
A Study of First Year Undergraduate Computing Students’
Experience of Learning Software Development in the Absence of a

Software Development Process

Catherine Higgins, Ciaran O’Leary, Claire McAvinia and Barry Ryan
Technological University Dublin, Dublin, Ireland

Keywords: Software Development Education, Freshman University Students, Software Development Process.

Abstract: Despite the ever-growing demand for software development graduates, it is recognised that a significant
barrier for increasing graduate numbers lies in the inherent difficulty in learning how to develop software.
This paper presents a study that is part of a larger research project aimed at addressing the gap in the provision
of educational software development processes for freshman, novice undergraduate learners, to improve
proficiency levels. As a means of understanding how such learners problem solve in software development in
the absence of a formal process, this study examines the experiences and depth of learning acquired by a
sample set of novice, freshman university learners. The study finds that without the scaffolding of an
appropriate structured development process tailored to novices, students are in danger of failing to engage
with the problem solving skills necessary for software development, particularly the skill of designing
solutions prior to coding.

1 CONTEXT FOR STUDY

The rapid growth in technologies has increased the
demand for skilled software developers and this
demand is increasing on a global scale. A report from
the United States Department of Labor (2015) states
that employment in the computing industry is
expected to grow by 12% from 2014 to 2024; a higher
statistic than the average for other industries.
However, learning how to develop software solutions
is not trivial due to the high cognitive load it puts on
novice learners. Novices must master a variety of
skills such as requirements analysis, learning syntax,
understanding and applying computational constructs
and writing algorithms (Stachel et al., 2013). This
high cognitive load means that many novice
developers focus on programming language syntax
and programming concepts and, as a result, find the
extra cognitive load of problem solving difficult
(Whalley and Kasto, 2014). This suggests that there
is a need for an educational software development
process aimed at cognitively supporting students in
their acquisition of problem solving skills when
developing software solutions. However, even
though there are many formal software development
processes available for experienced developers, very
little research has been carried out on developing

appropriate processes for freshman, university
learners (Caspersen and Kolling, 2009). This lack of
appropriate software development processes presents
a vacuum for educators with the consequence that the
skills required for solving computational problems –
specifically carrying out software analysis and design
- are typically taught very informally and implicitly
on introductory courses at university (Coffey, 2015;
Suo, 2012). This is problematic for students as
without systematic guidance, many novices may
adopt maladaptive cognitive practices in software
development. Examples of such practices include
rushing to code solutions with no analysis or design
and coding by rote learning (Huang et al., 2013).
These practices can be very difficult to unlearn and
can ultimately prohibit student progression in the
acquisition of software development skills (Huang et
al., 2013; Simon et al., 2006).. It has also been found
that problems in designing software solutions can
persist even past graduation (Loftus et al, 2011).

To address these challenges, this paper describes
a focussed case study which is the first part of a larger
research project, the ultimate aim of which is to
develop an educational software development
process with an associated tool for novice university
learners. In this focussed study, the experiences and
depth of learning of a sample set of novice, freshman

Higgins, C., O’Leary, C., McAvinia, C. and Ryan, B.
A Study of First Year Undergraduate Computing Students’ Experience of Learning Software Development in the Absence of a Software Development Process.
DOI: 10.5220/0007655302310240
In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), pages 231-240
ISBN: 978-989-758-367-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

231

university learners being taught software
development in the absence of a formal software
development process is reported. The aim of the study
is to identify specific issues and behaviour that can
arise in the absence of such a process.

2 RELATED RESEARCH

There has been a wealth of research over three
decades into the teaching and learning of software
development to improve retention and exam success
rates at university level. Research to date has focused
on a variety of areas such as reviewing the choice of
programming languages and paradigms suitable for
novice learners. A wide variety of languages have
been suggested from commercial to textual languages
through to visual block-based languages (Pears et al.,
2007). Other prominent research has included the
development of visualisation tools to create a
diagrammatic overview of the notional machine as a
user traces through programs and algorithms (Gautier
and Wrobel‐Dautcourt, 2016; Guo, 2013); and the use
of game based learning as a basis for learning
programming and game construction (Mozelius et al.,
2013; Trevathan et al., 2016).

Research that specifically looks at software
development practices for introductory software
development courses at university level have tended
towards the acquisition of programming skills, with
the focus on analysis and design skills being studied
as part of software engineering courses in later years.
Examples of such research include Dahiya (2010)
who presents a study of teaching software
engineering using an applied approach to
postgraduate and undergraduates with development
experience, Savi and co-workers (2011) who describe
a model to assess the use of gaming as a mechanism
to teach software engineering and Rodriguez (2015)
who examines how to teach a formal software
development methodology to students with
development experience.

