
Towards Mainstream Multi-level Meta-modeling

Gergely Mezei1, Ferenc A. Somogyi1, Zoltán Theisz2, Dániel Urbán1 and Sándor Bácsi1
1Budapest University of Technology and Economics, Budapest, Hungary

2evopro Systems Engineering Ltd., Hauszmann Alajos str. 2, Budapest, Hungary

Keywords: Meta-modeling, Multi-level Modeling, Deep Instantiation, Language Engineering.

Abstract: In recent years, a wide range of tools and methodologies have been introduced in the field of multi-level meta-
modeling. One of the newest approaches is the Dynamic Multi-Layer Algebra (DMLA). DMLA incorporates a
fully self-modeled textual operation language (DMLAScript) over its tuple-based model entity representation.
This textual language provides effective and complex features when editing models. On the other hand, the
language supports the precise injective mapping of the multi-layers. However, such complexity comes at a
price. Using DMLAScript can be difficult in practice for users who are only familiar with the classical, object-
oriented way of thinking, and are not confident with the multi-level approach. In this paper, we introduce the
concepts of a new language above DMLAScript, which supports the more effective manipulation of concrete
domain models by taking advantage of the particular process of multi-level modeling within DMLA. Although
the approach is technically bound to DMLA, the concepts discussed in the paper are of general use.

1 INTRODUCTION

Meta-modeling is widely accepted as a viable tech-
nical solution to base domain-specific languages and
workbenches on in order to efficiently model the se-
lected domains in practice. In recent years, meta-
model-based software engineering has also estab-
lished itself in various industrial fields, such as the
management of ICT systems (Rossini et al., 2015).
The key enabler of this success is the ability to un-
ambiguously model the domain concepts, the vari-
ous features of a particular technology, and the rela-
tions between those concepts and features in a precise
and rigorous way. Nevertheless, in some industrial
projects, two level (the meta-model and the model)
meta-modeling has quickly reached its limits. In such
complex industrial projects, the domain requirements
of the system are first specified at a high level of ab-
straction to give shape to the planned solution, and
then the details are gradually, and sometimes recur-
sively, being introduced. Two level meta-modeling
may cope with these challenges, but only at the cost
of artificially introducing accidental complexity, that
is, by imposing mixed-level modeling patterns such as
clabjects or power types into the design (Henderson-
Sellers et al., 2013). Multi-level meta-modeling aims
to achieve a better solution: by increasing the num-
ber of modeling levels, domain concepts can be de-

fined gradually as abstraction gives way to specifica-
tion, down to the instance level. The other side of
the coin does not look so shiny though: the means of
multi-level meta-modeling differ from classical meta-
modeling, and even the exact meaning of instantia-
tion needs to be extended or re-defined. Moreover,
currently, there is still no consensus in the multi-
level modeling community on how to turn research
results into practical applications. An important mile-
stone on this road was the so called Bicycle Chal-
lenge (MULTI, 2018) that aimed to condense reoc-
curring problems in practical models into an easily
understandable, standard modeling challenge. The re-
sults show a current lack of mainstream in multi-level
modeling, which is unfortunate, because it has been
well-known for more than a decade that the two-levels
approach will eventually reach its limit.

In this paper, we would like to contribute to bridg-
ing the gap between classical meta-modeling and the
future of multi-level meta-modeling. Our research fo-
cuses on creating a general purpose multi-layer mod-
eling framework around Dynamic Multi-Layer Alge-
bra (DMLA) (Urbán et al., 2018) that is easily un-
derstandable by the modelers and can be effectively
applied to practical domain problems in the indus-
try. DMLA has a well-defined formal basis with the
unique feature of being self-described, and it also pro-
vides what we call fluid metamodeling, which means

Mezei, G., Somogyi, F., Theisz, Z., Urbán, D. and Bácsi, S.
Towards Mainstream Multi-level Meta-modeling.
DOI: 10.5220/0007580404810488
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 481-488
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

481

that it is not required to instantiate all entities of a
model at once. Models in DMLA are stored in tuples,
referencing each other, and thus, forming an entity
graph. Since tuples are cumbersome to produce con-
sistently, and big quantities are needed for practical
models, we have created a scripting language called
DMLAScript, which enables to manipulate tuples in-
directly via a domain-specific language (DSL) when
building domain models. Although DMLAScript ful-
filled what we aimed at originally, we had to realize
that it is still challenging to be used by domain ex-
perts in practice due to its technical preciseness and
verbosity. Therefore, we decided to work on a high
level scripting language, the Modular DMLA Script-
ing Language (MDSL), that is designed to be more
compact, in addition to being easier and faster to use
by domain engineers.

