
TED: A Container based Tool to Perform Security Risk Assessment for
ELF Binaries

Daniele Mucci1 and Bernhards Blumbergs1,2

1Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, Estonia
2CERT.LV, IMCS University of Latvia, Latvia

Keywords: ELF Binary Analysis, GNU/Linux System Hardening, Vulnerability Assessment, Software Containers.

Abstract: Attacks against binaries, including novel hardware based attacks (e.g., Meltdown), are still very common, with
hundreds of vulnerabilities discovered every year. This paper presents TED, an auditing tool which acts from
the defense perspective and verifies whether proper defenses are in place for the GNU/Linux system and for
each ELF binary in it. Unlike other solutions proposed, TED aims to integrate several tools and techniques
by the use of software containers; this choice created the necessity to compare and analyze the most popular
container platforms to determine the most suitable for this use case. The containerization approach allows
to reduce complexity, gain flexibility and extensibility at the cost of a negligible performance loss, while
significantly reducing the dependencies needed. Performance and functionality tests, both in lab and real-
world environments, showed the feasibility of a container-based approach and the usefulness of TED in several
use cases.

1 MOTIVATION FOR THE
PROJECT

From the 1st of January 2017, around 150 differ-
ent vulnerabilities involving stack or heap overflows
and format string bugs have been reported (NIST,
2018). In addition, during this period several hard-
ware vulnerabilities which also involved binaries
have been found (e.g., Spectre/Meltdown, Throw-
/NetHammer). Also reverse engineering should al-
ways be considered as a possible option for target-
ing binaries, especially where intellectual property
is involved. Considering the enormous diffusion of
GNU/Linux based systems, it is clear that protecting
ELF binaries in such environment is of critical impor-
tance, and therefore this is the primary purpose of this
project.

2 INTRODUCTION

Many tools and techniques exist to protect systems
or binaries from a wide range of attacks, and many
more are continuously developed. However, despite
the large number of protection mechanisms designed,
a relatively small and consolidated set of features is

commonly used and deployed. This set includes de-
fenses such as Address Space Layout Randomization
(ASLR), Data Execution Prevention (DEP, NX/XD),
Stack Smashing Protector (SSP) or Stack canaries.
For the most recent Linux kernels, this set can be
extended with the microcode to protect against some
Spectre variants (e.g., Meltdown). On the other hand,
verifying whether all these measures are in place is
usually done either manually or by the aid of some
tools (e.g., Radare2, Lynis). This action has to be
performed separately for each tool used or individu-
ally for each binary, making it time consuming, error-
prone and inefficient. Moreover, low-level tools of-
ten require specific dependencies for libraries or other
tools, which might not always be possible to satisfy or
whose installation might require additional time and
effort.

The solution proposed in this paper consists of
using software containers to address the issues men-
tioned, specifically to integrate and orchestrate multi-
ple tools, to collect and process the different results,
and most of all to greatly reduce the dependencies
required, allowing to individually pack the needed
tools with their dependencies, thus eliminating possi-
ble conflicts and the need for their installation. Given
the fact that software containers are still rarely used
outside cloud environments, a significant amount of

Mucci, D. and Blumbergs, B.
TED: A Container based Tool to Perform Security Risk Assessment for ELF Binaries.
DOI: 10.5220/0007371603610369
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 361-369
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

361



work consisted in analyzing and comparing the vari-
ous available container engines to select the one that
provided the needed functionalities and at the same
time did not represent a heavy dependency itself. The
tool here presented, TED, implements such solution
using Docker containers to perform all the necessary
tests aimed to verify whether a selected set of defense
measures are in place, and to consequently assess the
risk associated with each binary present in the system.
Proposed solution would be practically applicable to
the cyber security areas such as, vulnerability assess-
ment, incident response, system triaging, and security
baseline establishment.

This paper provides the following contributions:

1. discussion of software containers as execution en-
vironment and evaluation of the different con-
tainer engine platforms in the context of vulner-
ability assessment; and

2. container technology implementation for ELF bi-
nary security assessment in an open-source tool-
set TED.

This paper is organized as follows: Section 3 gives
an overview of related work; Section 4 describes the
container engine selection process, the design and the
implementation of TED; Section 5 provides the result
of the evaluation process; Section 6 concludes this pa-
per.

3 RELATED WORK

Extensive research already exists on binary security,
both from the attack and from the defense perspective.
However, very few projects, with a purpose similar to
the one presented in this paper, were found.