In examining research into software development
processes aimed at introductory courses at university,
comparatively few were found in the literature. Those
that have been developed tend to focus on a particular
stage of the development process or on a development
paradigm. Examples include the STREAM process
(Caspersen and Kolling, 2009) which focus on design
in an object oriented environment; the P3F framework
(Wright, 2012) with a focus on software design and
arming novice designers with expert strategies; a
programming process by Hu and co-workers (2013)
with a focus on generating goals and plans and

converting those into a coded solution via a visual
block-based programming language; and POPT
(Neto et al., 2013) which has a focus on supporting
software testing.

In contrast to the processes cited above, this
research has a focus on all stages of problem solving
when developing software solutions. This study is
part of the first cycle of an action research project
whose ultimate aim is the generation of an
educational software development process aimed at
this category of student to support their acquisition
and application of problem solving skills.

3 RESEARCH METHODS

The research question for this study is:
In the context of problem solving in software

development by novice university learners, what are
the subjective experiences and depth of learning of a
sample cohort of freshman, university students
studying software development without the support of
a formal software development process?

3.1 Participants

The control group were a cohort of first year
undergraduate students who were registered on a
degree in software development in the academic years
2015/16 and 2016/17. Given that the participants
were not randomly assigned by the researcher, it was
necessary to first conduct a pre-test to ensure they
were probabilistically equivalent in order to reduce
any threat to the internal validity of the experiment.
This means that the confounding factor of any student
having prior software development experience was
eliminated. The control group had 82 students of
which the gender breakdown was 70% male and 30%
female.

3.2 Pedagogical and Assessment
Process

The module that was the subject of this study was a
two semester, 24 week introduction to software
development which ran over the entire first academic
year of the programme. It has been observed in
Section 1 of this paper that there is a gap in software
engineering education in the provision of software
development processes for freshman, undergraduate
computing students (Caspersen and Kolling, 2009).
Therefore, students in this study were taught software
development in the absence of a formal software

CSEDU 2019 - 11th International Conference on Computer Supported Education

232

development process. This means that similar to
equivalent undergraduate courses, students were
primarily taught how to program in a specific
language with the problem solving process to apply
the language to solve problems being a suite of
informal steps (Coffey, 2015).

The programming language taught to students
was Java and the order of programming topics taught
to students are summarized in Table 1. These topics
were taught via lectures and problem solving
exercises given in practical sessions. Students were
also taught to use pseudocode as a design technique
in order to design solutions to the exercises.

When students were given a problem to solve,
they were encouraged to analyse the problem by
attempting to document on paper the requirements of
the problem (i.e. a decomposition of the problem into
a series of actions). Then they were taught to use
pseudocode to design and illustrate the principal
computational constructs needed to address these
requirements. Finally, the designed requirements
were tested by converting the pseudocode into Java
and integrating the tested code into the finalised
program.

Table 1: The topics taught to the participants.

There were nine intended learning outcomes
(ILOs) for this course which were used as a
mechanism to test students’ levels of proficiency in
problem solving in software development. These
ILOs are summarised in Table 2.

Table 2: Taxonomy of Intended Learning Outcomes for
participants.

3.3 Data Collection and Evaluation
Methodology

In deciding on appropriate data collection instruments
for this study, this choice was guided by the decision
to employ a mixed methods design. Quantitative
analysis was used to evaluate a set of prescribed
problems given at different stages of the academic
year to test the depth of learning. Quantitative and
qualitative analysis was carried out on data collected
from an end-of year survey and focus group session
to ascertain students’ reactions to - and experiences
of - that learning.

In structuring the evaluation of the data, the
Kirkpatrick framework was used. This framework is
a structured mechanism with five levels which can be
used by businesses to test the effectiveness of either
in-house or out-sourced training programmes for
employees (Kirkpatrick, 1994). There are also many
examples in the literature of this framework being
used to test learning interventions for students (Byrne
et al, 2015; Chang and Chen, 2014).

For the purposes of this paper, which is examining
students’ experiences and depth of learning, only a
subset of this framework is presented. This subset
contains level 1 which focuses on student reaction to
learning and level 2 which focuses the depth of
learning acquired. When working with this
framework, it was the contention of this researcher
that level 2 required adaption in order to have a clear
and traceable process to examine learning. To do this,
the Structure of Observed Learning Outcomes
(SOLO) taxonomy (Biggs and Collis, 1982, 2014)
was used to augment the abridged Kirkpatrick
framework in order to measure the depth of student
learning that has taken place.

3.3.1 Measuring Level 1 - Reaction to, and
Experience of, Problem Solving in
Software Development

In measuring students’ reaction to, and experience of,
problem solving in software development, four
research questions were posed:

1. What quantifiable engagement do students
have with software development?

2. What planning techniques (i.e. analysis and
design techniques) did students find useful
when solving computational problems?

3. What planning techniques (i.e. analysis and
design techniques) did students NOT find
useful when solving computational
problems?

A Study of First Year Undergraduate Computing Students’ Experience of Learning Software Development in the Absence of a Software
Development Process

233

4. Is there an association between engagement
and type of technique favoured?

To provide answers to these questions,
participants completed a survey (n=82) and attended
a focus group session (n=21).