This paper briefly reviews related work in Sec-
tion 2 and introduces DMLA in Section 3. Next, in
Section 4, we discuss our motivation behind MDSL,
along with the requirements (Section 5) we expect it
to satisfy in the future. In Section 6, we demonstrate
by a case study how MDSL can accelerate domain
modeling in DMLA, compared to DMLAScript. Fi-
nally, in Section 7, we conclude by paving the way
for our future research, aiming for MDSL to succeed
by showcasing that multi-level meta-modeling has al-
ready matured enough for practical industrial chal-
lenges.

2 RELATED WORK

The main reason behind the quest for multi-level
meta-modeling is to be able to eliminate all those
artificial classes, on the meta level, whose pure rai-
son d’etre is to serve as linguistic placeholders for
establishing ontological instantiation, on the model
level, among the domain objects. Hence, the crux
of multi-level meta-modeling is to successfully tackle
the unwanted emergence of accidental complexity
(Atkinson and Kühne, 2008) by clearly separating
those linguistic and ontological instantiation mecha-
nisms from each other. The most well-known solu-
tion attempt, the Orthogonal Classification Architec-
ture (OCA) (Atkinson et al., 2009), applies the term
ontological in this particular regard when it refers to
the concepts which exist only in the technical domain
being modelled.

Consequently, in OCA, the term linguistic thus ap-
plies to the technical modeling nomenclature of any
selected modeling technology, for example, to the
way how meta-meta-level elements (in M3) defined
by the Meta Object Facility (MOF) are used to build

domain models (in M1) through meta-model interpre-
tation (in M2). The OCA architecture is rather intu-
itive and therefore there exists a few successful multi-
level meta-modeling frameworks of this kind, its most
notable implementations being Melanie (Atkinson
and Gerbig, 2012), MetaDepth (de Lara and Guerra,
2010) and DeepJava (Kühne and Schreiber, 2007).
Analyzing them independently from the prespective
of their concrete syntax, it can be easily understood
that semantically each originates from the common
paradigm of the potency notion (Atkinson and Kühne,
2001), and therefore, they mostly differ only by their
reinterpretation and implementation thereof.

Beyond OCA, an interesting alternative approach
is XModeler (Clark et al., 2015), which is built on
top of a self-describing meta-model, the XMF, which
supports meta-modeling facilities through higher or-
der functions in order to process the syntax and to
provide a basic executable language (XOCL), follow-
ing the syntax of OCL (Warmer and Kleppe, 2003).
This solution is similar to MetaDepth, which has
taken advantage of the Epsilon family of languages
(EOL). Both benefit and get constrained by the inher-
ited legacy of a two-level modeling language. The ob-
vious benefit is the apparent advantage for the mod-
eler being able to use an Object-Oriented (OO) lan-
guage for model design, but the disadvantage lies
in the same fact: OO features get in the way when
potency or a genuine multi-level meta-model feature
must be mixed. For example, in DeepJava, linguistic
instantiation is built into the language per se via Java,
but ontological instantiation must be managed by ex-
tending the class declaration of Java by injecting the
principles of potency notion. Here, accidental com-
plexity reappears as the necessary handling of correct
potency settings at the class definition, which the pro-
grammer must not mismanage. Also, level 0, the in-
stance level, which was never intended to be part of
the program code according to the semantics of Java,
will become such by the extension, which contra-
dicts the original goal of tackling accidental complex-
ity. Thus, accidental complexity may still be present.
Both MetaDepth and XModeler are more advanced is
this regard, but their languages are still hybrids: due
to the legacy of their implementation, new features
are difficult to put into the language without rewriting
the underlying custom-designed compiler.

