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Abstract: Human physical motion activity identification has many potential applications in various fields, such as 

medical diagnosis, military sensing, sports analysis, and human-computer security interaction. With the recent 

advances in smartphones and wearable technologies, it has become common for such devices to have 

embedded motion sensors that are able to sense even small body movements. This study collected human 

activity data from 60 participants across two different days for a total of six activities recorded by gyroscope 

and accelerometer sensors in a modern smartphone. The paper investigates to what extent different activities 

can be identified by utilising machine learning algorithms using approaches such as majority algorithmic 

voting. More analyses are also provided that reveal which time and frequency domain-based features were 

best able to identify individuals’ motion activity types. Overall, the proposed approach achieved a 

classification accuracy of 98% in identifying four different activities: walking, walking upstairs, walking 

downstairs, and sitting (on a chair) while the subject is calm and doing a typical desk-based activity.

1 INTRODUCTION 

Human physical activity identification has gained 

considerable amount of attention due to the prevalent 

use of smartphone devices and motion sensing 

technology advancement that facilitates the 

monitoring of human activities by small portable 

devices. The majority of modern smartphones have a 

number of built-in sensors (e.g., GPS, accelerometers, 

magnetometers, gyroscopes, barometers, temperature 

and humidity sensors) that can be utilised to record a 

variety of individuals’ activity signals. This has 

enabled research in activity-based computing to 

become a cornerstone of many real-life applications in 

health care, the military, navigation, localisation, 

biometrics, sport analytics and security (He and Li, 

2013; Mitchell, Monaghan and O’Connor, 2013; 

Bayat, Pomplun and Tran, 2014; Al-Naffakh et al., 

2016; Ronao and Cho, 2016). Researchers in the field 

of human activity identification have utilised a 

number of techniques to enhance the accuracy of 

activity type recognition, mostly based on acceleration 

and angular velocity signals using accelerometer and 

gyroscope sensors embedded in mobile devices. The 

sensors generate tri-axial linear signals which can be 

processed and segmented into less noisy features that 

provide a latent pattern that captures the context of the 

motion activity type. Prior research has focused 

mainly on the performance of the approaches 

developed in solving a particular problem, such as 

activity identification, which has meant that there has 

been little focus on interpreting how the identification 

decision was made in the case of machine learning 

modelling (Lara and Labrador, 2013; Jiang and Yin, 

2015; Ha and Choi, 2016). This includes investigating 

which feature contributed the most to the 

identification (prediction) process. The majority of 

human activity recognition public datasets upon 

which much of the literature has been built also have 

a limited number of participants and samples (Altun, 

Barshan and Tunçel, 2010; Anguita et al., 2012; 

Reyes-Ortiz et al., 2014). This presents challenges to 

understanding whether the captured activity signals of 

an individual vary over time (e.g., across days), as, 

typically, most of these datasets were collected on the 

same day. 

Therefore, this study investigates the effect of 

using a feature ranking approach prior to the activity 
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identification process by utilising random forest 

classification (Palczewska et al., 2014), as this 

algorithm analyses which independent variable(s) 

contributed most during the training phase of a 

learning algorithm. This is undertaken by examining a 

dataset of 60 participants, which was collected for this 

study over two days. Finally, the proposed approach 

is evaluated by building a predictable model that is 

able to categorise a given individual’s activity signals 

into predefined classes (i.e., normal walk, fast walk, 

walk with bag, walk upstairs, walk downstairs, and 

sitting). The modelling utilises three supervised 

machine learning classification algorithms: eXtreme 

Gradient Boosting (XGB), a feedforward neural 

network (NN) and a support vector machine (SVM). 

The rest of the paper is organised as follows: 

Section 2 highlights related work in the area of human 

activity identification using mainly smartphone 

sensors. Section 3 explains the data collection and 

experimental methodology. Section 4 presents the 

experimental results of the different tests undertaken 

to evaluate the proposed approach. Section 5 discusses 

the findings and possible future work. The paper 

concludes in Section 6. 

2 BACKGROUND AND RELATED 

WORK 

Human activity recognition is a wide research field 

and studies in this area vary in a number of aspects. 

