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Abstract: The base quality score recalibration (BQSR) is an importantstep in the variant calling from high-throughput
sequence data. Motivated by the fact that BQSR necessarily requires a database of known variants such as
the dbSNP, we present an extensive analysis on BQSR results for human and rice genome. We showed that
the recalibration results depended on the size of the database: the more variants are there in the database, the
larger averaged value of the recalibrated base quality scores is obtained. This implies that the recalibrated
quality score is lower than it should be when the number of variants in the database is not large enough. Based
on the finding that the size of the database should play a crucial role in BQSR, we proposed a method to create
a database when the size of a database is not large enough for BQSR results to be reliable. We demonstrated
that, in the case of human, the database constructed by the proposed method generated almost the same results
as the human dbSNP. In the case of rice, however, we showed that the proposed database is more reasonable
than the rice dbSNP.

1 INTRODUCTION

The high-throughput sequencing, such as the next
generation sequencer (NGS), generates unprecedent-
edly large amount of genetic data at a low cost (Met-
zker, 2010). Massive sequence data are mainly used
to identify various genetic variations including the
single nucleotide polymorphism (SNP) with the help
of relevant bioinformatic tools. The most well known
software for the SNP calling is the Genome Analy-
sis Toolkit (GATK), an open pipeline provided by the
Broad Institute (DePristo and et al., 2011; der Auwera
and et al., 2013).

While a NGS platform produces much more se-
quence data than the traditional Sanger sequencing
does, generated reads are shorter than the Sanger’s
in length and of inferior quality containing more se-
quencing errors. When a NGS platform calls a base,
they also provide an estimated quality of the base in
terms of Phred score (Ewing and et al., 1998; Ewing
and Green, 1998),

Qphred =−10log10 p(ε) , (1)

wherep(ε) is the error rate, the probability of observ-
ing an incorrectly called base.Qphred is an integer and
known as the base quality score.

Studies have demonstrated that the Phred-scaled
base quality scores issued by a NGS platform are of-

ten inaccurate and deviate from true error rates (Li
and et al., 2009b; Brockman and et al., 2008). Base
quality scores are prone to various sources of system-
atic (i.e., non-random) and technical errors. Exam-
ples include the general trend of increased sequenc-
ing errors in later sequence cycles, dinucleotide con-
tents error, and errors due to manufacturing flaws in
the equipment. In addition, each platform has a spe-
cialized base calling scheme in its sequencing work-
flow that leads to sequencing errors. The accuracy of
a base quality score is important because the down-
stream analyses of the variant calling rely heavily on
the per-base quality score (DePristo and et al., 2011).
Thus, under- or over-estimated base quality scores
may result in inaccurate (i.e., false positive or false
negative) variant calls.

Because the correct estimate of the quality
score is essential in the variant calling, GATK
provides a recalibration tool for the base quality
score, named the base quality score recalibration
(BQSR) (GATK, 2018). As a data pre-processing
step of sequencing-by-synthesis reads in an aligned
sequence of SAM/BAM file (Li and et al., 2009a),
BQSR detects systematic errors in the estimated qual-
ity score of each base and recalibrates the base qual-
ity score, not the base call itself. BQSR is versa-
tile in that it can be applied to the sequencing data
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of various platforms. Besides BQSR, the recalibrat-
ing quality of nucleotides (ReQON) (Cabanski and
et al., 2012) providesd by a package written in R (R-
project, 2018) claims that it also performs the recali-
bration, which also utilizes known SNP database. An-
other study related to the base quality recalibration
is RIG (Recalibration and Interrelation of Genomic
Sequence Data) that is a workflow to generate col-
lection of variants from various available genomic re-
sources (R. McCormick and Mullet, 2015). In addi-
tion, it was claimed that the recalibration was solved
without an external SNP database (Chung and Chen,
2017).