In DMLA, we design our languages around an
initial set of entities referred to as the Bootstrap.
Every scripting language of the approach is mod-
eled, but they also have an Xtext-based editor for
easy re-adaptability. We consider this an advantage
compared to the above-mentioned metamodeling ap-
proaches which rely on legacy compilers. More-

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

482

over, since our standard Bootstrap is self-described,
similarly to XMF, we base the usual OO-like meta-
modeling features such as types, cardinality or oper-
ation signatures on the fully meta-modeled constraint
concept. We consider it as our theoretical advantage
since domain constraints can be introduced into cus-
tom Bootstraps as well, for example, we can introduce
regular expressions by extending standard type con-
straints (Theisz et al., 2017). Therefore, our DSLs
must be modular by design in order to establish a
structurally understandable family of extendable lan-
guage constructs. In this regard, we share XModeler’s
strategy of XOCL, but we think that our approach will
enable modularity to a higher degree in semantics,
and at a lower cost in syntax when complex domain
models are being built.

3 THE DYNAMIC MULTI-LAYER
ALGEBRA

Dynamic Multi-Layer Algebra (DMLA, 2018) is our
multi-level modeling framework that consists of two
parts: (i) the Core, containing the formal definition
of modeling structures and its management functions;
(ii) the Bootstrap, consisting of a set of essential en-
tities that can be reused in all domains. In DMLA,
the model is represented as a Labeled Directed Graph,
where all model elements have four labels: i) the
unique ID of the element, ii) a reference to its meta
element by its unique ID, iii) a list of concrete val-
ues, and iv) a list of contained attributes. Besides the
4-tuples representing the model entities, there exist
functions that manipulate the model graph, thus form-
ing the Core of DMLA, which is defined over an Ab-
stract State Machine (ASM) (Borger and Stark, 2003).
The states of the state machine represent the snap-
shots of dynamically evolving models, while transi-
tions (e.g., deleting a node) stand for modifications
between those states. The Bootstrap extends the Core
by making it more usable in practice. The Bootstrap
is an initial set of modeling constructs and built-in
model elements (e.g., primitive types) that are needed
to adapt the abstract modeling structure to practical
applications of domain models. It is also worth not-
ing that the separation of the Core and the Boot-
strap allows the creation of several different Boot-
straps (defining different meta-modeling paradigms),
but so far, we have created one standard Bootstrap that
fits our research goals.

Instantiation in DMLA has several specialties.
Whenever a model entity claims another entity to
be its meta, the framework automatically validates if
there is indeed a valid instantiation between the two

entities. However, unlike other modeling approaches,
the rules of valid instantiation is not encoded in an ex-
ternal programming language (e.g. Java), instead, it
is modeled by the Bootstrap. All validation formulae
can be modularized by being introduced directly into
the Bootstrap. This even applies to constraints, like
checking type and cardinality conformance (Theisz
et al., 2017). Since the validation formulae directly
influence the proper semantics of instantiation, the in-
stantiation is self-defined via the model per se. The
technical facility enabling this self-described meta-
modeling is based on operation reification. Operation
definitions are modeled by their abstract syntax tree
(AST) representation as tuples, which are later trans-
lated into executable code by the framework.

In DMLA, multi-level behavior is supported by
fluid metamodeling. Hence, instantiation steps are
independent by design. Each entity can refer to any
other entity along the meta-hierarchy, unless cross-
level referencing is found to be contradictory during
model validation.

Entities may have attributes referred to as slots,
describing a part of the entity, similarly to classes hav-
ing properties in object-oriented programming. The
concept of slots is modeled in the Bootstrap. As an
example (based on our solution for the Bicycle Chal-
lenge (Mezei et al., 2018)), an entity Bicycle may
have slots for its Fork, Seat and Frame components.
Each slot originates from a meta-slot defining the con-
straints to obey to. When instantiating the entity, all
of its slots are validated against the meta-slots. This
is where we check the modeled type and cardinality
constraints of the slot, along with other applied con-
straints. In our previous example, the type constraint
applied to the slot Seat restricts the value to be an in-
stance of the entity Seat.

Besides narrowing the constraints applied to a
slot, one may also divide a slot into several instances
similarly to entities, where we can create several in-
stances of a meta-entity. For example, the Wheel slot
may be divided into a FrontWheel and a RearWheel
slot. Obviously, the number of all instance slots must
not exceed the limits set by the cardinality of their
meta-slot. Note that it is also possible to omit a slot
completely during instantiation if it does not contra-
dict the given cardinality restrictions.

