The Impact of the Transversion/Transition Ratio on the Optimal Genetic

Code Graph Partition

Daniyah A. Alogalaa', Dariusz R. Kowalski'?, Pawet Blazej®, Matgorzata Wnetrzak?,

Keywords:

Abstract:

1 INTRODUCTION

Dorota Mackiewicz? and Pawet Mackiewicz?

1 Department of Computer Science University of Liverpool, U.K.
2SWPS University of Social Sciences and Humanities, Warsaw, Poland

3 Faculty of Biotechnology, University of Wroctaw, Poland

Code Degeneracy, Graph Theory, Mutation, Set Conductance, Standard Genetic Code, Transition, Transver-
sion.

The standard genetic code (SGC) is a system of rules ascribing 20 amino acids and stop translation signal to 64
codons, i.e triplets of nucleotides. It was proposed that the structure of the SGC evolved to minimize harmful
consequences of mutations and translational errors. To study this problem, we described the SGC structure by
a graph, in which codons are vertices and edges correspond to single nucleotide mutations occurring between
the codons. We also introduced weights (W) for mutation types to distinguish transversions from transitions.
Using this representation, the SGC is a partition of the set of vertices into 21 disjoint subsets. In this case,
the question about the potential robustness of the genetic code to the mutations can be reformulated into the
optimal graph clustering task. To investigate this problem, we applied an appropriate clustering algorithm,
which searched for the codes characterized by the minimum average calculated from the set W-conductance
of codon groups. Our algorithm found three best codes for various ranges of the applied weights. The average
W-conductance of the SGC was the most similar to that of the best codes in the range of weights corresponding
to the observed transversion/transition ratio in natural mutational pressures. However, it should be noted that
the optimization of the SGC was not as perfect as the best codes. It implies that the evolution of the SGC was
driven not only by the selection for the robustness against mutations or mistranslations but also other factors,
e.g. subsequent addition of amino acids to the code according to the expansion of amino acid metabolic
pathways.

ganized in specific groups. In most cases, the codons
in such groups differ at the third position, which can
be called a degenerate position. This fact suggested to

The questions about the origin and the structure of
the standard genetic code (SGC) have puzzled biolo-
gists since the first codons assignments were discov-
ered (Khorana et al., 1966; Nirenberg et al., 1966).
This nearly universal, with some rare exceptions, set
of coding rules is responsible for transmitting genetic
information stored in DNA molecules into the pro-
tein world. The code uses all possible 64 nucleotide
triplets, i.e. codons, to encode 20 canonical amino
acids and also the signal for stopping the protein syn-
thesis, i.e. the translation. Since the total number of
codons is greater then the number of encoded labels,
the SGC must be degenerate, i.e. there must exist an
amino acid that is encoded by more than one codon.
These redundant codons, called synonymous, are or-
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Francis Crick that only the first two codon positions
were important in a primordial code (Crick, 1968).

The redundancy of the SGC causes other interest-
ing consequences related to the process of single nu-
cleotide mutations. If these changes occur in the de-
generate codon position, then the originally encoded
amino acid will not be changed. These mutations
are called synonymous or silent, whereas those that
change the encoded amino acid or stop translation sig-
nal are named nonsynonymous. It should be noted
that there are two types of nucleotide changes, tran-
sitions and transversions. In the case of transition, a
purine nucleotide, i.e. adenine or guanine, mutates
to another purine (A<+G), or a pyrimidine nucleotide,
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i.e. cytosine or thymine, changes into another pyrim-
idine (C<+>T). Transversion are changes in which a
purine mutates to a pyrimidine or vice versa (A+>C,
AT, G—C, G+ T). There are four possible transi-
tions and eight possible transversions. Transitions are
more often observed in sequences than transversions
(Duchéne et al., 2015; Gojobori et al., 1982; Kumar,
1996; Lynch, 2010; Lyons and Lauring, 2017; Petrov
and Hartl, 1999; Rosenberg et al., 2003; Wakeley,
1996). It may result from a higher mutation rate of
transitions than transversions in nucleic acids due to
physicochemical similarity of the nucleotides. More-
over, transitions are accepted with a greater probabil-
ity because they rarely lead to amino acid substitu-
tions in encoded proteins due to the specific codon
degeneracy. The transitions are also more frequent
during protein synthesis (Freeland and Hurst, 1998a).