For instance, some studies can be categorised based 

on the way the data was collected, such as those using 

wearable sensors (e.g., smartwatch-mounted body 

devices) or smartphone devices, while other studies 

use video observation to record individuals’ activity 

signals. With respect to devices such as smartphones, 

a key advantage is that the sensors are embedded, and 

no additional hardware is needed; only the software 

needs to be developed to start collecting activity 

motion signals. Therefore, much of the research has 

employed smartphones to record various types of 

individual activities in a user-friendly, unobtrusive, 

and periodic manner (Kwon, Kang and Bae, 2014; 

Capela et al., 2016; Shoaib et al., 2016). Most of the 

studies that have utilised smartphone-embedded 

sensors place the device either in a pouch or inside a 

trouser pocket (Ganti, Srinivasan and Gacic, 2010; 

Bieber et al., 2011; Hamm et al., 2013; Antos, Albert 

and Kording, 2014; Bahle et al., 2014). In terms of 

activity recognition performance, in San-Segundo, 

Blunck, Moreno-Pimentel, Stisen, and Gil-Martín, 

2018 study, the authors conducted a comprehensive 

evaluation of smartphone- and smartwatch-based 

human activity recognition, and found that 

smartphones mostly outperformed smartwatches in 

recognising activity type. This was due to the greater 

noise in the recordings from smartwatch sensors. 

Typically, both devices record activity signal data 

using the tri-axis signals of accelerometer and 

gyroscope sensors at a sampling rate ranging from 20 

to 50 signals per second. 

A number of approaches are used for data pre-

processing and feature extraction, including cycle-

based, segment-based and deep learning algorithms. 

In a cycle-based approach, the captured activity data 

are supposed to be a periodic signal in which each 

cycle begins once a foot touches the ground and 

finishes when the same foot touches the ground for the 

second time (i.e., two steps for a human) (Derawi and 

Bours, 2013). In a segment-based method, the signals 

are divided into fixed time-length windows (e.g., 10 

seconds). Some gait activities are periodic, as each 

time segment is reasonably assumed to contain similar 

signal features, while some activity streams, such as 

standing and sitting, do not necessarily generate cycle-

like patterns. In addition, the segmenting of the signals 

based on a time sequence requires fewer 

computational operations than the cycle-based method 

does. 

In contrast with the cycle- and segment-based 

approaches, some researchers have utilised deep 

learning to meet the challenges of the feature 

extraction process. With the recent advances in deep 

learning algorithms, the use of convolutional neural 

network (CNN) learning algorithms to extract a latent 

pattern from raw data has become common practice 

(Jiang and Yin, 2015; Ronao and Cho, 2016). 

Typically, deep learning approaches require less effort 

in feature extraction and engineering in comparison 

with cycle- and segment-based approaches. However, 

a challenging aspect in deep learning-based models is 

that it is hard to explain and interpret how decisions 

are made (Weld and Bansal, 2018). Knowing what 

drives decisions in models (i.e., the features on which 

the model relies) is an important element in some 

activity recognition applications, such as health care-

related research. 

In (Kwapisz, Weiss and Moore, 2010), the study 

used a neural network to model human activity and
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Figure 1: Data process pipeline. 

achieved high accuracy in identifying the correct class 

to which the activity signals belonged. However, the 

limited number of population samples (i.e., 5-30) 

opens the possibility that the learned algorithm is 

overfitted and has memorised the training samples. 

Other studies, as shown in Table 1 (Ganti, 

Srinivasan and Gacic, 2010; Anguita et al., 2012; 

Nakano, 2017; Bhanu Jyothi and Hima Bindu, 2018; 

Ogbuabor and La, 2018), have used a sliding window 

approach with an overlap of 50% in segmenting the 

raw activity signals. This could, however, lead to an 

overlap in the subsampling between the training and 

testing sets, which means that unless the splitting of 

the two sets occurs before the segmenting of the raw 

data, the data are only partially seen by the learning 

algorithm in both the training and testing sets. In terms 

of the correct classification rate, it can be seen that 

SVM, neural network and CNN achieve the highest 

performance among the techniques shown. 

In this study, a segment-based approach is used to 

extract features from raw sensor signal data with a 

sliding window of 10 seconds with no overlap. The 

extracted features are used to compute various 

statistical features, such as the mean, median, 

maximum and minimum of a given sensor axis within 

a specific segment window (as explained in detail in 

section 3). By handcrafting these features, it is 

possible to understand which of the features 

contributed most effectively to discriminating 

individuals’ activities (as presented in Section 4). In 

comparison with existing studies in which the data 

were gathered from smartphones, as presented in 

Table 1, most of these studies have fewer participants, 

(i.e., 30 or fewer) and the data were all captured during 

the same day. In this study, the data were collected 

between two days for everyone within the sample set 

because the probability that users’ activity patterns 

change is higher for data collected across days than it 

is for data gathered on the same day. 