BitBlaze is a platform developed by Song et
al. (Song et al., 2008) which uses both static and dy-
namic analysis to extract a wide range of security in-
formation from a program, without taking into con-
sideration the defense measures applied and relying
on custom techniques. The main purpose of Bit-
Blaze is to detect possible vulnerabilities in the pro-
gram and to identify their root cause, rather than de-
termining what security measures are applied. Bit-
Blaze has several components, in particular a static
analysis tool (VINE, available and not maintained for
4 years) and a dynamic analysis component (TEMU,
available and not maintained for 3 years). Young-
Hyun et al. (Choi et al., 2015) in 2015 developed a
project called DBA (Dynamic Binary Analyzer), ca-
pable of dynamically detecting vulnerabilities in bi-
naries with taint analysis, which targets x86 (32-bit)
Windows binaries. This project focuses on finding

vulnerabilities or detecting exploitation at runtime. To
perform its analysis, DBA uses QEMU virtual ma-
chine to emulate the execution environment for a sin-
gle binary. TEASER by Ulrich (Ulrich, 2017) is a
system, which aims to assess the exploitability of bi-
naries, performing a vulnerability assessment from
the perspective of an attacker. TEASER is limited
to identifying memory corruption vulnerabilities and
is meant to ease the process of detecting bugs which
might lead to exploits. It is built on top of other
tools, such as Valgrind, PANDA, ASan and LLVM, and
uses QEMU emulation for some steps of its execu-
tion. Tang et al. (Feng-Yi et al., 2016) and Wang et
al. (Wang et al., 2017) in their projects focused on
binary security analysis in terms of performing a di-
agnosis of memory vulnerabilities. The two projects
which can be compared with TED are checksec.sh 1

and Lynis2. The first is a Bash shell script, which
shows technical information, including whether some
security measures are applied, regarding a binary, a
loaded library or the kernel. The main script is not
maintained anymore, but a forked and maintained ver-
sion3 exists. Lynis, on the other hand, is a software
aimed to audit, hardening and testing for compliance
Unix systems. The software runs a wide range of tests
according to what tools are available on the system,
and it is publicly available.

In addition to the presented tools, there is a con-
spicuous number of proposals to protect binaries from
a wide range of attacks, however, an evident gap be-
tween the academia and the industry emerged. This
means that virtually all the novel tools or techniques,
such as (Marco-Gisbert and Ripoll, 2013; Solanki
et al., 2014; Younan et al., 2006; Chen et al., 2017;
Novark and Berger, 2010), developed in the academic
environment, independently by their efficacy and se-
curity impact, are either unused or extremely rarely
deployed in the production environments.

In the related work, multiple limitations and draw-
backs have been identified, such as, the need for spe-
cific and numerous dependencies, the use of heavy
virtualization technologies (e.g., KVM/QEMU) and
their configuration, the support only for Windows bi-
naries or for 32-bit architectures, the focus on sin-
gle binaries rather than on the whole system, the
lack of automation and the need of user interaction
and finally the use of technologies that make the tool
not portable, not easily extensible or not suitable for
cloud environments. TED aims to address all the gaps
identified by bundling all the tools and dependen-
cies needed inside Docker containers, which not only

1http://www.trapkit.de/tools/checksec.html
2https://cisofy.com/lynis/
3https://github.com/slimm609/checksec.sh

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

362



make the application extremely portable, but avoid the
overhead of an hypervisor, reducing drastically the
performance loss; given this approach, the set of de-
pendencies of TED is fixed and it is limited to the
Docker platform and a small number of Python pack-
ages. Furthermore, TED focuses on 64-bit executa-
bles and aims to automate the scanning process, with-
out requiring user interaction, in order to grant scal-
ability to the project and to allow users to run TED
periodically. Finally, TED not only collects and inte-
grates information about both the system and the bi-
naries in it, but also provides an assessment based on
the information gathered, to allow for easier planning
and better focus on critical parts of the system.

4 DESIGN AND
IMPLEMENTATION

The design and implementation of the tool proposed
here, TED, necessitated of several steps. First, the
most suitable container engine for the context in
which TED operates needed to be selected, then, it
was required to individuate the defense measures and
techniques to integrate in the tool, and furthermore to
establish a corresponding scoring system to measure
the system’s ELF binary state. Finally, the tool had to
be implemented.

4.1 Container Engine Selection

The idea of software isolation was born during the
1980s, however, the first use of containers dates back
to the early 2000s. Despite this, only from 2015
containers have become a popular and ubiquitous
technology, therefore the market is still relatively
young, leading to the flourishing of many container
engines and orchestration systems. Among these, five
available platforms have been taken into considera-
tion: Docker4, Rkt5, LXC6, OpenVZ7 and Garden8.
OpenVZ and Garden have been discarded before the
detailed evaluation for the following technical rea-
sons: OpenVZ has limited functionalities if it is not
run on a specific kernel, imposing a heavy constraint
for a tool that aims to be generic and portable; Gar-
den on the other hand is not yet a mature project and
it is virtually not used, despite it aims to represent an
alternative to Docker.