An important feature of DMLA is that fluid meta-
modeling is supported at the slot level as well: when
instantiating an entity, one can decide which of its
slots are instantiated and which are cloned (copied to
the instance without modification). This means that
we can keep some of the slots intact while concretiz-
ing the others. To continue with our example, the
entity RaceBike is an instance of Bicycle. RaceBike

Towards Mainstream Multi-level Meta-modeling

483

clones the definitions of the Fork and Seat slots, but it
concretizes the Frame slot by narrowing its type con-
straint from FrameComponent to RaceFrameCompo-
nent. Note that this behavior reflects our way of think-
ing: one can gradually tighten the constraints for cer-
tain parts of the concept, without imposing any obli-
gations on other parts of the model which are only
approximately known at this time.

4 LANGUAGES OF DMLA

The 4-tuples in DMLA are the native representation
of the modeled entities. Although 4-tuples enable the
formal precision of meta-modeling in DMLA, pro-
ducing them at scale is more than a menial task, thus,
in practical modeling scenarios, their direct usage is
technically impossible to be carried out. Hence, in
order to create models in DMLA, we introduced a
scripting language, the so called DMLAScript, which
is a low-level external DSL that is used for automat-
ing 4-tuple generation at medium scale. It is worth
mentioning that although DMLAScript is an exter-
nal DSL with an Xtext-based workbench implementa-
tion, models written in DMLAScript are compiled to
4-tuples, and thus, the model is interpreted as genuine
DMLA entities.

Moreover, we defined the standard Bootstrap in
DMLAScript in order to create a self-described meta-
modeling environment. Illustrating our concept de-
sign by drawing parallels with the classical theory of
programming languages (see Figure 1), the 4-tuple
level can be considered as the binary code represen-
tation of the entities in DMLA, while DMLAScript
is the assembly language used for their production.
Thus, DMLAScript must be as precise in expressing
meta-level relations as DMLA itself, which has re-
sulted in a DSL that is sometimes too verbose for
managing practical domain models. Nevertheless,
DMLAScript is such by design, that is, its mandate
clearly stems from our explicit goal of being able
to show how to define the standard DMLA Boot-
strap recursively within itself, which required a DSL
with very detailed and precise language constructs.
However, after the standard Bootstrap had been suc-
cessfully finalized in DMLAScript, we turned our at-
tention to its direct application to practical model-
ing challenges, where we had to realize that DM-
LAScript was not suitable for these tasks. We had
concluded that similarly to classical programming
languages, a high-level programming language was
needed to be created before modelers unfamiliar with
the nitty-gritty details of DMLA and multi-level mod-
eling could use our framework for their daily mod-

Figure 1: Layers of representation in DMLA.

eling tasks. Hence, by analyzing the shortcomings
of DMLAScript in this regard, we started designing
a new DSL around DMLA, the so called Modular
DMLA Scripting Language (MDSL), which incor-
porates classical modeling concepts in a multi-level
wrapping. Similarly to DMLAScript, we are also
planning to integrate MDSL into DMLA using an
Xtext-based workbench.

To sum it up, DMLAScript would remain the low-
level language of DMLA, while MDSL would be-
come the high-level language that is to be used mainly
by domain modelers. Nevertheless, MDSL would still
be layered on top of DMLAScript. Hence, our goal is
not to replace DMLAScript with MDSL, but to make
advanced multi-level modeling concepts look familiar
to domain modelers when building domain models in
practice. In other words, we are trying to establish
a modeling language where classical meta-modeling
can be done without introducing any accidental com-
plexity, whether it surfaces within the model or in-
side the language. However, whenever more preci-
sion is needed, DMLAScript can still be taken ad-
vantage of by directly injecting DMLAScript snippets
into MDSL code.