In an attempt to quantify students’ engagement
levels with problem solving, a dependent variable
called engagement was generated from the survey.
This variable had values ranging from 12 to indicate
that a student is fully engaged with software
development down to 0 to indicate student is not
engaged. The formulation of the engagement variable
involved examining 12 of the survey questions. These
questions specifically examined student attitudes to
the value they perceive analysis and design has when
they are solving problems as well as an indication of
whether they would use these techniques outside of
assignment work and if they plan to use them beyond
the current academic year. A binary measurement
score was given to the answers which were summated
to give the engagement value.

The principal quantitative techniques used on the
survey data were Cronbach’s alpha (1951) to measure
internal consistency of the data and the Kruskal-
Wallis test (1952) to see if there is an association
between students’ level of engagement and the type
of software development techniques favoured. The
tool used for the quantitative analysis was IBM SPSS
Version 24. The data collected from the open
questions of the survey and the focus group were
subjected to qualitative thematic analysis as
suggested by Braun and Clark (2006). The tool used
to assist in this analysis was NVivo Version 12.

3.3.2 Measuring Level 2 - Depth of Learning

In order to test student learning in each of the four
topics summarised in Table 1, a suite of sixteen
problems (four problems per topic) was given to
students during the year. As a mechanism to test the
depth of student learning applied when solving these
problems, a SOLO taxonomy framework was
developed which mapped the five SOLO levels
against the nine ILOs presented in Table 2. This
framework was used as a guide by researchers to
measure the depth of learning a student demonstrated
in each of the nine ILOs for a specific problem. A
subset of this framework is given in Table 3 for
illustrative purposes.

For each problem solution completed by each
student (i.e. 82 students by 16 problems), the depth of
learning was measured as a SOLO level score for
each of the nine ILOs. The SOLO level achieved was
measured as a number from 1 – 5 to represent the

SOLO levels Prestructural (1), Unistructural (2),
Multistructural (3), Relational (4) and Extended
Abstract (5). Calculating the mean of all nine ILO
SOLO scores produced a single average SOLO score
which represents a SOLO level of learning for that
problem in a specific topic for a student. Finally,
calculating the mean of all student solutions for all
four problems in a topic produced a single average
SOLO level score for that topic.

Table 3: A subset of the SOLO Taxonomy framework as
applied to the first three levels of the SOLO taxonomy in
conjunction with the first three ILOs from Table 2.

Prior to giving the problems to the students, each
problem was examined by the researcher and a peer
reviewer with the aim of approximating the least set
of SOLO scores that would be expected from
students. To test the reliability between researcher
and peer reviewer scores, a kappa coefficient value of
0.7 was generated which is deemed acceptable as a
reliability test (Viera and Garrett, 2005). A similar
mode of using SOLO to estimate what is expected
from students is presented by many researchers in this
space (Brabrand and Dahl, 2009; Izu et al, 2016;
Sheard et al., 2008; Shuhidan et al, 2009)

4 RESULTS AND FINDINGS

This section presents the results and findings from
carrying out this study.

4.1 Level 1 - Reaction to, and
Experience of, Problem Solving in
Software Development

1. What quantifiable engagement do students have
with software development?

CSEDU 2019 - 11th International Conference on Computer Supported Education

234

The engagement level (see Section 3.3.1) was
calculated for each student (n=82) and this resulted in
an average score of 5.7 out of 12. 68% (n=56) of the
cohort scored between 3 and 8 with 70% (n=39) of
that group scoring between 3 and 6 inclusively with
the other 30% scoring between 6 and 8.

2. What planning techniques (i.e. analysis and design
techniques) did students find useful when solving
computational problems?
Results from quantitative analysis on the survey are
illustrated in Figure 1.

Figure 1: Categories and percentages of planning
techniques that students found useful (n=82).

In examining the focus group and open questions
of the survey, 42% of survey participants (n=35) and
48% of focus group participants (n=10) were positive
about the use of analysis as a technique to help them
break down the main problem into a series of ordered
sub-problems which were easier to individually solve.

“The lecturer gives you a big problem, doesn’t it
make sense to break into smaller problems so now
you have maybe 4 smaller and easy to understand
problems than one big one that I haven’t a notion
about?”- (Focus group Student 03)

On the question of the usefulness of design, only
three students in the focus group spoke positively
about the usefulness of design.

3. What planning techniques (i.e. analysis and design
techniques) did students NOT find useful when
solving computational problems?
Results from quantitative analysis on the survey are
illustrated in Figure 2 where pseudocode was
specifically cited by 46% of students as not useful.
When asked for reasons for this finding (n=38), the
answers are categorised into three themes
Pseudocode is another language so why not just use
Java (47%, n=18), Don’t know where to start as
confusing to use (26%, n=10), No feedback from
pseudocode so can’t tell if it’s right or wrong (26%,
n=10).