It should be noted, that the synonymous substitu-
tions do not have to be completely neutral mutations,
even though they do not change a coded amino acid.
The specific codon usage can be associated with co-
translational modifications of amino acids, efficiency
and accuracy of translation as well as co-translational
folding of synthesized proteins (Bulmer, 1991; Her-
shberg and Petrov, 2008; Zhou et al., 2009). The syn-
onymous codon usage can be also modified as a con-
sequence of selection at the amino acid level (Morton,
2001; Btazej et al., 2017b).

The tendency to minimize the number of non-
synonymous substitutions were noticed in the SGC
and this property suggested that the code could have
evolved to minimize harmful consequences of muta-
tions and translational errors (Ardell, 1998; Ardell
and Sella, 2001; Di Giulio, 1989; Di Giulio and
Medugno, 1999; Epstein, 1966; Freeland and Hurst,
1998a; Freeland and Hurst, 1998b; Freeland et al.,
2003; Freeland et al., 2000; Gilis et al., 2001; Gold-
berg and Wittes, 1966; Goodarzi et al., 2005; Haig
and Hurst, 1991; Woese, 1965). The robustness of the
code was usually measured as a difference between
the polarity values of amino acids encoded by codons
before and after a single-point mutation.

Since the genetic code is a set of codons which
are related, e.g. by nucleotide mutations, the general
structure of this code can be well described by the
methodology taken from graph theory (Beineke and
Wilson, 2005; Lee et al., 2014). Similarly to (Tlusty,
2010; Blazej et al., 2018a), we assume that the code
encodes 21 items, i.e. 20 amino acids and stop trans-
lation signal, and all 64 codons create the set of ver-
tices of the graph, in which the set of edges corre-
sponds to all possible single nucleotide mutations oc-
curring between the codons. This graph is undirected,
unweighted and regular. Moreover, according to this
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representation, each genetic code is a partition of the
set of vertices into 21 disjoint subsets. Therefore, the
question about the potential genetic code optimality
in regard to the mutations can be reformulated into
the optimal graph clustering problem.

In the present study, we investigated the proper-
ties of the SGC using a more general model including
in the graph representation information about tran-
sition to transversion ratio, which was not consid-
ered by (Tlusty, 2010; Btazej et al., 2018a). From a
mathematical point of view, we considered a weighted
graph, in which all weights are dependent on the type
of nucleotide substitutions. We also modified the set
conductance measure, which is widely used in the
graph theory (Lee et al., 2014) and has many prac-
tical interpretations, for example in the theory of ran-
dom walks (Levin et al., 2009) and social networks
(Bollobas, 1998). In the problem considered here,
the conductance of a codon group is the ratio of the
weights of nonsynonymous mutations to the weights
of all possible single nucleotide mutations, in which
the codons in this group are involved. Therefore, this
parameter can be used as a measure of robustness
against the potential changes in protein-coding se-
quences generated by the single nucleotide mutations.
Basing on the methodology described in (Blazej et al.,
2018a), we found some solutions, i.e. the genetic
code structures, of the optimal graph clustering prob-
lem.

2 PRELIMINARIES

2.1 Model Description

To study the general structure of the genetic code we
developed its graph representation. Let G(V,E) be
a graph in which V is the set of vertices represent-
ing all possible 64 codons, whereas E is the set of
edges connecting these vertices. All connections ful-
fil the property that the vertices, i.e. codons u,v € V
are connected by the edge e(u,v) € E (u ~ v) if and
only if the codon u differs from the codon v in ex-
actly one position. Moreover, we claim that all tran-
sitions are given a weight which equals always to
one, while the transversions are given a weight W,
where W € [0,00). The larger weight indicates that the
transversions are more important than transitions, re-
spectively. The weight can be interpreted as transver-
sion to transition ratio. Hence, the graph G is undi-
rected, weighted and regular with the vertices degree
equal to 9. Moreover, from a biological perspec-
tive, the set of edges represents all possible single nu-
cleotide substitutions, which occur between codons in
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a DNA sequence. What is more, this model includes
two important types of mutations.

