

1. Parse the commit records
to extract needed data items for
ANMCC calculation
2. Filtering out data in commit
records
3. ANMCC = (∑h

j=1 NMC(k +
j))/h
A higher ANMCC entails poten-
tial increase in ATD
or
1. Code map generation (XML)
2. Code map parsing
3. Modularity metrics calcula-
tion
A higher IPCI or IPGF indicate
less ATD

Relative
amount of
TD

(Li et al., 2014)

Detecting and
quantifying
SATD

Source code 1. Project Data Extraction (
release used, the number of
classes, the total source lines of
code, the total extracted com-
ments and the number of con-
tributors)
2. Parsing the source code and
extracting the code comments
3. Filtering comments
4. Manual classification into five
different types of SATD

of comments
(number of
individual
line, block,
and Javadoc
comments)

(Maldonado
and Shihab,
2015)

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

104

REFERENCES

Scientific toolworks, inc. understand 2.6.
http://www.scitools.com/.

Alves, N. S., Mendes, T. S., de Mendonça, M. G., Spı́nola,
R. O., Shull, F., and Seaman, C. (2016). Identifica-
tion and management of technical debt: A systematic
mapping study. Information and Software Technology,
70:100–121.

Ampatzoglou, A., Ampatzoglou, A., Avgeriou, P., and
Chatzigeorgiou, A. (2015a). Establishing a framework
for managing interest in technical debt. In 5th Interna-
tional Symposium on Business Modeling and Software
Design, BMSD.

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A.,
and Avgeriou, P. (2015b). The financial aspect of man-
aging technical debt: A systematic literature review.
Information and Software Technology, 64:52–73.

Ayewah, N., Hovemeyer, D., Morgenthaler, J. D., Penix,
J., and Pugh, W. (2008). Using static analysis to find
bugs. IEEE software, 25(5).

Behutiye, W. N., Rodrı́guez, P., Oivo, M., and Tosun, A.
(2017). Analyzing the concept of technical debt in the
context of agile software development: A systematic
literature review. Information and Software Technol-
ogy, 82:139–158.

Besker, T., Martini, A., and Bosch, J. (2016). A sys-
tematic literature review and a unified model of atd.
In Software Engineering and Advanced Applications
(SEAA), 2016 42th Euromicro Conference on, pages
189–197. IEEE.

Boehm, B., Grunbacher, P., and Briggs, R. O. (2001).
Developing groupware for requirements negotiation:
lessons learned. IEEE software, 18(3):46–55.

Britsman, E. and Tanriverdi, Ö. (2015). Identifying tech-
nical debt impact on maintenance effort-an industrial
case study.

Chatzigeorgiou, A., Ampatzoglou, A., Ampatzoglou, A.,
and Amanatidis, T. (2015). Estimating the breaking
point for technical debt. In Managing Technical Debt
(MTD), 2015 IEEE 7th International Workshop on,
pages 53–56. IEEE.

Coman, I. D., Robillard, P., Sillitti, A., and Succi, G. (2014).
Cooperation, collaboration and pair-programming:
Field studies on backup behavior. Journal of Systems
and Software, 91(5).

Coman, I. D. and Sillitti, A. (2007). An empirical ex-
ploratory study on inferring developers’ activities
from low-level data. In 19th International Conference
on Software Engineering and Knowledge Engineering
(SEKE 2007).

Coman, I. D. and Sillitti, A. (2008). Automated identifi-
cation of tasks in development sessions. In 16th IEEE
International Conference on Program Comprehension
(ICPC 2008).

Coman, I. D., Sillitti, A., and Succi, G. (2008). Investigat-
ing the usefulness of pair-programming in a mature
agile team. In 9th International Conference on eX-
treme Programming and Agile Processes in Software
Engineering (XP2008).

Corral, L., Sillitti, A., and Succi, G. (2013). Software de-
velopment processes for mobile systems: Is agile re-
ally taking over the business? In 1st International
Workshop on Mobile-Enabled Systems (MOBS 2013)
at ICSE 2013.