In examining the data from the focus group, 67%
(n=14) indicated that they found design to be very
confusing and unhelpful to them in problem solving.

I don’t know how to start with this design
technique or how to use it to help me think about
solutions. It doesn’t help me only stresses me out
more as I’m confused all the time. – (Focus Group
Student 21).

Figure 2: Categories and percentages of planning
techniques that students did not find useful (n=82).

In examining how useful or not they found
analysis and design in general, students from the
survey were also asked if they engaged in analysis
and design when solving complex problems; and in a
separate question, they were also asked if they felt
coding was more important than analysis and design.
Only 11% (n=9) indicated that they would engage
with analysis and design when solving complex
problems with 94% (n=77) agreeing with the
statement that coding was more important than
planning.

4. Is there an association between engagement and
type of technique favoured?
In testing the association between the different types
of analysis and design techniques favoured by
students, the evaluation carried out by a Kruskal-
Wallis test showed that there is a statistically
significant difference in engagement levels between
the different types of techniques favoured by students
(p<0.05, Kruskal-Wallis, Chi-Square=60.4, df=6,
N=82).

Examining this further, it was seen that 78%
(n=30) of students in this study who indicated that
they found no technique useful also had a very low
engagement level of 0 – 2, with 21% (n=8) having an
engagement level of 3 and 1% (n=1) an engagement
level of 4. Conversely, 84% (n=41) of students who
indicated they favoured the technique of requirements
analysis had an engagement level of 7.

Additionally, in testing the association between
the different types of analysis and design techniques

A Study of First Year Undergraduate Computing Students’ Experience of Learning Software Development in the Absence of a Software
Development Process

235

not favoured by students, the evaluation indicated that
there is a statistically significant difference in
engagement levels between the different types of
techniques not favoured by students (p<0.05,
Kruskal-Wallis, Chi-Square=74.23, df=4, N=82).
Examining this further, it was seen that 48% (n=24)
of those specifically specifying pseudocode or design
techniques had an engagement factor or 3 or less.
This result highlights the use of pseudocode as being
in negative correlation with student engagement.
Conversely, of the 100% (n=12) of students who
indicated that no technique was unhelpful, 62% (n=7)
had an engagement level of 8 or more.

In examining the data from the focus group, 58%
(n=12) of students indicated that they did not carry
out any design prior to attempting to code a solution
and of those students, 78% (n=9) had an engagement
level of 3 or less.

I should say that I do all the planning stuff but that
would be a lie! I look up programs you’ve [lecturer]
given us based on the topics that the assignment is
based on and see if I can use those to try and put
together a solution - (Focus Group Student 19)

I just reverse engineer my code and I don’t mind
saying that out loud as it's what you’ve [lecturer] said
on all of my feedback. I can’t write pseudocode so the
only thing to do is try and figure it out in java and
then go back and turn that into pseudocode but even
that doesn’t work as it's obvious to you what I did so
it's useless – (Focus Group Student 04)

On the other hand, even though only 19% (n=4)
of students indicated that planning a solution via
analysis and design is important, all of these students
achieved an engagement level of 7 or more. This
aligns with the findings in the quantitative analysis
that an engagement with analysis and design has a
direct impact on student’s overall engagement levels
with software development as a whole.

4.2 Level 2 Depth of Learning

This section presents the findings from analysing and
assessing the student answers to the problems devised
for the four topics as outlined in Table 1.

Figure 3 summarises these findings as a line chart
to show the expected and actual SOLO levels
achieved. The SOLO level scoring for question 1
(Q1) of a topic indicates the SOLO level achieved at
the start of the topic with the SOLO level scoring for
question 4 (Q4) indicating the level achieved towards
the end of the topic.

Figure 3: Line chart to compare Expected SOLO scores
with Actual SOLO scores across all four topics by students
(n=82).

4.2.1 Topic 1 – Sequential Flow Control

This topic ran from weeks 1 to 4 of the academic year
and focussed on simple foundational aspects such as
defining primitive variables, assigning and inputting
values into variables, updating variable values and
displaying variable values. By the end of week 2,
question 1 was given to students with an expected
SOLO score of 2.33 which means that on average
students are expected to be past the unistructural stage
(which has a score of 2) where they can understand
and apply one ILO and are moving towards the
multistructural stage (score 3) where they can utilise
more than one ILO. At the end of topic 1 when they
are given question 4, the expected score is 2.89 which
means that on average students are expected to be
almost at the multistructural stage where they can
comfortably apply and utilise more than one ILO in
the context of this topic when problem solving. In
contrast, the actual scores for questions 1 (given in
week 2) and 4 (given in week 4) are 1.99 and 2.13
respectively which means they are on average on the
unistructural level where they can utilise just one ILO
in the context of this topic. Drilling into these results
found that students began the topic with specific
issues with the ILOs associated with design,
integration and the notional machine which were all
at the prestructural level. By the end of the topic, on
average students moved into the multistructural level
of understanding for the ILOs related to
understanding program concepts and data
representation; with abstraction and the notional
machine at the unistructural level and the remaining
ILOs at the prestructural level.