BQSR is a method of adjusting platform-provided
base quality scores to be more accurate by using an
external resource (or database) of known variants,
such as the dbSNP (Sherry and et al., 2001). It is a
method of adjusting Phred quality score to be more
accurate by examining every base in the BAM/SAM
file. The underlying assumption of BQSR is that any
mismatched base with the reference genome at a po-
sition not listed in the database is an error. That is,
BQSR assumes that a mismatched base listed in the
database is correctly sequenced real variants, whereas
a mismatch not listed in the database is regarded as a
sequencing error. In addition to the database, BQSR
groups bases into different categories with respect to
various covariates, such as the machine cycle, the
base position in a read, and the dinucleotide context,
then takes the mismatch rate for each category into
account in the recalibration.

The basic assumption of BQSR, any potential
variant in a read that is not listed in the database
is an error, is reasonable and valid in the statistical
sense only if we have enough and accurate informa-
tion about known variants in the database. If the size
of the database is smaller than it should be, the num-
ber of false negative (i.e., variants that are incorrectly
identified as errors) would increase. Thus, the useful-
ness of BQSR heavily relies on the number and qual-
ity of reported variants in the database. This means
that when the database is incomplete, mismatched
bases are less likely to be identified by the database;
as a result, the quality of the bases will be inferred to
be lower than it actually is (Wang and et al., 2015).
Thus, it may be ineffective to run BQSR when the
database of known variants is not comprehensive. In
this respect, it is imperative to find a way of recal-
ibrating the base quality score for species of having
not enough information about known variants.

This naturally leads to the following questions. Is
the number of known variants in the database of an or-
ganism enough to trust BQSR results? What can we
do when we do not have enough known variants in the

database? In this study, we try to answer these ques-
tions. To this end, we used NGS data and the dbSNPs
of human and rice, and performed various empirical
studies for BQSR to investigate the above questions.
Although BQSR step in GATK provides a room to
add new covariates to the recalibration, for simplicity,
we do not add any new covariate besides default ones
provided by GATK.

2 MATERIALS AND METHODS

2.1 Data Acquisition

We used the genome-wide NGS data of
FASTQ (Cock and et al., 2010) files for human
and rice, each of which is obtained from the 1000
Genomes Project (Human-Genomes, 2015) and
the 3000 rice genomes project (Rice-Genomes,
2014), respectively. The 1000 Genomes Project
is an international research effort to establish a
detailed catalogue of human genetic variation by
resequencing about one thousand participants from
a number of different ethnic groups. The 3000 rice
genomes project is also an international effort of re-
sequencing a core collection of 3,000 rice accessions
from 89 countries. The data can be freely down-
loaded at http://www.internationalgenome.org/
for the 1000 Genomes Project, and
http://dx.doi.org/10.5524/200001 for the 3000
Rice Genomes Project. For the empirical studies,
we randomly selected 10 samples from each project.
The estimated average coverage over 10 resequenced
samples is about 5x and 9x for human and rice,
respectively.

Variants are called against the Nipponbare
IRGSP-1.0 reference genome for rice and the
GRCh38 for human. The GRCh38, the Genome
Reference Consortium Human genome build 38, is
built from reference sequences of different individu-
als, not just from one individual’s genome sequence.
Whereas, the IRGSP-1.0, built from one accession’s
genome, is assembled by the Oryza sativa Japonica
Group (Japanese rice) genome from National Insti-
tute of Agrobiological Sciences. The reference se-
quences for both can be obtained from Refs. (Human-
Reference, 2018) and (Rice-Reference, 2018), respec-
tively.

2.2 dbSNP

As for the database of known variants, we use the db-
SNP (Database, 2018) as GATK does. The dbSNP is
a repository of all known variants, such as SNPs and
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Figure 1: Plots of the averagē̄Q over 10 individuals (or
accessions) versus the percentage of selected variants from
the dbSNP: the human (�) and the rice (©). The error bars
are the corresponding standard deviationssQ.

indels, open to the public. The dbSNP is a collec-
tion of VCF files generated from various resources.
Initially constructed for human, the dbSNP has ex-
tended to other organisms. We used the dbSNP build
151 for human (Homo sapiens) that consists of about
318,739,000 variants and the dbSNP build 151 for
rice (Oryza sativa) that consists of about 12,185,000
variants. These were the latest version when most of
data analyes were carried out.