 

 

 

Table 1: Comparison of prior studies in activity recognition 

using smartphone sensors. 
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Activity Type 

(Kwapisz, Weiss 

and Moore, 

2010) 

NN 100 5 

Standing, sitting, 

walking, 

jogging, 

downstairs, 

upstairs 

(Anguita et al., 

2012) 
SVM 89 

30 

Standing, 

sitting, 

walking, lying 

down, 

downstairs, 

upstairs 

(Ganti, 

Srinivasan and 

Gacic, 2010) 

SVM 96 

(Nakano, 2017) CNN 90 

(Bhanu Jyothi 

and Hima 

Bindu, 2018) 

RF 

PCA 

94 

89 

(Ogbuabor and 

La, 2018) 
MLP 95 

(Jiang and Yin, 

2015) 
CNN 99 10 

Standing, sitting, 

walking, 

jogging, 

running, biking, 

downstairs, 

upstairs 

(Heng, Wang 

and Wang, 

2016) 

SVM 85 5 

Standing, 

walking, 

running, 

upstairs, 

downstairs 

(Saha et al., 

2018) 

Ensembl

e 
94 10 

Sitting on a 

chair, sitting on 

the floor, lying 

right, lying left, 

slow walk, brisk 

walk 

Legend: CCR: correct classification rate; ML: machine learning; 
PCA: principal component analysis; MLP: Multi-layer perceptron; 

RF: random forest.  
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3 METHODOLOGY 

This study follows the data pipeline flow presented in 
Figure 1. The overall process starts by capturing the 
raw activity signals from smartphone sensors, 
followed by segmenting the data with time windows 
of 10 seconds. Once the data are segmented, they are 
processed to extract statistical features. This is 
followed by standardising feature space values and 
ranking those features using random forest algorithms. 
After that, the activity samples are fitted into the 
learning algorithm to train the predictable model. The 
process is explained in more detail in the following 
subsections. 

3.1 Data Collection Sensors and Device  

The developed approach utilises embedded smartphone 

motion sensors: the gyroscope and the accelerometer. A 

gyroscope is used to maintain a reference direction in 

the motion systems by sensing the degree of 

orientation in the x, y, and z directions of the 

smartphone. The axis signal is affected by the 

direction of the device orientation. Also, the 

accelerometer sensor measures the acceleration in 

metres per second squared (m/s2) in the x, y, and z 

directions of the smartphone. Figure 3 show the 

orientation of the positive and negative x, y, and z-

axes for a typical smartphone device using the 

gyroscope and accelerometer sensors respectively. An 

Android application called AndroSensor was used to 

record the sensor data as it supports most of the 

sensors that an Android device can offer (F, no date). 

A Samsung Galaxy S6 smartphone was carried by 

each individual to record the sensor data generated by 

different human physical activities. Each user was 

asked to  place  the smartphone in a belt  pouch, as 

presented in Figure 4 The generated data were 

continuously collected at a rate of 30-32 Hz for the x, 

y, and z-axes of both the accelerometer and gyroscope 

sensors. 

  

Figure 2: Orientation of the 

axes relative to a typical 

smartphone device using a 

gyroscope sensor. 

Figure 3: Orientation axes 

relative to a typical 

smartphone device using an 

accelerometer sensor. 

Figure 4: Smartphone device located inside a pouch. 

3.2 Data Collection Scenarios 

During the data collection process, each individual 

was asked to walk normally, fast, and normally with a 

bag on a predefined route (along a flat corridor) for a 

period of 3 minutes for each activity. For more 

realistic scenarios, the participant had to stop to open 

a door and walk back and forth along the corridor a 

number of times. This was followed by walking 

downstairs for three levels and upstairs for the same 

three levels, which resulted in a total number of 126 

steps (63 for each direction). Between each activity, 

the participant was asked to stop for 15 to 20 seconds 

to rest as well as to allow the later manual separation 

of the generated signals into their corresponding 

activities. Ten sessions of user activities were 

collected per user: five sessions were from one day, 

and the other five sessions were collected one week 

later from the same participant, in addition to a sitting 

activity for 19 of the participants. The users were 

permitted to wear different footwear and clothing for 

the second day of data collection. In total, 60 users 

participated in the data collection exercise; 35 

participants were male and 25 were female, and they 

were aged between 18 and 56 years old.  
Upon completion of the data collection phase, 