4https://www.docker.com/
5https://coreos.com/rkt/
6https://linuxcontainers.org/
7https://openvz.org/
8https://github.com/cloudfoundry/garden

The remaining platforms – LXC, Docker and Rkt,
have been evaluated using three parameters:

1. Availability: what needs to be done to get and in-
stall the platform, what dependencies need to be
satisfied and also whether there are public repos-
itories from which container images can be ob-
tained.

2. Functionality: whether and how the container en-
gine provides capabilities such as building im-
ages, collecting logs and events and sharing por-
tion of the file system with the host.

3. Performance: the overhead caused by executing
code inside a container for each engine is mea-
sured running 1000 times a test script and compar-
ing its execution time with a baseline established
running the same script on the native machine.

The most important criterion is the functionality,
since a lack of features would impact the capabili-
ties of TED or increase its complexity. Following
the functionality, the availability is considered, as this
impacts the dependencies needed by TED, which are
meant to be as few as possible. Finally, performances
are considered of secondary importance, since the dif-
ference in performances between technologies which
are fundamentally similar is expected to be small.

Docker. Docker is the most popular container en-
gine and the current industry standard. It can be in-
stalled in most cases from the package manager and
does not need any particular Kernel feature, although
root access is necessary to run the Docker daemon.
The necessity of root access and its security implica-
tions are well documented9 and require special atten-
tion. It is important to note that Docker is included
in many cloud-oriented operating systems, such as
CoreOS Container Linux 10 and RancherOS 11. Con-
tainer images that can be run by Docker are pub-
licly available online from a public repository called
Docker Hub; the Docker Hub makes extremely easy
to find, run and publish an extensive set of images
through HTTP. The Docker engine is focused on pro-
viding an execution environment for one process only,
meaning that in general there should be a 1:1 ratio
between Docker containers and applications running,
and also that a container terminates when the process
with PID 1 exits. Docker offers a rich set of func-
tionalities, including an API to build, run and man-
age containers; in particular, it offers a simple way to
start and stop containers, extract logs or outputs from

9https://docs.docker.com/engine/security/security/
#docker-daemon-attack-surface

10https://coreos.com/os/docs/latest/
11https://rancher.com/rancher-os/

TED: A Container based Tool to Perform Security Risk Assessment for ELF Binaries

363



them, build new container images and share portions
of the file system with the host.

LXC. LXC is defined as ”a userspace interface for
the Linux kernel containment features” (LXC-Doc,
2018). Unlike Docker, the purpose of LXC is to pro-
vide a full virtual environment without the burden of
running a separate kernel and a hypervisor. Thus, in
this case, several applications can run inside one sin-
gle container. There are few hard dependencies for
LXC which are likely to be fulfilled on most systems
and therefore do not impose a hard constraint. In-
stalling LXC is generally possible through the pack-
age manager, although no operating system comes
with LXC pre-installed. It is possible to import public
”templates” for different operating systems, but there
is not any public repository for already made contain-
ers, however, it is still possible to distribute images
via HTTP with a private web server. The functional-
ities offered by LXC are many and powerful, but in
general require a careful configuration. The building
process for an image is very different from the one
offered by Docker: with LXC it is possible to ”ex-
port” and then ”import” an image. The export pro-
duces usually a tar.xz file or two tarballs that can be
imported, which are more similar to a snapshot of the
running container, rather than to a fresh image. Infor-
mation about container events can usually be found
in the host journal, while, unless manually specified,
container logs need to be extracted directly from in-
side the containers. It is possible to share a portion of
the file system with the host by simply mounting it in-
side the container, provided that a correct permission
configuration is in place.

Rkt. Rkt (Rkt-Doc, 2018), read ”rocket”, is a con-
tainer engine developer by CoreOS Container Linux
team, and – apart from low-level details – it is very
similar to Docker. Rkt containers are meant to run
a single application on which their lifecycle depends.
Rkt is available from the package manager in most
Linux distributions, with the exception of Ubuntu and
CentOS, and it is pre-installed on CoreOS Container
Linux. The only dependency for running Rkt con-
tainers is a kernel version 3.18 or later. Rkt can run
both Application Container Images (ACI) and Docker
containers. For the firsts, the location of the container
needs to be known a priori to be downloaded, since
a public repository of images is not available, while
for the latter it is possible to use the Docker Hub.
The functionalities of Rkt, especially from the per-
spective of this project, are very similar to the ones
offered by Docker, except for building a new image.
Since Rkt can run Docker images, it is possible to use
Docker build feature, but in a more general process,
the build of a new container needs to be done through

acbuild12 tool, that appears to be not maintained. The
logs of Rkt containers can generally be read through
the host journal and most of the operations necessary
to manage containers can be performed through the
Rkt Command Line Interface (CLI) while an API with
read-only capabilities is available. Events and log col-
lection is done in a similar fashion to Docker, and sim-
ilarly volumes are used to share the file system with
the host.