A base in a BAM/SAM file whose poistion is
listed as a variant in the database is not considered
as a variant when the base matches with the reference
sequence. In this case, the variant in the database is
void in the sense that it does not play any role as far as
BQSR is concerned. On the other hand, the position
of a mismatched base can be in the list in the database
as a variant. In this case, we define the variant as an
“effective” variant. Thus, variants in the database can
be either effective or non-effective, and it is effective
variants that affect BQSR. Thus, from the perspective
of BQSR, variants in a database (e.g. dbSNP) can be
classified into two categories: either effective or not.

2.3 Characteristics of Mean
Recalibared Base Quality Score

To answer a question about the sufficiency of vari-
ants in the database, we investigated how the size of
a database affected BQSR results. This can be ac-
complished by examining the dependence of BQSR
results on the number of variants used as the database.
Specifically, we constructed 10 test databases of dif-
ferent sizes, each of which is composed of variants
randomly selected out of the dbSNP from 10% to

100% at a 10% interval. We then peformed BSQR
by using test databases of different number of vari-
ants. In this way, each database and BQSR result can
be identified by its selection ratio.

For a given selection ratio, letQi j be the recali-
brated quality score of basej of sample (individual
or accession)i. Then, the mean recalibrated quality
scoreQ̄i of samplei over all bases is given as

Q̄i ≡
1
mi

mi

∑
j=1

Qi j , (2)

wheremi is the number of bases in samplei. With
Q̄i’s, we can define the sample mean¯̄Q and the sample
variances2

Q of Q̄i’s as

¯̄Q ≡
1
n

n

∑
i=1

Q̄i and s2
Q ≡

1
n−1

n

∑
i=1

{

Q̄i −
¯̄Q
}2

, (3)

wheren is the number of samples, and in our case,
n = 10.

The results of BQSR are shown in Fig. 1, in which
we plot ¯̄Q and sQ (errorbars) in Eq. (3) versus the
selection ratio. For both human and rice, the mean
recalibrated quality score increases as the ratio in-
creases. This is expected because, according to the
underlying assumption of BQSR as stated in Section
1, the more variants we have in the database, the less
number of bases in the BAM/SAM file are regarded
as errors which results in higher recalibrated quality
scores.

In addition, we find thatsQ, the sample standard
deviation ofQ̄i’s, of rice is about two times larger than
that of human. This is mainly due to the characteristic
of the reference sequences and the selected samples.
As stated in Section 2.1, because the human reference
sequence built from sequences of different individu-
als, the reference sequences contains sequences from
different origins of country. As a result, the degree of
mismatches with the reference sequence spread more
or less uniformly across different origin of countries.
In contrast, the rice reference sequence is built from
a single accession of Nippobare Japonica. Thus, rice
samples of different variety groups, such as Indica an-
othe major rice cultivar, from Japonica may include
much more mismatches (and thus errors) than Japon-
ica accessions. This in turn leads to a large devia-
tion of the average quality scores over different ac-
cessions.

More importantly, from Fig. 1 we find that the
mean recalibrated quality score of human gemome is
larger than that of rice genome for all selection ratios.
This result is in contradiction to the fact that, before
the recalibration, the average quality scores for both
human and rice are about the same: 33.02±3.74 for
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human and 36.07±0.63 for rice. Because there is no
reason to assume that the base quality scores of hu-
man genome are higher than those of rice genome, it
is not reasonable to have a noticable gap between the
mean recalibrated base quality scores of human and
rice.