users’ activities were divided into six datasets aligned 
to each activity (i.e. normal walk, fast walk, walk with 
a bag, downstairs walking, upstairs walking, and 
sitting). Then the tri-axial raw accelerometer and 
gyroscope signals were segmented into 10-second 
segments using a sliding window approach with no 
overlapping to compute the feature set that is 
explained in the next subsection.  

Table 2 shows the collected dataset information. 
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Table 2: Dataset information. 
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Normal 60 7,168 28 280 1,680 

Fast 60 7,424 29 290 1,740 

W/bag 60 6,912 27 270 1,620 

Downstairs 60 1,792 7 70 436 

Upstairs 60 1,536 6 60 410 

Sitting 19 4,096 52 160 997 

3.3 Feature Extraction 

The raw signal data generated by the gyroscope and 
accelerometer were processed by computing the time 
and frequency domain features as this is a standard 
approach to generating a feature vector. These 
features were extracted from the users’ data segments. 
The time domain features were calculated directly 
from the raw data samples, while a Fourier transform 
was applied to the raw signals across the three sensor 
axes before computing the frequency domain-based 
features set. This process generated 304 unique 
features from the two domains, as listed in Table 3. 

Table 3: Generated features. 

Feature 

domain 
Feature type (count) 

Time and 

frequency 

Mean (3), standard deviation (3), median (3), 

variance (3), covariance (3), zero crossing 

rate minimum, interquartile range, average 

absolute, difference (3), root mean square (3), 

skewness (3), kurtosis (3), percentile 25 (3), 

percentile 50 (3), percentile 75 (3), maximum 

(3), minimum (3), correlation coefficients (3), 

average resultant acceleration (1) 

Time only 

Difference (3), maximum value (4), minimum 

value (4), binned distribution (3), maximum 

peaks (3), minimum peaks (3), peak 

occurrence (3), time between peaks (3), 

interquartile range (3) 

Frequency 

only 
Entropy (3), energy (3) 

 

3.4 Modelling 

Data modelling aims to build a predictable model able 

to classify a given individual’s activity signals into the 

class to which it belongs, based on the features 

extracted from the raw sensor data (in this case, normal 

walk, fast walk, walk with bag, downstairs, upstairs, 

and sitting). The following steps were undertaken 

before fitting the samples into the selected machine 

learning algorithms. 

3.4.1 Data Pre-processing 

Two approaches (i.e., normalisation and 

standardisation) were examined for transforming data. 

The dataset was normalised by scaling the input vectors 

individually to the unit norm (vector length). The other 

transformation approach was to standardise the features 

by removing the mean and scaling to the unit variance. 

The latter approach (standardisation) emerged as better 

than the former (normalisation) in discriminating the 

activity samples for the tested dataset. 

3.4.2 Feature Selection 

In order to reduce the feature vector dimensions, only 

those ranked as being of higher importance in 

contributing most effectively to discriminating 

individuals’ activities by the random forest algorithm 

were included in training the predictable model. The 

variable importance measure of the random forest 

calculates how significantly a given feature is biased 

towards correlated predictor variables (Strobl et al., 

2008). Feature importance analysis using random forest 

reduced the feature vector from 304 to 195 features in 

the final model based on the training set data. Reducing 

the feature space dimensionality not only improves 

overall model performance, but also lowers the 

probability of the algorithm being overfitted to the 

training data. 

3.4.3 Train and Test Split Ratio 

The cross-validation (CV) approach was used to train 

and validate the base model as non-stratified fashion. 

Using CV tends to decrease the probability of 

overfitting. The dataset was split into five consecutive 

folds without shuffling. Each fold was then used once 

as a validation while the remaining four folds formed 

the training set. 

3.4.4 Classification Algorithms 

Three supervised machine learning classification 

algorithms were examined using: NN, SVM and XGB. 
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The XGN parameters are (n_estimators:500, 

max_depth:3, min_samples_leaf=4, max_features: 

0.2). The SVM parameters are (C=1.6, kernel:’rbf’). 