Performance Overview. To measure and com-
pare the performances of the different platforms, a
simple script which emulates some functionalities of
TED has been created. This script has then been ex-
ecuted 1000 times on the native machine and inside a
container run with each of the engines presented. The
average execution time on the native operating system
was 3.8s, whereas Rkt and Docker offered faster per-
formances – 3.33s (-12.4%) and 3.5s (-7.9%) respec-
tively. The slowest result was obtained by the LXC
container, which took an average of 3.9s (+2.6%) to
execute the script.

Conclusions. Taking into account both the cri-
teria to evaluate the platforms, the information gath-
ered and the results from the performance tests, it is
possible to observe that LXC – in addition to being
the slowest platform – requires a heavier configura-
tion from the host side compared to Rkt and Docker.
In particular, the work required to configure the con-
tainer network is a consistent overhead to the deploy-
ment of the application. Moreover, the way LXC tem-
plates are distributed implies that not only a public
service needs to be set in place, but also that a new
template should be downloaded every time an update
to the application is performed. Rkt and Docker, on
the other hand, offer similar functionalities and per-
formances, making the choice between them less ob-
vious. However not only the Rkt CLI offers lim-
ited capabilities compared to the Docker API, but Rkt
has also a much less capillary diffusion and user-base
than Docker, it is less tested and it is used mainly
in the context of CoreOS Container Linux, whereas
Docker is widespread and battle-tested on a vast array
of platforms. In the context of this project, Docker
does not present any of the drawbacks identified in the
other platforms, offers all the functionalities needed,
including good performances and a convenient way
to manage and distribute images. For all the reasons
above, it is clear that Docker results the most suitable
candidate to be used in TED.

12https://github.com/containers/build

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

364



4.2 Defense Measures Selection and
Scoring System

The main functionality of TED is to verify whether
certain protection mechanisms for binaries are in
place, therefore selecting the appropriate measures
becomes of critical importance to ensure the qual-
ity of the results. To choose the most suitable de-
fenses, both their popularity and their efficacy have
been taken into consideration, to avoid as much as
possible false positive results. It is possible to divide
the defense measures taken in consideration for being
integrated in TED in three main categories: system
defenses, ELF defenses against vulnerability exploit
and ELF defenses against reverse engineering.

System Wide Defenses. This category includes
those measures used by the kernel or applied to all
the executables running in a given machine. Their
purpose is to offer some level of protection to the
environment in which the binaries run, without con-
sidering the defenses that each specific binary might
or might not include. These include Address Space
Layout Randomization (ASLR) and its analogue for
the kernel (KASLR), hardware based memory pro-
tection (e.g., NX – No eXec, XD – Execute Dis-
able) and a novel mechanism originally designed
to increase kernel security, which later was recog-
nized also as a protection from the Meltdown attack,
KAISER/KPTI (Gruss et al., 2017). (K)ALSR and
NX/XD have been chosen because they offer a good
degree of protection from a wide range of memory
exploitation attacks, including those belonging to the
ret2* family; however, more advanced attacks ex-
ists (e.g., ROP and derivatives) but the defense mea-
sures against this kind of attacks are not commonly
found on systems and therefore have not been taken
into consideration. Finally, KAISER/KPTI at the mo-
ment is the only existing defense against Meltdown
for Linux systems, and given the critical impact of
such attack, it has been included in TED.

Executable Defenses against Vulnerability Ex-
ploits. This set includes the measures which are ap-
plied individually to each executable, for example
during or after compilation time, and that aim to pro-
tect them from exploits that target vulnerabilities in
the code. These measures offer a certain degree of
protection independently from the system in which
the binary is run. The most popular and commonly
used techniques are software canaries, in particular
the Stack Smashing Protector (SSP), the software
based Data Execution Prevention and its corollary,
the WˆX (Writable XOR eXecutable) principle. Sim-
ilarly to what it has been discussed previously, more
advanced and novel protections for binaries have been

designed, but none of this can be considered as a stan-
dard or as commonly deployed, and therefore they
have not been integrated into TED.