5 GOALS AND REQUIREMENTS
OF MDSL

As everybody knows, one of the the biggest chal-
lenges of any practical modeling technology is how to
animate a potential pool of domain modelers in order
to get real acceptance of its novel technological offer.
We had to realize during our research studies that for
DMLAScript alone it would be rather hard to attract
enough attention of modeling practitioners so that
it could succeed in the quite competitive market of
available modeling frameworks targeted to real indus-
trial challenges. Therefore, we do think that there is
currently indeed a gap in our proposed meta-modeling

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

484

ecosystem where we are still weak on the language
side although DMLA itself is firmly grounded and
stable now. Hence, we believe that a language like
MDSL is to be there so that mainstream DMLA do-
main modelers will be able to cope with their prac-
tical domain models of industrial relevance, routinely
on a daily basis. Consequently, we also do believe that
MDSL must mimic as many state-of-the-art OO mod-
eling concepts and usage patterns, on the language
level, as possible without ever losing grip of DMLA’s
formal modeling precision. In order to reach this goal
of a balanced compromise in language design around
DMLA, we do think that DMLAScript and MDSL
must fulfill orthogonal roles. Namely, DMLAScript
shall remain DMLA’s main modeling language for
academic research by maintaining its ability to intro-
duce, on the language level, any novel meta-modeling
concepts directly into the bootstraps and thus to pre-
cisely define their mathematical formalism as tuples
in their fully reflective multi-level modeling environ-
ment. However, MDSL shall streamline, on the lan-
guage level, all those sets of well-researched practical
DMLA meta-modeling concepts that may effectively
contribute to the mainstream modelers’ daily routine
and thus it will optimize bootstrap validation by par-
tially denouncing full reflectivity of the meta-model
for a faster validation execution. In order to achieve
this global goal, we have set the following technical
requirements on the concrete syntax of MDSL:
1. Structuralism and modularity. The syntax of

MDSL shall showcase both structuralism and
modularity in order to satisfy all practical needs of
domain modelers. Nevertheless, this duality must
always be balanced by language constructs with
semantically equivalent alternatives. Namely, the
modeler must be able to select the best trade-off
based on the complexity and the quantity of the
entities being modeled.

2. Instantiation and inheritance. The syntax of
MDSL shall clearly distinguish between instanti-
ation and inheritance as closely as possible to the
classical understanding of state-of-the-art object-
oriented principles. In order to satisfy this re-
quirement, we will precisely define and map the
concept of inheritance onto DMLA.

3. Customizable constraints. DMLA syntax for
modularity shall always be based on precisely
meta-modeled constraints in Bootstraps, and al-
though their syntax may vary it shall always be as
orthogonal as possible to other similar language
constructs. This is the enabler to introduce new
features into the language at ease such as owner-
ship handling, two-way navigation, version han-
dling etc. Relationships that require master-slave

dynamics (owner and owned) are more difficult,
due to their needed verbosity, to be expressed in
DMLAScript, thus, MDSL shall support them on
the language level.

In order to impose the aforementioned require-
ments on MDSL, but also not to make the model-
ing process inflexible or inconvenient, we are working
on an editor with smart refactoring mechanisms. The
main refactoring requirements and the corresponding
editor features are as follows:

1. Explicit omission or specification of cloned slots.
MDSL shall support the explicit omission of slots
so that domain modelers could specify which slots
have to be omitted. On the other hand, domain
modelers should also be able to specify the inher-
ited slots. The editor shall support copying of cer-
tain DMLA items automatically into the current
entity from its instantiated or specialized meta-
entity.

2. Relocation of features. It can be uncomfortable
to relocate features along the metahierarchy up-
wards, or downwards. Updating the references to
meta elements where the child elements are de-
fined at should be automatically maintained.

3. Mandatory in-between placeholders. There may
be entities that must be instantiated and/or spe-
cialized in large numbers across meta-levels. It
can be inconvenient to manually copy these enti-
ties onto their appropriate meta-levels. The editor
shall provide support for extending selected enti-
ties towards upper and lower meta-levels.

6 CASE STUDY

In this section, we explain some of the planned fea-
tures of MDSL through a practical example. By
designing MDSL, our primary goal is to simplify
the currently still laborious creation of multi-level
models in DMLA, and thus, to make DMLA avail-
able as a viable modeling option for practition-
ers without demanding special multi-level modeling
skills. We demonstrate the main language features
of MDSL, in comparison to DMLAScript, on a case
study borrowed from the Bicycle Challenge (MULTI,
2018), for which the full solution (described in DM-
LAScript) is also available (Mezei et al., 2018). For
the sake of clarity, we have slightly simplified the
model. For example, we focus on the entity structure
and thus operations are omitted. Moreover, only those
parts of the entities are displayed that are necessary to
illustrate the mechanisms of MDSL.