The NN algorithm was tweaked by hyper-parameter 

tuning, using a grid-search approach as shows in table 4.  

Table 4: summary of neural network tuned parameters. 

Parameter Value 

#of epoch 500 

#of hidden layers 1 

#of hidden nodes 130 

Dropout rate 0.6 

Hidden activation 

function 
Relu 

Output activation 

function 
Softmax 

Kernel initialiser Uniform 

Loss function Categorical cross entropy 

Optimiser Stochastic gradient descent (SGD) 

4 EXPERIMENTAL ANALYSIS 

As the feature vector contains 304 features, 

dimensionality reduction helped in improving the 

overall model performance. Therefore, the random 

forest algorithm was used to rank the feature sets 

based on their contribution to the decision being made 

in predicting the target variable (activity) using the 

algorithm. The features space was fitted into the 

algorithm and performed a conventional multi-class 

classification task. Once the model was trained,  

 

Figure 5: Top 10 features ranked using the random forest. 

 

Figure 6: Kurtosis of the gyroscope y-axis. 

querying the features importance variable resulted in 

a list of all the independent variables and their ranks 

to measure how significant the features are in 

discriminating the target classes (human physical 

activities in the context of this study).  Figure 5 

illustrates the top 10 ranked features of all those 

examined using the random forest algorithm. 

Figure 6 illustrates the top-ranked feature, 

‘Kurtosis’, which is a measure of the shape for the 

values in a particular segment. The plot depicts the 

Kurtosis data of the six activities through their 

quartiles. It is apparent from this descriptive statistic 

that there is clear variability across the activities 

examined for this feature. Although normal walk and 

walk with bag are two different activities, they are, by 

their nature, very similar in terms of pace and type of 

body movement. This is clearly seen in Figure 6, as 

the median and first and third quartiles are almost 

equal for this feature as computed by the random 

forest algorithm. When examining the confusion 

matrix for the predictable model (later in this section), 

most of the false positive samples are also between 

these two activities, which supports the point being 

made here. 
In contrast, Figure 7 presents the lowest-ranked 

feature, which corresponds to the binned distribution 
of the minimum and maximum accelerations of the z-
axes in the segments. Almost all the activity values of 
this feature are identical, except for sitting. This 
descriptive analysis visually validates the output of the 
algorithmic feature ranking approach as the top- 
ranked features have more variability than those 
ranked lower. 
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Figure 7: Binned distribution of the accelometer z-axis 

feature. 

When plotting the data points by transforming the 

top 10 ranked features using the PCA algorithm, the 

activity data points tend to be located close to each 

other in the PCA feature space (Goodall and Jolliffe, 

2002; Bro and Smilde, 2014). Figure 8 shows the 

dataset observations for the six activities utilising the 

first three principal components. The first, second and 

third PCs used in this plot explain 72.5%, 11.7% and 

10.8% of the total variance, respectively, the total 

variance being the sum of the variances of all the 

individual PCs. 

 

Figure 8: PCA data points scattered using the top 10 ranked 

features. 

Table 5: Overall classification accuracy for each model. 
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Normal, 

Fast, 
Downstairs, 

Upstairs, 

Sitting 

W/bag 

merged 

with 
Normal 

195 93.54 93.35 93.88 94.60 94.27 

304 93.11 93.30 93.50 94.17 93.64 

Walk, 

Downstairs, 

Upstairs, 
Sitting 

Fast 

and 

W/bag 

merged 
with 

Normal 

195 97.06 97.30 97.65 97.79 97.54 

304 97.01 97.15 97.49 97.73 97.49 

All None 
195 86.18 84.88 87.67 87.79 87.24 

304 84.64 84.54 84.83 87.14 86.95 

It is apparent that some outliers sit far from their 

group or overlap with another group, and these could be 

misclassified by the predictable model built. However, 

outliers were included in the classification tests and 

were not excluded from any process within this 

experiment, as they are real-world samples. 

Three different experimental settings were 

undertaken to study how various activity types affected 

the identification rate. First, as normal walk and walk 

with bag are the most similar activity types, they were 

merged to form a single activity. The second test 

merged normal, fast, and walk with bag into a single 

activity. The final test examined the correct 

classification rate for all the activities. Two types of 

voting were used: hard and soft majority voting.  