Executable Defenses against Reverse Engineer-
ing. The last category contains the protections aimed
to counter or make more difficult the reverse engi-
neering of a binary. The only measure which TED
checks is the stripping of the binary. Stripping is an
extremely weak defense, which makes the debugging
of the program slightly more difficult, but it is the
only common measure applied. The reason for which
no other techniques are considered is that no standard
binary protector for Unix systems exist, and that the
focus of the research in this field is on software obfus-
cation. Unfortunately, TED is run on binaries whose
content is in general unknown, and therefore it is not
possible (or very complex) to verify whether the code
is obfuscated or not. This limitation effectively leave
stripping as the only measure verifiable by TED.

Additional Tests. In addition to verify whether
the measures mentioned are in place, TED also checks
if the kernel is vulnerable to known exploits or to
different Spectre variants. The rationale behind this
choice is that this is not only a way to verify kernel bi-
naries security, but also a decision which derives from
the observation that generic binary attacks can have
higher impact on machines where the kernel is vulner-
able to exploits, especially to Privilege Escalation ex-
ploits. Finally, Spectre attacks could be used to com-
promise the machine leveraging hardware faults that
are not mitigated by the defenses mentioned above
(except for Meltdown).

4.3 Scoring System

To convert the information that TED gathers into a
value that helps the TED user to make plans, two scor-
ing systems are defined – a system score and an ELF
score. Each score is computed on a total of 100 points,
where a higher score implies a higher chance of ex-
ploitation, while 0 means that all the defenses that
TED is able to verify are in place. The assignment
of a score to each (lack of) defense is purely quali-
tative and decided after a careful consideration. The
system score is so composed:

1. Kernel exploits (40 points). For each confirmed
kernel exploit found, a score of 15/2n−1 is as-
signed, with n ∈ [1,∞], which represents the n-
th exploit found. Each potential kernel exploit
found will add 5/2n−1 points. Kernel exploits
usually have a very big impact on the security of
the machine. However, establishing a linear de-
pendency between the number of exploits and the
score would generate misleading results. For this

TED: A Container based Tool to Perform Security Risk Assessment for ELF Binaries

365



reason, the first exploit found will significantly in-
crease the risk score, while each additional exploit
will contribute with a continuously lower weight.

2. Spectre (20 points). Each variant of Spectre to
which the system is vulnerable adds 3 points,
while 8 points are added if the system is vulner-
able to Meltdown. At the time of this writing, 5
variants of Spectre are known. Although Spec-
tre attacks can lead to a severe compromise of
the system, because there are not yet known ex-
ploits for them, the score assigned is relatively
low. Meltdown contributes with a higher score be-
cause it is relatively simpler to exploit.

3. ASLR (20 points).The ASLR configuration can
lead to a maximum of 20 points, depending on
how the randomization is enabled. Specifically,
20 points are assigned if ASLR is disabled, 15 if it
is partially enabled (i.e., only on stack, virtual dy-
namic shared object page, and shared memory),
5 if it is enabled also for the heap and data seg-
ment and 0 points if ASLR is enabled fully and
additional patches have been applied. ASLR is
an effective measure that should be enabled on all
the systems, however, the different ASLR config-
urations restrict or enlarge the attack surface, and
therefore are taken in consideration in the assign-
ment of the risk score.

4. NX/XD (20 points). The lack of support from the
CPU for the NX/XD bit on memory pages adds 20
points, while no points are added if its support is
confirmed. The capability to restrict the execution
of certain memory page is a very important mea-
sure to stop the simplest attacks and to build ad-
ditional defenses, and therefore a significant score
is assigned in case of missing support for NX/XD.
The binary score is composed as follows:

1. DEP/WˆX (50 points). If the binary is compiled
with the stack marked as executable (violating
DEP), 30 points are added. If there is any section
both writable and executable (violating WˆX), 20
points are added. The possibility to write on the
stack contributes with a big score as it enables the
most basic attacks. The capability to write on an
executable memory section is still a severe vulner-
ability but in general it is less trivial to exploit and
therefore contributes with a lower score.

2. Canaries/SSP (40 points). If the binary is com-
piled without canaries and without using the Stack
Smashing Protector, 40 points are added. Ca-
naries are an orthogonal measure to DEP and also
represent an important measure to detect exploit
attempts. For this, the lack of canaries increases
significantly the risk score of the binary.

3. Stripping (10 points). If the binary is not stripped,
10 points are added. The low score reflects the
low effectiveness of stripping a binary to counter
reverse engineering.