Towards Mainstream Multi-level Meta-modeling

485

Figure 2: The case study fragment of the Bicycle challenge.

Figure 2 depicts the simplified example. The
Component entity is our starting point of the exam-
ple. The ComplexEntity.Children slot originates from
the upper part of the meta hierarchy, defined in the
Bootstrap. Children enables the instantiation of cus-
tom slots, like Weight and Size, by dividing the orig-
inal slot into several instances as discussed in Sec-
tion 3. We could have chosen to omit the Children
slot, but here we clone it so that entities instantiated
from Component will also be able to define their own
custom slots. The type and cardinality constraints can
be expressed using a more compact syntax compared
to DMLAScript. Note that the syntax (and concepts)
of the language are still subject to change until we
have fulfilled all our requirements outlined in Sec-
tion 4.
Component:+ BicycleEntity {
$ComplexEntity.Children;

[type = $Number]
[card = [1..1]]
Weight: $ComplexEntity.Children;

[type = $Number]
[card = [0..1]]
Size: $ComplexEntity.Children;

}

To show the difference between DMLAScript and
MDSL, the original definition of the Component en-
tity in DMLAScript must be taken into account. It is
more precise, but this level of preciseness is not usu-
ally needed when designing domains. As it can be
seen, this script contains much more technical details.
In this example, we are going to showcase only a few
features of MDSL that make writing scripts in a more
concise form easier. Omission of the slots is not a
feature in DMLAScript, only cloning (explicitly list-
ing every slot to be kept) is allowed. Thus, in some
cases, this results in longer scripts. The type and car-
dinality constraints in DMLAScript (@T:. . . , @C. . .)
are very verbose and contain code that is needed for
the inner functions of the bootstrap to work, like the

IsOverwritable and IsPermanent slots. These are not
present in MDSL, instead, the default values are used
when code is generated from the MDSL script. More-
over, the minimum and maximum values of the cardi-
nality is expressed in a more concise form when us-
ing MDSL, by giving a range between the two num-
bers. It is worth noting that the editor requirements
of MDSL (like feature relocation) are still work in
progress and are not present in this example.
Component: BicycleEntity
{
ComplexEntity.Children;

@T: ComplexEntity.Children.T =
Type: ComplexEntity.Children.T.T
{
Type.IsOverwritable;
Type.IsPermanent;
slot Type:
ComplexEntity.Children.T.T.T=$Number;

slot IsInclusive:
ComplexEntity.Children.T.T.IsIncl=false;

};
@C: ComplexEntity.Children.C =
Card: ComplexEntity.Children.C.Card {
Cardinality.IsOverwritable;
Cardinality.IsPermanent;
slot Min:
ComplexEntity.Children.C.Card.Min=1;

slot Max:
ComplexEntity.Children.C.Card.Max=1;

};
slot Weight: ComplexEntity.Children;

@T: ComplexEntity.Children.T =
Type: ComplexEntity.Children.T.T
{
Type.IsOverwritable;
Type.IsPermanent;
slot Type:
ComplexEntity.Children.T.T.T=$Number;

slot IsInclusive:
ComplexEntity.Children.T.T.IsIncl=false;

};
@C: ComplexEntity.Children.C =
Card: ComplexEntity.Children.C.Card {
Cardinality.IsOverwritable;
Cardinality.IsPermanent;
slot Min:
ComplexEntity.Children.C.Card.Min=1;

slot Max:
ComplexEntity.Children.C.Card.Max=1;

};
slot Size: ComplexEntity.Children;

}

In MDSL, slots can be explicitly kept (cloned) or
omitted. The Wheel, Suspension, and Seat entities all
instantiate Component. They all clone the same slots:
Weight and Size, while omitting Children. In the case
of Seat, we explicitly omit the listed slots, while in the

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

486

other entities, we list the slots that are cloned. This
showcases two alternative ways of entity definition in
MDSL: when using the ”:-” operator (omit mode), we
have to define the list of omitted slots, all other slots
are cloned. In contrast, when using the ”:+” opera-
tor (clone mode), we have to define the list of cloned
slots, all other slots are omitted. Note that according
to the semantics of DMLA, only slots with optional
cardinality can be omitted (like Children in our ex-
ample), otherwise, the cardinality constraint would be
violated. Allowing both modes makes MDSL more
balanced and flexible. In DMLAScript, our only op-
tion is to list all the slots that we want to keep.