Corral, L., Sillitti, A., and Succi, G. (2014). Software as-
surance practices for mobile applications. Computing,
97(10).

Cunningham, W. (1992). The wycash portfolio manage-
ment system, addendum to the proceedings on object-
oriented programming systems, languages, and appli-
cations (addendum).

Curtis, B., Sappidi, J., and Szynkarski, A. (2012). Esti-
mating the size, cost, and types of technical debt. In
Proceedings of the Third International Workshop on
Managing Technical Debt, pages 49–53. IEEE Press.

Falessi, D. and Reichel, A. (2015). Towards an open-
source tool for measuring and visualizing the inter-
est of technical debt. In Managing Technical Debt
(MTD), 2015 IEEE 7th International Workshop on,
pages 1–8. IEEE.

Falessi, D., Shaw, M. A., Shull, F., Mullen, K., and Key-
mind, M. S. (2013). Practical considerations, chal-
lenges, and requirements of tool-support for managing
technical debt. In Managing Technical Debt (MTD),
2013 4th International Workshop on, pages 16–19.
IEEE.

Gaudin, O. (2009). Evaluate your technical debt with sonar.
Sonar, Jun.

Griffith, I., Reimanis, D., Izurieta, C., Codabux, Z., Deo,
A., and Williams, B. (2014). The correspondence
between software quality models and technical debt
estimation approaches. In Managing Technical Debt
(MTD), 2014 Sixth International Workshop on, pages
19–26. IEEE.

Gruber, H., Plösch, R., and Saft, M. (2010). On the va-
lidity of benchmarking for evaluating code quality.
IWSM/MENSURA, 10.

Heitlager, I., Kuipers, T., and Visser, J. (2007). A practical
model for measuring maintainability. In Quality of
Information and Communications Technology, 2007.
QUATIC 2007. 6th International Conference on the,
pages 30–39. IEEE.

Izurieta, C., Griffith, I., Reimanis, D., and Luhr, R. (2013).
On the uncertainty of technical debt measurements. In
Information Science and Applications (ICISA), 2013
International Conference on, pages 1–4. IEEE.

Kamei, Y., Maldonado, E. d. S., Shihab, E., and Ubayashi,
N. (2016). Using analytics to quantify interest of self-
admitted technical debt. In QuASoQ/TDA@ APSEC,
pages 68–71.

Kan, S. H. (2002). Metrics and models in software qual-
ity engineering. Addison-Wesley Longman Publish-
ing Co., Inc.

Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software en-
gineering (version 2.3). Technical report, Keele Uni-
versity and University of Durham.

Lenarduzzi, V., Sillitti, A., and Taibi, D. (2017). Analyz-
ing forty years of software maintenance models. In

Automated Measurement of Technical Debt: A Systematic Literature Review

105

39th International Conference on Software Engineer-
ing (ICSE 2017).

Letouzey, J.-L. (2012). The sqale method for evaluating
technical debt. In Managing Technical Debt (MTD),
2012 Third International Workshop on, pages 31–36.
IEEE.

Letouzey, J.-L. and Ilkiewicz, M. (2012). Managing tech-
nical debt with the sqale method. IEEE software,
29(6):44–51.

Li, Z., Avgeriou, P., and Liang, P. (2015). A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220.

Li, Z., Liang, P., Avgeriou, P., Guelfi, N., and Ampatzoglou,
A. (2014). An empirical investigation of modular-
ity metrics for indicating architectural technical debt.
In Proceedings of the 10th international ACM Sigsoft
conference on Quality of software architectures, pages
119–128. ACM.

Luhr, R. L. et al. (2015). The application of technical
debt mitigation techniques to a multidisciplinary soft-
ware project. PhD thesis, Montana State University-
Bozeman, College of Engineering.

Maldonado, E. d. S. and Shihab, E. (2015). Detecting and
quantifying different types of self-admitted technical
debt. In Managing Technical Debt (MTD), 2015 IEEE
7th International Workshop on, pages 9–15. IEEE.