4.4 Implementation

The implementation of TED has been performed us-
ing mainly Python language, for which a library 13

which implements all the operations normally per-
formed through the Docker command or API is avail-
able. It is important to note that TED is especially
suitable for cloud environments because of several
reasons: the first is that in such environments Docker
is commonly present, allowing TED to be deployed
in a matter of seconds; the second reason is that even
though the tools run inside containers, TED can scan
and analyze all the binaries in the system, includ-
ing those inside other containers, without the need to
modify the employed container images or their con-
figuration. Moreover, the approach of TED to an-
alyze both the system and the binaries is especially
relevant in containerized environments since most of
the container-escape strategies rely on kernel/system
vulnerabilities. The program is composed by several
modules that perform specialized operations. These
operations include the acquisition of user input, the
collection of the binaries to analyze, the execution of
TED’s checks, the collection of the results and the
score computation. Each check that TED performs
aims to verify whether one or more defense measures
are in place, therefore they match the defense tech-
niques mentioned in the previous section. In total,
five different tests are implemented at the moment,
each of which is run inside its own Docker container.

Kernelpop Test. A custom version of Ker-
nelpop14 is used to verify whether the kernel is vul-
nerable to known exploits. This tool has been cho-
sen because it provides fast and accurate results, it is
maintained and its code is publicly available.

Spectre Test. The bash script spectre-meltdown-
checker.sh15 is used to verify whether the system is
vulnerable to 5 different Spectre variants. This script
is comprehensive and actively maintained, and pro-
vides results in json format and therefore it is very
suitable for being integrated inside TED.

NX/XD Support Test. The standard
/proc/cpuinfo is used to verify whether the CPU
supports the nx bit. Given the fact that containers
share the kernel with the host, the information

13https://github.com/docker/docker-py
14https://github.com/Sudneo/kernelpop
15https://github.com/speed47/spectre-meltdown-checker

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

366



obtained by /proc virtual files is accurate and no
external tools are needed.

ASLR Test. In this test both the standard sysctl
tool and a custom binary are used to detect the ASLR
configuration active in the system. While the sysctl
result provides the information from the kernel per-
spective, the custom binary uses a direct approach to
observe the pattern in addresses assigned to the stack,
to malloc() calls (heap) and to the environment vari-
ables. Analyzing these address and checking for rep-
etitions allows to detect if ASLR is disabled or if it is
enabled partially. The two perspectives are compared
to provide a more accurate result for one of the most
critical defenses.

ELF Test. In this test rabin2, one tool which is
part of the radare216 framework, is used to extract
some information from the binaries, together with the
standard objdump tool. The purpose of this test is
to verify whether the binary has been compiled with
DEP and WˆX, whether canaries are used (and in par-
ticular the SSP) and if the binary is stripped. The first
test consists in inspecting the flags of the binary sec-
tions/segments, the second consists in disassembling
the binary and verifying the presence of canary check
functions, while the binary is considered stripped if
no symbol sections are found. Radare2 has been cho-
sen because it is one of the most popular tools for re-
verse engineering in Unix environment and it is ac-
tively maintained.

The main accomplishment of TED is not only to
integrate and orchestrate the tools mentioned, but also
to use containers to pack the needed tools with their
dependencies in separate environments. This strat-
egy allows to run easily these tools and also to use
at the same time libraries or programs with differ-
ent versions without creating conflicts. To provide
such functionality, several Docker images have been
built, while in the cases where a specialized image
was not necessary the public debian:latest image has
been used. The code of TED is publicly available and
can be found on a public Github repository17 and all
the Docker images are available either on the public
Docker Hub 18 or on the authors’ Docker Hub page19.

5 EVALUATION

To verify the feasibility of a container based approach
for a security tool and the usefulness of the tool pre-

16https://github.com/radare/radare2
17https://github.com/Sudneo/TED
18https://hub.docker.com/
19https://hub.docker.com/u/sudneo/

sented in this paper, several tests with different scopes
and use-cases have been performed.

5.1 Performance Benchmark

The first test is a quantitative analysis with the aim
of computing the overhead caused by running the
needed tools inside containers. The four heaviest
checks (excluding the NX/XD support check) that
TED performs have been executed both inside a con-
tainer and on the native operating system, measuring
and comparing the respective execution times. Each
check has been executed 100 times, and the average
value has then been computed. The results are sum-
marized in Table 1, where the average value for each
different check is reported. It can be observed that
the overhead added by running inside a Docker con-
tainer is noticeable in relative terms; however, for
each of these tests, a new container has been cre-
ated and then destroyed. It was therefore possible to
suppose that the overhead was caused by the Docker
bootstrap routine. To confirm this hypothesis, the two
checks with the major absolute difference between
values have been modified to be executed inside the
same container and the test has been repeated. The re-
sult obtained, also shown in Table 1, clearly confirms
the hypothesis formulated. If the container bootstrap
process is not factored in the execution time, the dif-
ference between running the checks inside containers
or on the native machine becomes negligible. More-
over, the assumption of reusing a container for multi-
ple tests does not represent a constraint, in fact, TED
uses the same approach for its own execution. In con-
clusion, the performance analysis showed that execut-
ing the needed tools inside a container the way that
TED does, causes an overhead in the order of few sec-
onds per tool run, which in a non real-time processing
context and compared to a global execution time po-
tentially in the order of hours, can be considered neg-
ligible; therefore, the container based approach can
be considered feasible from the performance perspec-
tive.