The constraints of the slots of Component is de-
fined using an annotation-like syntax, but – like many
other concepts in MDSL – there is an alternative syn-
tax we can use, which is illustrated in the Frame en-
tity. Both are significantly shorter than their DM-
LAScript counterpart.
Wheel:+ Component {
Component.Weight;
Component.Size;

}

Suspension:+ Component {
Component.Weight;
Component.Size;

}

Seat:- Component {
$ComplexEntity.Children;

}

Frame:+ Component {
Component.Weight;
Component.Size;
$ComplexEntity.Children;

TopTubeLength: $ComplexEntity.Children {
type = $Number;
card = [1..1];

}

DownTubeLength: $ComplexEntity.Children {
type = $Number;
card = [1..1];

}
}

Unlike other components, the Frame entity intro-
duces two new slots besides keeping (cloning) Weight,
Size and Children. In the example, we use the ”:+” op-
erator (clone mode) and list every slot. Obviously, we
could have used the ”:-” operator (omit mode), and
have enumerated no slots if we had wanted to achieve
the same effect. The two new slot concretizations are
defined the same way in both modes.

Although the illustrated example is simple, we be-
lieve that it demonstrates that MDSL is a more com-

pact and more intuitive language than the current ver-
sion of DMLAScript, therefore, it can be used eas-
ier by domain experts when building domain models.
As the language is still under construction, its con-
crete syntax is not finalized yet. Therefore, we have
not carried out any a public test yet, but plan to do
so. Until then, we have tested the language features
by re-implementing the complete Bicycle challenge
in MDSL (without the operations). The efficiency
gain is remarkable: we experienced a serious boost
in speed and compactness. Preliminary results show
that as opposed to the ˜1500 lines of code required
to solve the challenge using DMLAScript, we only
needed ˜700 lines of code using the new language. As
a caveat, the line numbers do not include operation
definitions, which are not yet supported in MDSL.
There are other factors to be considered (like the ex-
pressiveness of the language), but we do believe these
results are promising for the future.

7 CONCLUSIONS

In recent decades, meta-modeling techniques have
been successfully used in many industrial projects,
but their usage is still limited by the lack of support
for the step-wise refinement of requirements in an or-
ganic way. Multi-level modeling aims to solve this
issue, but there is still no consensus in how multi-
level modeling should work. A few years ago, our
research group was formed to create a new multi-
layer modeling approach that is formal, flexible, and
self-describing. This new approach is now referred to
as the Dynamic Multi-Layer Algebra (DMLA). From
the beginning, DMLA had always been meant to be
self-validated and modular. Once we had introduced
modeled operations and fully modeled the validation,
we achieved our original goal. However, we had also
realized that the cost of precision is payed by ver-
bosity and complexity. Trying to balance the odds, we
are currently working on a new language, the Modu-
lar DMLA Scripting Language (MDSL) that is meant
to be a viable, easy-to-use solution for multi-level do-
main engineering, unifying the advantages of OOP-
like design and multi-level modeling. As we are at
the beginning of our research programme, in this pa-
per, we have compared MDSL to our original script-
ing language, DMLAScript to show the relevance of
our concerns. However, our research goal is to ana-
lyze the plethora of meta modeling languages com-
monly used in research and industry and adapt our
language(s) to the precise requirements set by the
community. Therefore, in order to share our vision,
we have both described the main steps of our previ-

Towards Mainstream Multi-level Meta-modeling

487

ous research and presented the requirements for our
new modeling language. Even though the MDSL lan-
guage is not complete yet, we have presented a sim-
plified case study to illustrate the foreseen language
mechanisms. Currently, we are busily working on
an Xtext-based implementation of MDSL and eagerly
waiting for case studies in order to validate the lan-
guage though practical surveys with modeling practi-
tioners. According to our preliminary investigations,
modeling in MDSL is about twice as compact as in
DMLAScript, while at the same time it is much eas-
ier to explain, read, produce or maintain the models.
Due to the different abstraction levels, we expect sim-
ilar ratios in more complex case studies as well. Ob-
viously, MDSL has its own limits: it can be used for
domain engineering, but not for manipulating the un-
derlying Bootstrap.