One plausible explanation for the gap is that the
number of (effective) variants in the rice dbSNP is ei-
ther not large enough for BQSR to be valid, or far
smaller than that in the human dbSNP. Because the
larger is the size of the database, the higher the recal-
ibrated base quality scores are, BQSR scheme with a
database having not enough number of variants may
under-estimate the quality score in the recalibration
step. While the genome size of rice is about one
eighth of that of human, the number of variants in the
rice dbSNP is about one twenty fifth of those in the
human dbSNP. This indirectly indicates that the size
of the rice dbSNP is significantly small relatively to
that of the human dbSNP.

The above finding raises an important question:
what do we do if we do not have enough number of
variants as the database for the recalibration? In what
follows, we suggest a recalibration method when the
number of variants in a database is not enough.

2.4 Proposed Method of Creating
Database

We propose a method of constructing a database as
an alternative to an existing database for BQSR when
there is no database or the existing database does not
contain enough number of variants. The basic idea
of the proposed method is to create a new database,
similar to the suggestion by GATK forum (Bootstrap,
2018), as follows. We first perform the variant calling
by using a variant calling pipeline, such as GATK,
without BQSR step to obtain a variant call format
(VCF) file that contains variants called by the pipeline
without BQSR step. We then perform again the vari-
ant calling including BQSR step by using the VCF file
as the database. In short, the VCF file obtained with-
out BQSR step plays a role of an alternative database
to the existing database, such as the dbSNP. As the
variant calling pipeline creates the database for itself,
we will call the VCF file as the dbSELF.

The above method can be generalized by an iter-
ative aggregation, in which the dbSELF is updated
by performing the variant calling pipeline repeatly.
There are two ways to update the dbSELF. The first
method is to accumulate the variants called by the
pipeline to the current dbSELF, and the second is to
replace the current dbSELF with the most recent VCF
file. Thus, the dbSELF generated by the accumulation

Figure 2: The schematic flow chart of current BQSR setp
(left) and the proposed step (right).
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Figure 3: The relative frequency of∆i j’s for human and
rice. The plots are averaged distribution over 10 samples
with error bars representing the standard deviation.

method increases in size, whereas, in the replacement
method, the VCF file obtained from thenth variant
calling is the dbSELF for the(n+ 1)th variant call-
ing. In general, the number of variants in the dbSELF
of the accumulation method is larger than that of the
replacement method. Note that the number of vari-
ants in the dbSELF depends on sample (individual or
accession). The procedure of the proposed method is
schematically depicted in Fig. 2.

3 EXPERIMENTAL RESULTS
AND DISCUSSION

In order to assess the proposed method, we adopted
GATK and performed the variant calling by using two
different databases: the dbSNP and the dbSELF. We
analyzed basewise difference in the recalibrated base
quality scores obtained by the two databases. The dif-
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Table 1: Statistics of dbSELF and dbSNP.Ntotal andNe f f are the number of variants and the effective variants in the dbSNP,
respectively.Nebase andNerror are the number of effective bases and errors, respectively;the error rate is defined as the ratio
of the number of errors to the total number of bases in raw data. All quantities, except the number of variants in the dbSNP,
are averaged over 10 samples, and the corresponding standard devations are in the parentheses.

Database Genotype
Human Ntotal Ne f f Nebase Nerror Error rate (%)
dbSNP 318,739,162 5,965,063 (857,126)17,919,487 (4,950,378)14,570,351 (3,424,599)0.11 (0.04)
dbSELF 2,824,914 (571,181)2,822,702 (570,685)14,316,273 (4,649,247)18,173,565 (4,020,284)0.14 (0.05)

Rice Ntotal Ne f f Nebase Nerror Error rate
dbSNP 12,185,568 1,411,561 (955,475)8,936,172 (6,314,281)7,410,641 (3,009,390) 0.24 (0.12)
dbSELF1,505,469 (1,001,366)1,464,242 (981,338)10,815,057 (6,969,199)5,531,758 (2,333,059) 0.18 (0.09)

ference is expressed as∆Qi j ≡ QSNP
i j −QSELF

i j , where

QSNP
i j andQSELF

i j are the recalibrated quality scores of
basej in samplei obtained by using the dbSNP and
the dbSELF, respectively. Note that∆Qi j is an inte-
gral value as the base quality score is an integer.