Using only an accuracy metric does not fully reveal 

overlapping and false positive rates among the classes, 

as it computes the ratio of true predicted labels to the 

total examined sample, which becomes insensitive to 

unbalanced classes. Therefore, an F score is computed, 

which is interpreted as the weighted mean of the 

precision and recall. An F score of 1.0 is the highest and 

a lowest score of 0.0 is the lowest. It worth mentioning 

that it is common to use F score for binary classification 

problems, however, adapting the metric for multiclass 

problem is achieved using one label versus all other 

labels. In which, the relative contribution of precision 

and recall to the F score is equal, as Figure 9 illustrates. 

Figure 9 shows that sitting and walking upstairs 

have the highest F-score. In contrast, walking 

downstairs has the lowest recall and F-score rates in 

comparison with the other activities. Also, the figure 

shows the support of each class which represents the 

number of occurrences of each class in the test set. 
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Figure 9: Precision, recall, F-score and support of five 

activities (walk with bag samples are merged with normal 

walk). 

The confusion matrix summarises the performance of   

the classification model for the multi-class 

classification task in this study (in particular the soft 

voting model). It also shows how the predictable 

model performs on a class level, in which both true-

positive and false-negative values can be measured. 

presents the normalised confusion matrix for the 

percentages for all six activities. It is not surprising 

that sitting has the highest prediction rate of the 

activities. This is due to the uniqueness of its 

generated sensor signals, as in both the top- and low-

ranked features, it was clearly distinguished from the 

other activities. 

The finding is also consistent with the box-plots in 

Figure 6 and Figure 7, in which the misclassified 

samples of the normal walk activity are mostly 

assigned to the walk with bag activity and vice versa. 

With regard to the downstairs activity, the false-

positive samples are misclassified as walking types 

(either normal, fast or with bag) and this could be 

interpreted as some of the downstairs samples actually 

containing normal and fast walk types. For example, 

once a subject reaches the bottom of the stairs, the 

individual walks a few more steps to complete the 

activity, which might become a noisy/outlier sample 

in the downstairs activity dataset.  

5 DISCUSSION 

One of the most interesting findings of this study is 

that all the top 10 ranked features, as illustrated in 

Figure 5, are based on only the y-axis of the gyroscope 

and accelerometer sensors. This could be interpreted 

as being due to the location of the device, as it was 

 

Figure 10: Normalised confusion matrix (%) of the soft 

voting model. 

placed on the side of the person’s waist, which makes 

the y-axis the axis most sensitive to human walk-

based   activity motions.  It would be interesting to 

assess the effects of different device locations during 

sensing using the same experimental setup proposed 

in this study. Although the developed approach 

reached a high level of accuracy in identifying human 

physical activity based on raw smartphone motion 

sensor signals, other aspects could be examined and 

investigated in future research to generate more 

findings, including the following: 

 The evaluation of this study was conducted offline 

using a desktop computer. It has not been 

thoroughly tested in a live environment 

(smartphone) to measure other operational 

metrics, such as computational overheads, 

memory consumption and the time required for the 

whole pipeline to be completed, starting from 

acquiring motion signals, to feature extraction, 

segmentation, pre-processing, and finally 

inferencing, where the examined data are 

classified into the right activity type. 

 The collected dataset was acquired using a single 

type of mobile device (Samsung Galaxy S6). 

Investigating other widely used devices, such as an 

Apple iPhone, could reveal how similar/different 

the generated motion signals might be for different 

devices and to what extent feature space 

distribution varies. 

 Future work could also investigate other factors, 

such as identifying the minimum number of 

seconds and samples required per individual in 

order to train a user-dependent predictable model 
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successfully in order that it can accurately match a 

given signal with the corresponding physical 

activity. This study constructed a general 

predictable model that takes advantage of the 

signals generated by the whole dataset population 

(60 participants). 

6 CONCLUSIONS 

The findings of this study provide evidence that it is 

possible to identify an individual’s physical activity 

with a high degree of accuracy, reaching nearly 98%, 

based on smartphone-embedded gyroscope and 

accelerometer sensor signals gathered over two days. 

This was achieved by leveraging the capabilities of 

machine learning algorithms in two stages: feature 

ranking, in which the feature space is ranked based on 

the multiclass classification approach, followed by 

activity identification, in which only top-ranked 

features are included within the classification phase. 

The soft majority voting approach provides the 

highest accuracy in comparison with other models, 

such as single classifier or hard majority voting.   
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