Finally, as one of our main requirements imposed
on MDSL, we are also working on how to map clas-
sical OOP-like features such as interfaces or inheri-
tance to MDSL in order to increase its productivity
even further. An additional unforeseen benefit of in-
troducing MDSL has been that it has redirected our
focus back to DMLAScript again. It seems that there
are some DMLAScript features we can further opti-
mize towards practicality. Thus, we are also planning
to carry out surveys with domain modelers and devel-
opers in order to classify the most salient features of
MDSL and DMLAScript so that in the future the lan-
guage aspect of feature modularity could characterize
all the DSLs around DMLA.

ACKNOWLEDGEMENT

The project was funded by the European Union, co-
financed by the European Social Fund (EFOP-3.6.2-
16-2017-00013).

REFERENCES

Atkinson, C. and Gerbig, R. (2012). Melanie: Multi-level
modeling and ontology engineering environment. In
Proceedings of the 2nd International Master Class on
Model-Driven Engineering: Modeling Wizards, MW
’12, pages 7:1–7:2, New York, NY, USA. ACM.

Atkinson, C., Kennel, B., and Gutheil, M. (2009). A flexi-
ble infrastructure for multilevel language engineering.
IEEE Transactions on Software Engineering, 35:742–
755.

Atkinson, C. and Kühne, T. (2001). The essence of mul-
tilevel metamodeling. In Gogolla, M. and Kobryn,
C., editors, łUML 2001 — The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools,

pages 19–33, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Atkinson, C. and Kühne, T. (2008). Reducing accidental
complexity in domain models. Software & Systems
Modeling, 7(3):345–359.

Borger, E. and Stark, R. F. (2003). Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer-Verlag, Berlin, Heidelberg.

Clark, T., Sammut, P., and Willans, J. S. (2015). Super-
languages: Developing languages and applications
with XMF (second edition). CoRR, abs/1506.03363.

de Lara, J. and Guerra, E. (2010). Deep meta-modelling
with metadepth. In Vitek, J., editor, Objects, Mod-
els, Components, Patterns, pages 1–20, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

DMLA (2018).
https://www.aut.bme.hu/pages/research/vmts/dmla.

Henderson-Sellers, B., Clark, T., and Gonzalez-Perez, C.
(2013). On the search for a level-agnostic modelling
language. In Salinesi, C., Norrie, M. C., and Pas-
tor, Ó., editors, Advanced Information Systems Engi-
neering, pages 240–255, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Kühne, T. and Schreiber, D. (2007). Can program-
ming be liberated from the two-level style: Multi-
level programming with deepjava. SIGPLAN Not.,
42(10):229–244.

Mezei, G., Theisz, Z., Urbán, D., and Bácsi, S. (2018). The
bicycle challenge in dmla, where validation means
correct modeling. In Proceedings of MODELS 2018
Workshops, pages 643–652.

MULTI (2018). https://www.wi-inf.uni-duisburg-
essen.de/MULTI2018/.

Rossini, A., de Lara, J., Guerra, E., and Nikolov, N. (2015).
A comparison of two-level and multi-level modelling
for cloud-based applications. In Taentzer, G. and Bor-
deleau, F., editors, Modelling Foundations and Appli-
cations, pages 18–32, Cham. Springer International
Publishing.

Theisz, Z., Urbán, D., and Mezei, G. (2017). Constraint
modularization within multi-level meta-modeling. In
Damaševičius, R. and Mikašytė, V., editors, Infor-
mation and Software Technologies, pages 292–302,
Cham. Springer International Publishing.

Urbán, D., Theisz, Z., and Mezei, G. (2018). Self-
describing operations for multi-level meta-modeling.
In Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Develop-
ment - Volume 1: MODELSWARD,, pages 519–527.
INSTICC, SciTePress.

Warmer, J. and Kleppe, A. (2003). The Object Con-
straint Language: Getting Your Models Ready for
MDA. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2 edition.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

488