4.2.2 Topic 2 - Non-Sequential Flow Control

This topic ran from weeks 5 to 9 and focussed on
conditional and iterative constructs. Both constructs
involve the testing of conditions which - based on the
truth of the condition - will either selectively chose

CSEDU 2019 - 11th International Conference on Computer Supported Education

236

which path of the solution to execute (conditional
constructs) or will repeatedly execute part of a
solution until the condition is false (iterative
construct). For questions 1 (given in week 5) and 4
(given in week 9), the expected SOLO scores were
2.78 and 3.0 in contrast to the actual SOLO scores of
2.2 (for question 1) and 2.55 (for question 4)
respectively. Drilling into these scores found that on
average students were still at the unistructural level,
however they were moving towards the
multistructural level. The ILOs that showed the most
improvement across this topic were those relating to
analysis (decomposition), understanding
programming constructs and data representation.

4.2.3 Topic 3 – Modularity

This topic ran from weeks 10 to 15 and focussed on
the integration of sequential /conditional / iterative
constructs into a subprogram that carries out one
defined action. Such a subprogram may or may not
return a value and may take input parameters. For
questions 1 (given in week 10) and 4 (given in week
15), the expected SOLO scores were 3.1 to 3.4 in
contrast to the actual SOLO scores of 2.41 (for
question 1) to 2.6 (for question 4) respectively.
Drilling into these scores found that the topic of
modularity is difficult in general for students due to
its use of local, global variables and parameter
passing (Park et al., 2015), hence the dip in actual
scores from the last topic. The percentage of students
still at the prestructural level for all ILOs at this stage
was 17% (n=14). The ILOs of abstraction, notional
machine, design, evaluation and integration were still
at unistructural stage with no students at the
multistructural level in abstraction. The solution
reuse ILO was still at the prestructural level in general
and it is both this outcome as well as abstraction that
kept that high number of students at the prestructural
level. Understanding programming constructs, data
representation and analysis were at the
multistructural level.

4.2.4 Topic 4 - Object Oriented
Interaction/Behaviour

This topic ran from weeks 16 to 24 and focused on
the definition of new data types in the form of classes
where the new data types have a range of data values
and a set of defined actions. For questions 1 (given in
week 17) and 4 (given in week 24), the expected
SOLO scores were 3.6 to 4.0 in contrast to the actual
SOLO scores of 2.8 (for question 1) to 3 (for question
4) respectively. Drilling into these scores, it was

found that at the end of the course, students had barely
achieved the multistructural level of learning. It can
be seen that this level of learning exists primarily due
to issues with design, integration and solution reuse
with the learning outcomes evaluation, abstraction
and modelling the notional machine also causing
significant learning issues for students. However,
understanding programming constructs, data
representation and analysis were at the
multistructural level which suggests students can
understand and mentally model programming
concepts and variables but they find it difficult to
apply that knowledge when solving problems.

4.2.5 Summary of SOLO Findings

Overall, it can be seen from the findings in this
section and the measurements summarised in Figure
3 that while the actual SOLO means for each of the
four topics remained lower than the expected means,
both sets of means followed a similar upward trend
meaning there was an improvement in the depth of
learning. In the observed actual SOLO means,
students began with an average score of 1.99 which is
just on the cusp of the unistructural level of learning
and they finished with a score of 3.0 which indicates
they moved to the multistructural stage of learning.
This means that on average, students could
understand and utilise several ILOs across the four
topics but they had difficulties when it came to
integrating ILOs to improve problem solving.

This is a low result to achieve at the end of the
course as it suggests that while students can
demonstrate multiple ILOs separately, they cannot
integrate them (which is the SOLO relational level).
This ability to integrate ILOs when planning and
developing solutions is required if students are to
become proficient problem solvers in software
development.

5 DISCUSSION

Student engagement is generally considered to be a
predictor of learning (Carini, Kuh, and Klein, 2006).
However, it has been noted that computer science
students’ general level of engagement in their studies
has been recorded internationally as being much
lower than students from other disciplines (Sinclair et
al., 2015). Therefore, the relatively low engagement
level of 5.7 out of 12 found in this study is not
surprising as it suggests that a majority of students are
not adequately engaged with the topic and that is
borne out in the consistently underperforming set of

A Study of First Year Undergraduate Computing Students’ Experience of Learning Software Development in the Absence of a Software
Development Process

237

actual SOLO scores acquired across the four topics.
Interestingly, 94% (n=82) of the survey respondents
view the process of programming as being more
important than the analysis and design stages which
suggests that they don’t see the value in carrying out
planning prior to writing a program. This is an issue
also observed by Garner (2007) and it has been found
that this lack of focus on planning is a lead issue in
the development of maladaptive cognitive practices
(Huang et al., 2013). The results from this study
suggest that student engagement in the process of
solving software development problems is directly
aligned to how useful they find the process of
carrying out analysis and design. If the process of
analysis and design wasn’t objectively important in
software development, then students would be able to
skip this stage and move directly to coding, and their
engagement level would not be affected which has
not been observed here. Also in support of this
observation is the fact that the importance of
structuring problem solving into analysis and design
strategies for novices has been recognised for many
years (Deek et al, 1998; Morgado and Barbosa, 2012).
Therefore, as the engagement level is low and their
depth of learning in analysis and design is not at a
SOLO relational level, this suggests that if students
can’t successfully participate in analysis and design,
this affects their ability to engage fully with their
studies to become proficient developers.