Figure 3 shows relative frequency distributions of
∆Qi j ’s for both human and rice averaged over 10
samples together with the standard deviations repre-
sented by the error bars. From Fig. 3, we see that the
disribution of ∆Qi j ’s for human is symmetric about
∆Qi j = 0, and the majority of bases (about 64%)
have ∆Qi j = 0 and more than 95% of bases have
∣

∣∆Qi j
∣

∣≤ 1. This means that more than 95% of the re-
calibrated base quality scores obtained by using two
different databases are the same or differ by one Phred
score. This result suggests that the dbSELF can serve
a reasonably good alternative to the dbSNP.

In the case of rice, however, whereas about 22%
of bases have∆Qi j = 0, more than 70% of bases
have their recalibrated quality scores obtained by the
dbSELF higher than those obtained by the dbSNP.
Considering that BQSR with the rice dbSNP under-
estimates the recalibrated quality score compared to
the human dbSNP as discussed in Section 2.3, the rice
dbSELF can alleviate, at least in part if not entirely,
the under-estimate of the recalibrated scores. In this
sense, the rice dbSELF may substitute for the rice db-
SNP for a better BQSR result.

As stated in Section 1, the genotype of a base is
regarded as an error when the base in a BAM/SAM
does not match with the reference at a position not
listed in the database. As a complementary to the er-
ror, we define an effective base as a mismatched base
that is identified by an effective variant listed in the
database. Thus, a mismatched base is either an error
or an effective base. In Table 1, we list the number
of variants and effective variants in the two databases,
together with the statistics of effective bases and er-
rors. In addition, we estimate the error rate, which is
the ratio of the number of errors to the total number
of genotyped bases in the raw data (i.e., FASTQ file).
Because all quantities, except the number of variants

in the dbSNP, depend on samples, we report in Table 1
the mean and the standard deviation of the quantities
over 10 samples. Note that the standard deviations
of the numbers of variants, effective variants, and ef-
fective bases for rice are larger than those for human
regardless of the database. This is due to the charac-
teristics of the reference sequence discussed in 2.3.

We see from Table 1 that, for both human and rice,
while the dbSELF contains less number of variants
than the dbSNP, almost all variants in the dbSELF
are effective variants. This is expected because the
dbSELF is nothing but a set of variants called from
samples without BQSR step. In the case of human,
we find that the dbSELF contains far less number of
variants (about 0.8%) than the dbSNP does. However,
more than 99% of variants in the dbSELF are effec-
tive variants, whereas only about 2% in the dbSNP
are effective. More importantly, although the dbSELF
has less than a half as many effective variants as the
dbSNP has, the error rates obtained by using the two
databases differ by only 0.03%. This difference is not
a significant compared to the difference in the number
of effective variants.

In the case of rice, we can see from Table 1 that
the dbSELF contains more effective variants (about
4%) than the dbSNP, although the dbSELF contains
less number of variants (about 12%) than the dbSNP.
While about 12% of variants in the dbSNP are effec-
tive, more than 97% of variants in the dbSELF are
effective. The fact that the rice dbSELF identifies
more effective variants is a primary reason that BSQR
using the dbSELF gives higer recalibrated scores on
average than the dbSNP does. In addition, the db-
SELF generates more effective bases than the dbSNP
does; as a result, the error rate using the dbSELF
is smaller than that using the dbSNP. This basically
yields higherQSELF

i j on average thanQSNP
i j .