Following the methodology presented in (Btazej
et al., 2018a), each potential genetic code C, which
encodes 20 amino acids and stop translation signal is
a partition of the set V into 21 disjoint subsets, i.e.
groups of codons, S. Thus, we obtain the following
representation of the genetic code C:

C= {Sl,Sz,“' 1,820,821 ZS,'ﬂSjZ@,S] US,U---USy; :V} .

In Figure 1 we showed an example of the parti-
tion of the graph G, which corresponds to the stan-
dard genetic code. From a biological point of view, it
is interesting to study the code structure according to
the types and also the number of connections between
and within the codon groups because these connec-
tions correspond to nonsynonymous and synonymous
substitutions, respectively. It should be noted that
each potential genetic code that minimizes the num-
ber of the nonsynonymous substitutions is regarded
the best in terms of decreasing the biological conse-
quences of mutations. Therefore, the conditions un-
der which the partitions of the graph vertices describe
the best genetic code, are worth finding.

There are many methods of the optimal graph par-
titioning, which are based on different approaches. In
this work, to investigate the theoretical features of ge-
netic codes in terms of the connections between the
codon groups, we decided to use the set conductance
measure, which plays a central role in the spectral
graph clustering method. The definition of the set W-
conductance measure including weights for edges is
as follows:

Definition 2.1. For a given weighted graph G let W
be a weight of transversion connections in G and S be
a subset of V. The W-conductance of S is defined as:

_ En(S,S)+Ein(S,5)-W
S|- (3+6W) ’

os(W)

where E,(S,S) is the total number of transition edges
crossing from S to its complement S whereas E;,(S,S)
is the total number of transversion edges crossing
from S to its complement S, and |S| is the number of
vertices belonging to S.

The definition of the set W-conductance is a good
staring point to describe a quality measure of a given
codon group. Large values of this measure mean that
a substantial fraction of substitutions in which these
codons are involved are nonsynonymous, i.e. they
change one amino acid to another. From the robust-
ness point of view, small values are desirable because
in this case many substitutions are neutral (synony-
mous) and do not change coded amino acids.

What is more, this approach allows us to char-
acterize the properties of the whole genetic code
because following the definition of the set W-
conductance we define the average W-conductance of
a genetic code:

Definition 2.2. The average W-conductance of a
given genetic code C and a given weight W is defined
as: |
Dc(W) = 31 Y os(W) .
sec

Using the definition presented above, we are able
to describe the best code in terms of the average W-
conductance, which is defined as follows:

Emm(W) = mc1n5C(W) .

®,,;,(W) gives us the lower bound of the genetic
code robustness measured in terms of the average
code W-conductance.

2.2 The Clustering Algorithm

In this work we propose a new randomized clustering
algorithm to find the optimal genetic code with re-
spect to the minimum average W-conductance. More
formal description of Algorithm 1 provides the struc-
ture of the clustering algorithm. The generic struc-
ture of the clustering algorithm contains inputs, out-
puts (cf. input parameters and output variables in
Table 1), and three functions, namely: AVERAGE-
CONDUCTANCE, PICKFIRSTNODE, and PICKSEC-
ONDNODE. The main function is the AVERAGE-
CONDUCTANCE function, which aims to find the op-
timal genetic code with the minimum average W-
conductance. The function includes nested loops of
two levels. The main loop (lines 5-14) counts the
average conductance for each iteration. The second
level loop (lines 7-14) is for picking and merging
nodes from the graph until we have 21 clusters (su-
per nodes). The AVERAGECONDUCTANCE termi-
nates when the graph is clustered to 21 clusters for
each iteration and returns the best genetic code with
the minimum average conductance over all indepen-
dent iterations. The PICKFIRSTNODE (lines 16-30)
and the PICKSECONDNODE (lines 31-47) associate a
probability for each node in the graph and each func-
tion pick a node randomly.