5.2 Functionality Tests

The second phase of testing included a set of real-
world experiments to verify the usefulness of TED in
real environments. For this, two main scenarios have
been used: the first consisted of using TED to assess
the security of the binaries present on a public web
server and to consequently establish an action plan
to resolve eventual issues found; in the second case,
TED has been used on a portion of the infrastructure
used for the NATO Locked Shields 2018 cyber exer-

TED: A Container based Tool to Perform Security Risk Assessment for ELF Binaries

367



Table 1: Summary result for the benchmark checks.

Check Physical Docker Relative ∆ Absolute ∆ Docker no startup Relative ∆ Absolute ∆

ASLR 0.031s 0.469s +1418% 0.438s - - -
Kernelpop 0.112s 1.559s +1284% 1.447s 0.134s +16.4% 0.022s

Spectre 4.745s 6.066s +27.8% 1.320s 4.485s -5.8% 0.260s
ELF 0.00060s 0.00055s -8.4% 0.00005s - - -

cise 20 to determine whether it would be a good fit in
a complex environment.

Public Web Server. TED full scan on the web
server took 84m and 2s to complete and found the is-
sues summarized in Table 2, where the actions that
have been established to mitigate them are also re-
ported. In Table 2 it is possible to observe that all
the actions defined involve the system and the ker-
nel, while no actions were planned for the ELFs com-
piled without defenses. The reason for this is multi-
faced; first, most of the binaries were used for local
commands and were not facing the public. Second,
none of the binaries had the setuid bit set, and finally,
to take action and recompile the binaries, a more in
depth inspection was necessary to make sure that re-
compiling the code with DEP or SSP enabled would
not have broken any compatibility. For a matter of
simplicity, further actions like configuring SELinux
profiles or AppArmor for specific binaries, had not
been considered. After performing the actions pre-
sented in Table 2, all the addressed issues have been
resolved, and the following TED scan, which took
152m and 52s, reported a much lower risk level. It
was therefore possible to conclude that TED allowed
to effectively detect vulnerabilities in the system and
also it facilitated the creation of an action plan com-
posed of informed choices.

Locked Shields Infrastructure. This test con-
sisted of running TED on two sets of machines used
during the cyber exercise: the first set included un-
defended machines, whereas the other set was com-
posed by two machines which belonged to and had
been defended by the winning team. The machines
used for testing were web servers which run their ap-
plications inside Docker containers. It is worth men-
tioning that all the four servers used for this test did
not have any Internet connection (after the game fin-
ished) and were accessible only through SSH once
connected to the closed virtualized environment host-
ing the game-network. This condition presented the
opportunity to successfully prove that an Internet con-
nection does not represent a hard dependency for
TED. Comparing the results of TED’s scans on the
first server of each set it was possible to observe that
the blue team performed some updates (e.g., sshd and

20https://ccdcoe.org/largest-international-live-fire-cyber-
defence-exercise-world-be-launched-next-week.html

apache2 binaries had been modified) and of course
installed new software (e.g., ossec, splunk), but no
major modifications to binaries to reinforce their de-
fenses had been performed. One exception was rep-
resented by the mysql binary that scored 40 points in
the undefended machine, but only 20 in the defended
one, where canaries had been added. The most in-
teresting observation is that in both cases the system
score reported by TED was the same, in particular,
the same kernel vulnerabilities were present in all the
machines, among which the most interesting was the
dirtyCOW. This exploit grants a privilege escalation
and is especially relevant in contexts where applica-
tions run inside Docker containers, since it can allow
attackers to break out of such containers 24. The same
observations could be done for the second pair of ma-
chines, where the exact same differences could be ob-
served.

Conclusions. The results of the real-world tests
showed that TED has very limited dependencies, can
run without an Internet connection, effectively detects
vulnerabilities in the system and helps creating an ac-
tion plan to resolve them. Despite this, it might be
needed to integrate more tools into TED to provide
more detailed information, for example about what
changed in each binary or whether each executable
is malicious or not. It is reasonable to conclude that
TED could fit in contexts such as The Locked Shields
especially if the defending team knows on which bi-
naries to focus (e.g., web server binaries), reducing
the scope of the report and improving the capability
to quickly assess the risk on meaningful binaries, to
individuate possible system vulnerabilities and to cor-
relate the findings.