On examining the findings, most students found
the process of analysis (i.e. breaking a problem into a
series of sub-tasks that need to be solved) to be a
useful activity to help them start solving a problem.
This is typical top-down analysis which has long been
proven as a mechanism to support students (Ginat and
Menashe, 2015). This is reflected both in the
responses from students in the focus group and survey
as well as the improvement seen in SOLO levels for
the ILO Problem Analysis and Decomposition across
the four topics. However, despite this positive
experience, this ILO is still not at the SOLO relational
level that would be expected of students at the end of
their first year, which suggests further structure in
carrying out analysis would help. Students need to be
able to visualise and create mental models in order to
understand “what” needs to be done to solve a
problem. However, it has been observed that most
students find such mental modelling difficult (Cabo,
2015). Therefore, adding a visualisation technique to
the analysis process could be useful in helping
students both carry out analysis as well as engage in
the mental modelling required.

The area of design is a seriously divisive issue for
students. It has been found in other studies that design

is typically a much harder task for novice learners
than programming due to; the need for complex
mental modelling of computing constructs to take
place in order to design a solution, the issues with
understanding pseudocode and its inherent lack of
feedback (Garner, 2007; Lahtinen et al,2005).
Likkanen & Perttula (2009) also observe that even if
students successfully complete design in a top-down
fashion where they decompose a problem into sub-
problems, they often then experience difficulties in
integrating the sub-problem solutions back into a final
solution. These issues with design are also reflected
in this study where it is very clear that pseudocode as
a design technique is not fit for purpose; most
students find it neither useful nor helpful. From the
survey findings in research question 3 in Section 4.1,
it can be seen that novice learners find it difficult to
understand the role of pseudocode as a mechanism to
abstract from the technicalities of a programming
language and instead see it as yet another language
they have to learn. This language issue with
pseudocode was observed by Hundhausen et al
(2007). Students also criticized the lack of support
and structure in this design technique which they find
makes it difficult to use effectively. This difficulty is
reflected by many students indicating that they move
immediately to the coding phase before they have
adequately decomposed a problem or carried out at
least some design for a solution. From the focus group
findings, this issue also emerges where it can also be
seen that this issue with pseudocode is biasing
students against their perception of design as being a
useful process.

This difficulty with design is also reflected in the
SOLO level scores where the ILOs of design,
integration and solution reuse were found to have the
lowest SOLO scores across the four topics; signalling
students have a specific issue with these topics.
Equally the ILOs involving the mental modelling of
the notional machine, the use of abstraction and the
evaluation of solutions also returned consistently low
scores.

As an alternative to pseudocode, it was seen from
the survey findings in Section 4.1 that some students
successfully gravitated towards using design
techniques such as flowcharts to support them in
designing algorithms despite it not being taught.
Given that flowcharts have been cited in the literature
as a very credible mechanism for visualising a flow
of control in an algorithm (Paschali et al., 2018) and
that they also are a natural visualisation technique,
such charts could be a very useful alternative to help
students engage in the process of design.

CSEDU 2019 - 11th International Conference on Computer Supported Education

238

In summary, the results produced less than
satisfactory findings around the issue of problem
solving for software development coupled with a low
level of engagement. Therefore, it can be concluded
that if students perceive they are not appropriately
supported in the development process by the use of
appropriate development techniques, this has a
negative impact on their engagement levels with
software development. This impact can negatively
affect their chances of continuing, and succeeding, in
their course as well as deciding to pursue a career in
software development.

Overall, these findings suggest that in order for
students to engage in problem solving in software
development that they need to be properly scaffolded
and supported by a software development process to
guide them in acquiring good development planning
habits as they set out on their learning journey.

6 CONCLUSIONS

Finding new and improved methods of teaching
software development to freshman, undergraduate
students is an extensively researched area, but with
little consensus. In this study, it was found that the
provision of an appropriate software development
process for this cohort is an area requiring more focus
and structure. As a first step in the development of
such a process, this study examined the experience
and depth of learning acquired by undergraduate,
novice software development students during their
first year of study in the absence of a formal software
development process. The findings from this study
suggest that without an appropriate level of
scaffolding, especially in analysis and design,
students’ attitudes and proficiency in developing
software solutions can be compromised as they rush
to try and implement solutions without appropriate
planning. The next stage of this research project is in
the generation and implementation of a software
development process to provide this scaffolding.