3 RESULTS AND DISCUSSION

The main goal of our work is to find the optimal ge-
netic codes in terms of the average W-conductance

@, (W). Furthermore, we compare the properties of
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Figure 1: The standard genetic code as an example of the partition of the graph G(V,E). Every group of vertices with the
same colour corresponds to the respective set of codons, which code for the same amino acid or stop translation signal. The
edges represent all possible single nucleotide substitutions. According to (Btazej et al., 2018a), modified.

Table 1: Input parameters and output variables for Algo-
rithm 1.

Input parameters:

1 Adjacent matrix of 64 codons, called A,
where Ali, j] can take:

1 if i # j and if and only if i differs
Ali, j]= from j in exactly one position

0 otherwise

2 Adjacent transition matrix of codons, called B,
where Bli, j] can take 1 only with transition
connections i.e. A<+G, C+<T, otherwise 0

3 We|0,0)

#iterations < 20,000

Output variables:

1 The minimum average conductance

2 The structure of the best genetic code that
gives the minimum average conductance

these codes with the standard genetic code, which is
interesting from the biological point of view.

We run the clustering algorithm (Algorithm 1)
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20,000 times independently to find the minimum of
the W-average conductance and the structure of the
genetic code that gives the minimum average W-
conductance. We carried out the calculations for the
transversion weight W € [0,10]. The weights can
be interpreted as a relative ratio between transver-
sions and transitions. Smaller weights mean that tran-
sitions are more frequent than transversions, while
larger weights indicate that the transversions domi-
nate among point mutations.

We found three genetic codes that are best for dif-
ferent ranges of W € [0, 0|. The genetic code C1 was
best for every W € [0, 3]], the code C2 for every W €
[%, 1] and the code C3 for every W € [1,o0]. The aver-
age W-conductance for these codes in the function of
weight W is ¢ (W) = ;- 2L ey (W) = ;-

308W+130 o) _ 1 94w+52
ooty - and @c3(W) = o7 - ZGp=3 for every W €

[0, %], [%7 1], and [1, 0], respectively. We conjecture
that these codes are optimal in the range of weights
corresponding to the observed transversion/transition
ratio in natural mutational pressures; though, as the
algorithm is randomized (but repeated a large num-
ber of times to reduce the probability of finding sub-
optimal solutions), the formal proof of their optimal-
ity is still an open question. Figure 2 shows the av-
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Algorithm 1: The clustering algorithm.

1: function AVERAGECONDUCTANCE(A, B, W, iterations)

2:

_.
S A B G A A )

Ju—

12:
13:
14:

15:

16

31

D=A—-B > Create transversion matrix
M=B+(W-D) > Create matrix M
min-ave-cond < 2
for each iteration do
g = [(node, edges) for each node in M] > List g stores each node i in M and its edges
while (len(g) > 21 nodes) do > Keep picking and merging nodes until we have 21 clusters
u < PICKFIRSTNODE(g)
v <— PICKSECONDNODE(g)
Merge nodes u and v

conductance = compute conductance for each cluster in g > List conductance stores conductance of 21

clusters using ¢5(W) formula in Definition 2.1

if min-ave-cond>sum(conductance)/len(conductance) then
min-ave-cond = sum(conductance)/len(conductance)
clusterings-min-ave-cond = g > Stores the structure of the genetic code

return min-ave-cond, clusterings-min-ave-cond

: function PICKFIRSTNODE(g)
17:
18:
19:

20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
: function PICKSECONDNODE(g)
32:
33:
34
35:
36:
37:

38:

39:
40:
41:
42:
43:
44:
45:
46:
47:

cond < [(i,0;(W)) for each node i in g] > List to store conductance for each node i in g
for for each node i in cond do
weight[i] < (i,cond|[i]*°) > List to store weight for each node i in cond list

for for each node i in weight do
probli] « (i, oSl

> sum(weight)
R < Generate a random number between 0 and 1
j+<0
a < prob|0]
while (R > a) do
j—Jj+1
a <+ a+ prob[j]
return j
u < cond|] > Select the j node in the cond list
return u