Marinescu, R. (2012). Assessing technical debt by identi-
fying design flaws in software systems. IBM Journal
of Research and Development, 56(5):9–1.

Mayr, A., Plösch, R., and Körner, C. (2014). A
benchmarking-based model for technical debt calcu-
lation. In Quality Software (QSIC), 2014 14th Inter-
national Conference on, pages 305–314. IEEE.

Monteith, J. Y. and McGregor, J. D. (2013). Exploring soft-
ware supply chains from a technical debt perspective.
In Proceedings of the 4th International Workshop on
Managing Technical Debt, pages 32–38. IEEE Press.

Moser, R., Pedrycz, W., Sillitti, A., and Succi, G. (2008).
A model to identify refactoring effort during mainte-
nance by mining source code repositories. In 9th In-
ternational Conference on Product Focused Software
Process Improvement (PROFES 2008).

Nugroho, A., Visser, J., and Kuipers, T. (2011). An em-
pirical model of technical debt and interest. In Pro-
ceedings of the 2nd Workshop on Managing Technical
Debt, pages 1–8. ACM.

Parodi, E., Matalonga, S., Macchi, D., and Solari, M.
(2016). Comparing technical debt in student exercises
using test driven development, test last and ad hoc pro-
gramming. In Computing Conference (CLEI), 2016
XLII Latin American, pages 1–10. IEEE.

Ploesch, R., Gruber, H., Pomberger, G., Saft, M., and Schif-
fer, S. (2008). Tool support for expert-centred code as-
sessments. In Software Testing, Verification, and Val-
idation, 2008 1st International Conference on, pages
258–267. IEEE.

Poliakov, D. et al. (2015). A systematic mapping study on
technical debt definition.

Potdar, A. and Shihab, E. (2014). An exploratory study
on self-admitted technical debt. In Software Main-

tenance and Evolution (ICSME), 2014 IEEE Interna-
tional Conference on, pages 91–100. IEEE.

Ribeiro, L. F., de Freitas Farias, M. A., Mendonça, M. G.,
and Spı́nola, R. O. (2016). Decision criteria for the
payment of technical debt in software projects: A sys-
tematic mapping study. In ICEIS (1), pages 572–579.

Singh, V., Pollock, L. L., Snipes, W., and Kraft, N. A.
(2016). A case study of program comprehension effort
and technical debt estimations. In Program Compre-
hension (ICPC), 2016 IEEE 24th International Con-
ference on, pages 1–9. IEEE.

Singh, V., Snipes, W., and Kraft, N. A. (2014). A framework
for estimating interest on technical debt by monitoring
developer activity related to code comprehension. In
Managing Technical Debt (MTD), 2014 Sixth Interna-
tional Workshop on, pages 27–30. IEEE.

Skourletopoulos, G., Mavromoustakis, C. X., Mastorakis,
G., Rodrigues, J. J., Chatzimisios, P., and Batalla,
J. M. (2015). A fluctuation-based modelling ap-
proach to quantification of the technical debt on mo-
bile cloud-based service level. In Globecom Work-
shops (GC Wkshps), 2015 IEEE, pages 1–6. IEEE.

Snipes, W., Nair, A. R., and Murphy-Hill, E. (2014). Expe-
riences gamifying developer adoption of practices and
tools. In Companion Proceedings of the 36th Inter-
national Conference on Software Engineering, pages
105–114. ACM.

Tom, E., Aurum, A., and Vidgen, R. (2013). An exploration
of technical debt. Journal of Systems and Software,
86(6):1498–1516.

Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. (2008).
Jdeodorant: Identification and removal of type-
checking bad smells. In Software Maintenance and
Reengineering, 2008. CSMR 2008. 12th European
Conference on, pages 329–331. IEEE.

Wheeler, D. A. (2001). More than a gigabuck: Estimating
gnu/linux’s size.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

106