REFERENCES

Biggs, J. B., Collis, K. F. 1982. Evaluation the Quality of
Learning: The Solo Taxonomy (Structure of the
Observed Learning Outcome), Academic Press.

Biggs, J. B., Collis, K. F. 2014. Evaluating the Quality of
Learning: The Solo Taxonomy (Structure of the
Observed Learning Outcome). Academic Press.

Brabrand, C. and Dahl, B. (2009) Using the Solo Taxonomy
to Analyze Competence Progression of University
Science Curricula. Higher Education, 58(4), 531-49.

Braun, V. and Clarke, V. (2006) Using Thematic Analysis
in Psychology. Qualitative research in psychology,
3(2), 77-101.

Byrne, J. R., Fisher, L. and Tangney, B. (2015). A 21st
Century Teaching and Learning Approach to Computer
Science Education: Teacher Reactions, International
Conference on Computer Supported Education (pp.
523-40): Springer.

Cabo, C. (2015) Quantifying Student Progress through
Bloom's Taxonomy Cognitive Categories in Computer
Programming Courses.

Carini, R. M., Kuh, G. D. and Klein, S. P. (2006) Student
Engagement and Student Learning: Testing the
Linkages. Research in higher education, 47(1), 1-32.

Caspersen, M. E. and Kolling, M. (2009) Stream: A First
Programming Process. Trans. Comput. Educ., 9(1), 1-
29.

Chang, N. and Chen, L. (2014) Evaluating the Learning
Effectiveness of an Online Information Literacy Class
Based on the Kirkpatrick Framework. Libri, 64(3), 211-
23.

Coffey, J. W. (2015) Relationship between Design and
Programming Skills in an Advanced Computer
Programming Class. J. Comput. Sci. Coll., 30(5), 39-
45.

Cronbach, L. J. (1951) Coefficient Alpha and the Internal
Structure of Tests. psychometrika, 16(3), 297-334.

Dahiya, D. (2010) Teaching Software Engineering: A
Practical Approach. ACM SIGSOFT Software
Engineering Notes, 35(2), 1-5.

Deek, F., Kimmel, H. and McHugh, J. A. (1998)
Pedagogical Changes in the Delivery of the First�
Course in Computer Science: Problem Solving, Then
Programming. Journal of Engineering Education,
87(3), 313-20.

Garner, S. (2007) A Program Design Tool to Help Novices
Learn Programming. ICT: Providing choices for
learners and learning.

Gautier, M. and Wrobel�Dautcourt, B (2016) Arteoz�
Dynamic Program Visualization. ISSEP 2016, 70.

Ginat, D. and Menashe, E. (2015). Solo Taxonomy for
Assessing Novices' Algorithmic Design, Proceedings
of the 46th ACM Technical Symposium on Computer
Science Education (pp. 452-7): ACM.

Guo, P. J. (2013). Online Python Tutor: Embeddable Web-
Based Program Visualization for Cs Education,
Proceeding of the 44th ACM technical symposium on
Computer science education (pp. 579-84): ACM.

Hu, M., Winikoff, M. and Cranefield, S. (2013). A Process
for Novice Programming Using Goals and Plans,
Proceedings of the Fifteenth Australasian Computing
Education Conference - Volume 136. Adelaide,
Australia: Australian Computer Society, Inc.

Huang, T-C, Shu, Y., Chen, C-C and Chen, M-Y (2013)
The Development of an Innovative Programming
Teaching Framework for Modifying Students'

A Study of First Year Undergraduate Computing Students’ Experience of Learning Software Development in the Absence of a Software
Development Process

239

Maladaptive Learning Pattern. International Journal of
Information and Education Technology, 3(6), 591.

Hundhausen, C. D., & Brown, J. L. (2007). What You See
Is What You Code: A “live” algorithm development
and visualization environment for novice learners.
Journal of Visual Languages & Computing, 18(1), 22-
47.

Izu, C., Weerasinghe, A. and Pope, C. (2016). A Study of
Code Design Skills in Novice Programmers Using the
Solo Taxonomy, Proceedings of the 2016 ACM
Conference on International Computing Education
Research (pp. 251-9): ACM.

Kirkpatrick, D. L. (1994). Education Training Programs:
The Four Levels: San Francisco: Berrett-Kohler.

Kruskal, W H and Wallis, W A (1952) Use of Ranks in
One-Criterion Variance Analysis. Journal of the
American statistical Association, 47(260), 583-621.

Lahtinen, E., Ala-Mutka, K. and Järvinen, H-M. (2005). A
Study of the Difficulties of Novice Programmers, ACM
SIGCSE Bulletin (Vol. 37, pp. 14-8): ACM.

Liikkanen, L. A. and Perttula, M. (2009) Exploring
Problem Decomposition in Conceptual Design among
Novice Designers. Design studies, 30(1), 38-59.