> List to store probability of selecting each node i in weight list

condl < cond —u > Copy cond list without the selected node u
for for each node i in cond1 do

edges|i] + (i,#edges between i and u)
for for each node i in cond1 do

weight[i] < (i, (edges[i] + 1)'° - cond 1[i]*®) > List to store weight for each node i in cond1 list

for for each node i in weight do

. . weight|i
prob[i] (t,%)

> List to store probability of selecting each node i in weight list
R < Generate a random number between 0 and 1
j<0
a < prob|0]
while (R > a) do
JjJj+1
a < a+ prob[j]
return j
v ¢ cond1[j] > Select the j node in the cond1 list
return v
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erage W-conductance for the best codes and the SGC
depending on the transversion weight.

The average conductance for the codes that are
best for W < 1 increases rapidly with W and then sta-
bilizes for large values. In the case of the code C3,
its conductance decreases at first and then also ap-
proaches a certain value. For small W values, the
average conductance is the smallest for the code C1
and the largest for codes C3. In turn, the opposite is
true for large W values. The code C1 is characterized
by the biggest difference between its average conduc-
tance values. The code is very well optimized for the
excess of transitions over transversions but it is very
bad in the opposite case. The average W-conductance
of the SGC shows the general course similar to that of
the C1 and C2 codes.

To compare the properties of the best codes with
the standard genetic code, we computed the func-
tion of the average W-conductance for the SGC,

= 1 10(33W+13)
Psoc(W) = 21 * SawiD

Dg6c(W) from each of the average W-conductance
function of each best codes (C1,C2,C3) and calcu-
lated the derivative for each produced function as fol-
lows:

1. Define f1 (W) = 6SGC — ECl, then

. Then, we subtracted

1 10(33W +13 1 126W +31
Py o o L
21 92w +1) 21 6W+3
The derivative of f1(W) is
122
VW)=
frw) 1892W +1)2

At W = 0, the value of f1 is equal to 0.2 and
at W= % f1is is equal to 0.03. The values of
the conductance function for both codes are the
same at W = %. Below this weight the C1 code
shows a smaller ® than the SGC and above this
weight, the opposite is true.

2. Define f2(W) = ®g6c — Pc2, then
1 10(33W +13) _ 1 308W 4130

2(W)=— —-
F2W) =51 9RW+1) 21 9Q2W+1)
The derivative of f2(W) is
22
2 = .
f2w) 189(2W +1)?

At W = 0, the C2 and the SGC codes have the
same values of D, i.e. f2 =0. Next, with the
growth of W, f2 increases, which means that
the average W-conductance of the SGC becomes
larger than that of the C2 code. At W = %, the
value of f2 is equal to 0.03 and at W =1 f2 is
equal to 0.04.
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3. Define f3(W) = ®56c — Pc3 , then
1 10(33W +13) 1 94W +52

(W)= — -
f3W) =5 92W+1) 21 6W+3
The derivative of f3(W) is
100
W)= .
f3W) 189(2W +1)2

ForW < %, Dyge is smaller than $3. Above this
weight, the opposite is true. At W = 1, the value
of f4 is equal to 0.04 and at W = 3 f3 is equal to
0.11.
The functions f1(W), f2(W) and f3(W) are dif-
ferences in the average W-conductance between the
SGC and three best codes depending on the transi-
tion weight W. It is evident that the standard genetic
code is optimized for more frequent transitions than
transversions. The SGC can obtain the same average
W-conductance as each of the optimized codes but for
different transversion weights. Nevertheless, the W
is always smaller than 1 in these cases. The mini-
mum distance between the SGC and the best genetic
codes in terms of the average conductance is 0.03
for W = % = 0.53 (Figure 3). Since there are twice
as many possible transversions as transitions, the ex-
pected ratio should be 2, if all nucleotide substitutions
happen with the same probability. Interestingly, the
weights for which ®@ggc is close to @ of the best codes
is in the range of the transversion/transition ratio ob-
served in genomic mutational pressures, i.e. from
1.44 to 0.10 (Kowalczuk et al., 2001; Btazej et al.,
2015). However, for each transversion weight, it is
possible to find a code better optimized than the SGC
in terms of the average W-conductance, so this code is
not perfectly optimized. Our preliminary analyses of
the alternative genetic codes in this respect showed
that the relationship between their average conduc-
tance depending on the transversion weight has the
course very similar to that of the SGC.