Note that there is no reason in prior that the er-
ror rate of rice should be greater than that of human.
Rather, we should expect about the same error rate
for both human and rice. In this sense, the fact that
the error rate using the dbSELF is almost comparable
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Table 2: The results of the number of effective variants and the recalibrated base quality score from the iteration method. Nacc
andNrep stand for the number of effective variants from the accumulation and the replacement methods, respectively.Vacc and
Vrep represent the number of called variants in the VCF file from the accumulation and the replacement methods, respectively.
Qacc andQrep are the recalibrated quality scores for the accumulated andreplaced database, respectively. All quantities are
the averaged quantities over 10 samples and the standard deviations are in parantheses.

Human
Iteration 1 2 3 4 5

Nacc 2,822,702 (570,685)2,846,302 (548,120)2,849,574 (546,712)2,850,760 (546,425)2,851,651 (545,974)
Nrep 2,822,702 (570,685)2,572,609 (496,302)2,588,531 (499,300)2,591,406 (498,604)2,591,033 (499,800)
Vacc 2,574,517 (496,981)2,609,946 (500,232)2,611,333 (502,151)2,611,592 (499,787)2,611,857 (500,988)
Vrep 2,574,517 (496,981)2,590,469 (499,992)2,593,340 (499,282)2,592,973 (500,495)2,595,153 (499,734)
Q̄acc 28.22 (1.38) 28.85 (1.71) 28.84 (1.72) 28.86 (1.69) 28.86 (1.72)
Q̄rep 28.22 (1.38) 28.61 (1.62) 28.62 (1.68) 28.64 (1.67) 28.66 (1.66)

Rice
Iteration 1 2 3 4 5

Nacc 1,464,242 (981,338)1,465,483 (981,566)1,465,981 (981,858)1,466,151 (981,975)1,466,228 (982,017)
Nrep 1,464,242 (981,338)1,404,392 (913,189)1,430,244 (946,967)1,431,509 (948,436)1,431,252 (948,166)
Vacc 1,441,154 (928,358)1,471,463 (967,600)1,471,935 (968,295)1,472,026 (968,474)1,471,632 (967,802)
Vrep 1,441,154 (928,358)1,468,866 (964,458)1,470,220 (966,029)1,469,945 (965,743)1,470,180 (965,956)
Q̄acc 27.02 (2.30) 28.68 (2.10) 28.63 (2.10) 28.65 (2.08) 28.63 (2.11)
Q̄rep 27.02 (2.30) 28.47 (2.18) 28.54 (2.15) 28.51 (2.15) 28.53 (2.16)

with that for human supports that the rice dbSELF is
a reasonably good alternative to the rice dbSNP.

We assessed two different iteration methods,
accumulation and replacement, by updating the
database.The results are shown in Table 2. From
Table 2 we found the following properties that both
human and rice have in common. First, the num-
ber of effective variants obtained from the accumu-
lation method increases steadily, without any sudden
change, which is expected. With the replacement
method, in contrast, the number of effective variants
decreases at the second iteration and increases back
at the third iteration. In particular, the first itera-
tion produces the largest number of effective vari-
ants. Of course, in all iterations, the accumulation
method yields more variants than the replacement
method. Second, the average scores obtained by the
accumulation method are slightly higher than those
obtained by the replacement method for all iterations.
This is expected because, by defintion, the accumu-
lation method yields more effective variants in the
database, although not much, than the replacement
method does.

4 CONCLUSIONS

In this study, we investigated the validity of the db-
SNP for BQSR. We found that the recalibration re-
sults were closely related to the size of dbSNP. This
implied that BQSR results might not be reliable when
the size of the database is not large enough. Based on
the finding that the size of the database should play a

crucial role in BQSR, we proposed a method to cre-
ate a database when the size of a database is not large
enough. We demonstrated that, in the case of rice, the
proposed method of construction a database is more
reasonable than the rice dbSNP. This suggests that the
propsed method can be applied to the variant callings
of other species for which the size of the database is
not large enough.
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