Loftus, C., Thomas, L. and Zander, C. (2011). Can
Graduating Students Design: Revisited, Proceedings of
the 42nd ACM technical symposium on Computer
science education. Dallas, TX, USA: ACM.

Morgado, C. and Barbosa, F. (2012). A Structured
Approach to Problem Solving in Cs1, Proceedings of
the 17th ACM annual conference on Innovation and
technology in computer science education. Haifa,
Israel: ACM.

Mozelius, P., Shabalina, O., Malliarakis, C., Tomos, F.,
Miller, C. and Turner, D. (2013). Let the Students
Contruct Their Own Fun and Knowledge-Learning to
Program by Building Computer Games, European
Conference on Games Based Learning (pp. 418):
Academic Conferences International Limited.

Neto, V. L., Coelho, R., Leite, L., Guerrero, D. S. and
Mendon, A. P. (2013). Popt: A Problem-Oriented
Programming and Testing Approach for Novice
Students, Proceedings of the 2013 International
Conference on Software Engineering. San Francisco,
CA, USA: IEEE Press.

Park, J., Esmaeilzadeh, H., Zhang, X., Naik, M. and Harris,
W. (2015). Flexjava: Language Support for Safe and
Modular Approximate Programming, Proceedings of
the 2015 10th Joint Meeting on Foundations of
Software Engineering. Bergamo, Italy: ACM.

Paschali, M. E., Bafatakis, N., Ampatzoglou, A.,
Chatzigeorgiou, A and Stamelos, I. (2018). Tool-
Assisted Game Scenario Representation through Flow
Charts, ENASE (pp. 223-32).

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., Devlin, M. and Paterson, J. (2007) A
Survey of Literature on the Teaching of Introductory
Programming. ACM SIGCSE Bulletin, 39(2), 19.

Rodriguez, G., Soria, Á. and Campo, M. (2015) Virtual
Scrum: A Teaching Aid to Introduce Undergraduate

Software Engineering Students to Scrum. Computer
Applications in Engineering Education, 23(1), 147-56.

Savi, R., von Wangenheim, C. G. and Borgatto, A. F.
(2011). A Model for the Evaluation of Educational
Games for Teaching Software Engineering, Software
Engineering (SBES), 2011 25th Brazilian Symposium
on (pp. 194-203): IEEE.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,
E. and Whalley, J. L. (2008) Going Solo to Assess
Novice Programmers. SIGCSE Bull., 40(3), 209-13.

Shuhidan, S, Hamilton, M and D'Souza, D. (2009). A
Taxonomic Study of Novice Programming Summative
Assessment, Proceedings of the Eleventh Australasian
Conference on Computing Education-Volume 95 (pp.
147-56): Australian Computer Society, Inc.

Sinclair, J, Butler, M, Morgan, M and Kalvala, S. (2015).
Measures of Student Engagement in Computer Science,
Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science
Education (pp. 242-7): ACM.

Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts,
Q., Raadt, M.D., Haden, P., Hamer, J., Hamilton, M.,
Lister, R., Petre, M., Sutton, K., Tolhurst, D., Tutty, J.,
2006. Predictors of Success in a First Programming
Course. Proceedings of the 8th Australasian
Conference on Computing Education - Volume 52. 189-
196. Australian Computer Society, Inc.

Stachel, J., Marghitu, D., Brahim, T. B., Sims, R.,
Reynolds, L. and Czelusniak, V. (2013) Managing
Cognitive Load in Introductory Programming Courses:
A Cognitive Aware Scaffolding Tool. Journal of
Integrated Design and Process Science, 17(1), 37-54.

Suo, X. (2012) Toward More Effective Strategies in
Teaching Programming for Novice Students. Teaching,
Assessment and Learning for Engineering (TALE),
2012 IEEE International Conference on, T2A-1-T2A-3.

Trevathan, M., Peters, M., Willis, J. and Sansing, L. (2016).
Serious Games Classroom Implementation: Teacher
Perspectives and Student Learning Outcomes, Society
for Information Technology & Teacher Education
International Conference (Vol. 2016, pp. 624-31).

United States Department of Labor. (2015). Computer and
Information Technology Occupations. Retrieved
August 17, 2018, https://www.bls.gov/ooh/computer-
and-information-technology/home.htm

Viera, A. J. and Garrett, J. M. (2005) Understanding
Interobserver Agreement: The Kappa Statistic. Fam
Med, 37(5), 360-3.

Whalley, J. and Kasto, N. (2014). A Qualitative Think-
Aloud Study of Novice Programmers' Code Writing
Strategies, Proceedings of the 2014 conference on
Innovation & technology in computer science
education. Uppsala, Sweden: ACM.

Wright, D. R. (2012). Inoculating Novice Software
Designers with Expert Design Strategies, American
Society for Engineering Education: American Society
for Engineering Education.

CSEDU 2019 - 11th International Conference on Computer Supported Education

240