The structure of these best genetic codes is pre-
sented in Table 2. Although the code C1 and C3 are
best for different and extreme W values, they have the
same number of two- and four-codon groups, 10 and
11, respectively. The code C2 has in addition 3 groups
consisting of three codons as well as 8 two-codon
groups and 9 four-codon groups. The SGC is more
diversified in this respect because it has 2 one-codon
groups, 9 two-codon groups, 2 three-codon groups, 5
four-codon groups and 3 six-codon groups. Thereby,
it is more similar to the code C2.

The code C1 is best for smaller weights of
transversions. Therefore, such mutations are prefer-
ably involved in changes between codon groups of
this code in order to minimize these changes. Con-
sequently, all synonymous substitutions in this code
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Figure 2: The average conductance for the best codes C1,C2,C3, and min(C1,C2,C3) as well as the standard genetic code

(SGC) for the weights of transversions W € [0, 10].

0.20}-

0.10} -

(:DSGC_ (I)min

0.00} -

0.0 0.5 1.0

1
15 2.0 2.5 3.0

Weight W

Figure 3: The difference between the average conductance for the standard genetic code (SGC) (@sgc) and the best codes

(®ynin) for the weights of transversions W € [0, 3].

are transitions. In the case of the code C3, which is
best for larger W, transversions were eliminated from
changes between codon groups as much as possible
to increase the number of transitions. In consequence,
all changes within two-codon groups of this code are
transversions. Since there are only two purines and
two pyrimidines, it is not possible to create four-
codon groups that can change to each other by only
transversions. Therefore, changes within such groups
are both transitions and transversions. The code C2

is a mixture in this respect because the codons in its
two-codon groups can change to each other only by
transitions, while in the other groups by the two types
of mutations. Considering only one point mutations
in the SGC, all changes within two-codon groups are
also transitions and within other groups both tran-
sitions and transversions with exception to the stop
codon group, which also involves only transitions.
Then the SGC is again more similar to the code C2
in this respect.
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Table 2: The structure of the best genetic codes C1,C2, and C3 for W € [0, %} We [%, 1], and W € [1,c0], respectively. Each

row describes the codon group for a cluster.

Cl c2 c3

1 {AAA,AAG,AGG,AGA}  {AAG,ACG,ATG} {ATA,AAA,AGA,ACA}
2 {ATT,ATC} {AGA,AGG} {AGC,ACC}

3 {TAG,TAA} {AGC,ATC,AAC,ACC}  {ACT,TCT}

4 {TAC,TAT,TGT,TGC}  {ACA,AAA ATA} {ACG,AAG,ATG,AGGY}
5 {ITT.CTT} {TAA TAG} {TTA, TAA}

6 {TGA,TGG} {TAC,CAC} {TTC,TAC,TCC,TGC}
7 {ICT,CCT} {TTA,CTA,GTA} {TGG,TAG,TCG,TTG}
8 {ICG,TTG,TTA,TCA} {ITG,CTG} {TCA, TGA}

9 {ICC,TTC,CTC,CCC} {TGA,TGG,TGC,TGT} {GAT,AAT,TAT,CAT}
10 {GTA,ATA,GTG,ATG} {TCA,TCT,TCC,TCG} {GIT,ATT,TTT,CTT}
11 {GIC,GTT} {GAT,AAT,TAT,CAT}  {GGA,GCA,GAA,GTA}
12 {GGA,GAA,GAG,GGG} {GAC,GGC,GCC,GTCY {GGT,CGT,AGT,TGT}
13 {GGT,GAT,AGT,AAT}  {GTG,GAG,GGG,GCG} {GCG,GAG,GGG,GTG}
14 {GGC,AGC,AAC,GACY {GGT,AGT} {GCC,GTC,GAC,GGC}
15 {GCG,GCA,ACA,ACG} {GCA,GGA,GAA} {CAA,CTA}