6 CONCLUSIONS AND FUTURE
WORK

In this paper a novel approach to vulnerability assess-
ment – using software containers, is discussed, to-
gether with the selection process for the most suitable
containers platform, and the design, implementation
and verification in multiple use cases of a tool, TED,
which implements this approach. The planned im-

24https://github.com/scumjr/dirtycow-vdso

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

368



Table 2: TED’s findings on the public web server.

Type Description Action
System Kernel vulnerable to dirtyCOW and dirtyCOW poke variant Upgrade kernel
System Kernel vulnerable to CVE2017730821 Disable user namespace usage

to unprivileged users.
System Kernel vulnerable to CVE2016238422 Update kernel or restrict USB

access.
System Kernel vulnerable to CVE2017607423 Disable kernel DCCP module.
System Machine vulnerable to Spectre variant 1,2 and Meltdown Upgrade kernel, enable KPTI
ELFs 71 binaries compiled without canaries of which 26 without NX -

provements to TED include automated detection of
malicious binaries through the integration of an an-
tivirus such as ClamAV. Moreover, to improve the
accuracy of the ELFs tests, the capability to analyze
each binary to verify that no unsafe functions are used
will be added. From the functionality perspective,
despite TED runs all the checks it performs inside
containers, the main application still runs on the na-
tive machine. Fully containerizing TED, including
the supporting functionalities, will reduce the depen-
dencies needed to the sole Docker platform, making
the tool even more suitable for cloud environments,
where containers are already used in many cases and
where the Docker platform often is pre-installed, and
would allow TED do be easily deployed with orches-
tration tools such as Kubernetes, increasing drasti-
cally the scope and the target audience. Finally, fu-
ture work includes research on protections of binaries
from reverse engineering, which at the moment are
noticeably scarce, exception made for code obfusca-
tion techniques.

REFERENCES

Chen, X., Xue, R., and Wu, C. (2017). Timely address space
rerandomization for resisting code reuse attacks. Con-
currency and Computation, 29(16).

Choi, Y.-H., Park, M.-W., Eom, J.-H., and Chung, T.-M.
(2015). Dynamic binary analyzer for scanning vul-
nerabilities with taint analysis. Multimedia Tools and
Applications, 74(7):2301–2320.

Feng-Yi, T., Chao, F., and Chao-Jing, T. (2016). Memory
vulnerability diagnosis for binary program. ITM Web
of Conferences, 7.

Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C.,
and Mangard, S. (2017). Kaslr is dead: Long live
kaslr. volume 10379, pages 161–176. Springer Ver-
lag.

LXC-Doc (2018). Lxc official reference. https://
linuxcontainers.org/lxc/introduction/. Accessed on
20/10/2018.

Marco-Gisbert, H. and Ripoll, I. (2013). Preventing brute
force attacks against stack canary protection on net-
working servers. In 2013 IEEE 12th International

Symposium on Network Computing and Applications,
pages 243–250.

NIST (2018). Nist nvd, vulnerabilities statistics. https://
nvd.nist.gov/vuln/. Accessed: 10/06/2018.

Novark, G. and Berger, E. D. (2010). Dieharder: Securing
the heap. In Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS ’10,
pages 573–584, New York, NY, USA. ACM.

Rkt-Doc (2018). Rkt official reference. https://coreos.com/
rkt/docs/latest/. Accessed on 20/10/2018.

Solanki, J., Shah, A., and Lal Das, M. (2014). Secure pa-
trol: Patrolling against buffer overflow exploits. Infor-
mation Security Journal: A Global Perspective, pages
1–11.

Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I.,
Kang, M. G., Liang, Z., Newsome, J., Poosankam, P.,
and Saxena, P. (2008). Bitblaze: A new approach to
computer security via binary analysis. In Sekar, R.
and Pujari, A. K., editors, Information Systems Secu-
rity, pages 1–25, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Ulrich, F. (2017). Exploitability Assessment with TEASER.
Msc thesis, Northeastern University.

Wang, R., Liu, P., Zhao, L., Cheng, Y., and Wang, L. (2017).
deexploit: Identifying misuses of input data to diag-
nose memory-corruption exploits at the binary level.
The Journal of Systems & Software, 124:153–168.

Younan, Y., Pozza, D., Piessens, F., and Joosen, W. (2006).
Extended protection against stack smashing attacks
without performance loss. In 2006 22nd Annual Com-
puter Security Applications Conference (ACSAC’06),
pages 429–438.

TED: A Container based Tool to Perform Security Risk Assessment for ELF Binaries

369