16 {GCC,ACC,GCT,ACT}  {GCT,ACT} {CAC,AACY}

17 {CAT,CGT,CGC,CAC}  {CAG,CAA} {CTG,CGG,CAG,CCG}
18 {CTA,CTG} {CTT,GTT,ATT,TTT}  {CTC,ATC}

19 {CGA,CAA} {CTC.TTCY} {CGC,CCC}
20 {CGG,CAG} {CGC,CGG,CGT,CGA}  {CCA,CGA}
21 {CCG,CCA} {CCA,CCC,CCT,CCGY  {CCT,GCT}

The changes between codons in one group of the
code C3 can occur only in one fixed codon position,
the first or the second one. The third codon position
can also be mutated in the code C2. However, the
code C1 contains also the groups in which any two
codon positions can be changed. The SGC contains
many codon groups with synonymous mutations in
the third codon position but there are also three codon
groups involving single changes in two codon posi-
tions.

The comparison of structures of the genetic codes
show that the assignments of amino acids to codons
is not ideally optimized in the SGC. Some similar-
ity of the SGC to the code C2 suggests that the stan-
dard genetic code could evolve under the transver-
sion/transition for which the code C2 is best.

4 CONCLUSIONS

Our results show that the general structure of the
genetic code and the problem of the genetic code
optimality can be successfully reformulated using a
methodology adapted from graph theory in the con-

62

text of optimal clustering of a specific graph. To eval-
uate the quality of the genetic code, we calculated
the average code W-conductance including weights
for mutation types. Thereby, we distinguished tran-
sitions and transversions. From the biological point
of view, this measure describes the code robustness
against amino acid and stop translation signal replace-
ments resulting from single nucleotide substitutions
between codons.

We found three best codes with respect to the av-
erage code conductance for various ranges of the ap-
plied weight. The structure of the codes was differ-
ent in comparison to the standard genetic code. The
W-conductance of the SGC was the most similar to
that of the best codes in the range of weights corre-
sponding to the observed small transversion/transition
ratio in the mutational pressure. Other researches
also showed that the SGC performs better for the ex-
cess of transitions over transversions (Freeland and
Hurst, 1998a; Freeland and Hurst, 1998b). It indi-
cates that the SGC is optimized to some extent in
terms of the minimization of amino acid and stop
translation replacements. However, the optimization
was not ideal and for each weight better theoreti-
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cal codes could be found. In agreement with that,
other investigations also showed that the SGC is not
perfectly robust against point mutations or mistrans-
lations (Blazej et al., 2018b; Btlazej et al., 2016;
Massey, 2008; Novozhilov et al., 2007; Santos and
Monteagudo, 2011; Santos and Monteagudo, 2017;
Whetrzak et al., 2018).

Most likely, the robustness against mutations was
not the main force that drove the evolution of the ge-
netic code and amino acids were assigned to codons
according to expansion of biosynthetic pathways syn-
thesizing amino acids (Di Giulio, 1999; Di Giulio,
2008; Di Giulio, 2016; Di Giulio, 2017; Wong, 1975;
Wong et al., 2016; Wong, 2007; Di Giulio, 2018). In
this case, the potential minimization of mutation er-
rors could have occurred by the direct optimization of
the mutational pressure around the established genetic
code (Dudkiewicz et al., 2005; Mackiewicz et al.,
2008; Btazej et al., 2013; Blazej et al., 2017a; Blazej
etal., 2015).

The results can have practical consequences in
the context of designing modified or extended genetic
codes (Xie and Schultz, 2006; Chin, 2014). The aim
of this engineering is to produce peptides or proteins
containing unnatural amino acids and showing an im-
proved activity or completely new functions.
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