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Abstract: There exists a gap between (textual) requirements specification and systems created in the system design 
process. System design, particular in automotive, is a tremendously complex process. The sheer number of 
requirements for a system is too high to be considered at once. In industrial contexts, complex systems are 
commonly created through many design iterations with numerous hardware samples and software versions 
build. System experts include many experience-based design decisions in the process. This approach 
eventually leads to a somewhat consistent system without formal consideration of requirements or a traceable 
design decision process. The process leaves a de facto gap between specification and system design. Ideally, 
requirements constrain the initial solution space and system design can choose between the design variants 
consistent with that reduced solution space. In reality, the true solution space is unknown and the effect of 
particular requirements on that solution space is a guessing game. Therefore, we want to propose a process 
chain that formally includes requirements in the system design process and generates an executable system 
model. Requirements documented as structured text are mapped into the logic space. Temporal logic allows 
generation of consistent static state machines. Extracting and modelling input/output signals of that state 
machine enables us to generate an executable system model, fully derived from its requirements. This bridges 
the existing gap between requirements specification and system design. The correctness and usefulness of this 
approach is shown in a case study on automotive systems at Daimler AG.

1 INTRODUCTION 

A common automotive system contains well above 
1000 functional requirements. It is not possible to 
manually consider such a number of requirements at 
any moment during the system design process. The 
informal textual representation prevents machine-
based support. The result is a system design process 
(mostly detached from the given requirements) where 
variants are created by system experts without a clear 
design decision process. Once a design variant is (or 
is perceived as) more or less consistent with the 
requirements, this variant is accepted as sufficient. 
Most design variants are never considered since the 
true solution space, constraint through the 
requirements, is unknown. We observe a gap between 
specification and formal system design. In our 
opinion, the core purpose of system design is to 
consider, evaluate and choose from all variants, rather 
than struggling with merely finding one variant. To 
achieve that, requirements must become part of a 

formal and decision based system design process. We 
propose a formal process chain starting with 
requirements and ending with an executable model in 
form of a state machine. Representation of 
requirements can be drastically improved with 
specification patterns like Master (Sophist, 2016) and 
EARS (Mavin and Wilkinson, 2009). Useful for our 
formalization are specification pattern systems (SPS) 
(Dwyer et al. 1998). It contains an empirical mapping 
to linear temporal logic (LTL). LTL can be mapped 
into various forms of state machines (FSMs) (Gastin 
and Oddoux, 1980; Lu and Luo, 2012). In (Walter et 
al., 2018) a process chain with these exact steps (SPS 
to LTL to FSMs) is shown. Our process builds on this 
approach and extends it towards executable state 
machines. It can serve as input for requirements 
validation, product design variants and digital 
verification. In addition it seems useful since it 
maintains traceability for all design objects and 
design decisions made. We discuss and answer three 
research questions in this paper: 
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RQ1: What steps are necessary to automatically 
derive an executable state machine from structured 
textual requirements? 

RQ2: Does an industrial case study show the 
correctness and practicality of the derived executable 
machine? 

RQ3: What are the limitations to the approach of 
automatically derived executable stat machines? 
 

The paper is structured in the following way: Section 
2 explains the underlying data structure, logic and 
state machines. Section 3 provides existing work on 
requirements formalization as well as our own 
approach which explains the derived execution layer 
for state machines. In addition, section 3 shows a 
qualitative analysis for one requirement example. 
Section 4 explains the dynamic execution, while 
section 5 contains a quantitative analysis (scaled 
industrial systems). Limitations are discussed in 
Section 6 followed by related work in Section 7 and a 
brief conclusion in Section 8. 

2 DATA STRUCTURE 

This section provides the data structure in regards to 
the used patterns (specification pattern system), the 
used (linear temporal) logic and the state machines. 

2.1 Specification Pattern Systems (SPS) 

Natural language requirements are problematic for 
various reasons like consistency, unambiguity and 
redundancy. One solution are specification patterns, 
which maintain readability but still provide formal 
structure. (Dwyer et al., 1998) derived a template 
called specification pattern systems (SPS). It was 
initially designed for model checking with SPIN. To 
allow that, SPS contains an empirically researched, 
case based mapping between each pattern and a linear 
temporal logic (LTL) expression. 

2.2 Linear Temporal Logic (LTL) 

Logical expressions allow formal conversion and 
processing (of requirements data). First order logic 
(FOL) is capable of connecting (AND), alternating 
(OR) and negating (NOT). Further operators are 
required to perform temporal ordering. (Prior, 1967) 
defined linear temporal logic (LTL) to describe 
temporal relations including operators like Global 
(G), Next (N) and Future (F). (Kamp, 1968) extended 
LTL with the Until (U) operator. (Walter et al., 2017) 
described such operators as 'selected’ FOL and LTL. 

We use definitions provided in this work. Further 
operators are allowed if it can be transformed to the 
given set of operators. 

2.3 Finite State Machines (FSM) 

Complex systems can be formally represented 
through automata. One class of automata are finite 
state machines. (Walter et al. 2017) showed and 
discussed that deterministic finite state machines are 
suitable to represent the given LTL input. Thus, we 
use definitions from (Kam et al., 2013).  

Def. 1 – Moore DFSM: Moore DFSM is a 6-tuple 
M={S,I,O,δ,λ,r}. S represents the finite stat space, I 
represents the finite input space and O represents the 
finite output space. δ is the next state function 
(transition logic). λ is the output function (output 
logic), r represents reset to start. (Kam et al. 2013).  
 

Combining SPS, LTL and state machines, allows us 
to represent and transform requirements from 
(structured) text to finite state machines.  

3 STATIC MODEL 

This section shows how to derive static models from 
structured textual requirements, towards executable 
state machines. We explain process, core principals 
and key process steps. With that, we answer RQ1. 

3.1 Overall Process 

The overall process separates three core steps. 
Deriving LTL expressions from natural language 
requirements, creating state machines (FSM) from 
representation and connecting the FSM to generate 
one system state machine (system FSM). All steps, 
except first transformation NL to SPS is automated.  

 

Figure 1: Static model generation (Walter et al., 2018). 

In addition all steps are based on correct 
mathematical transformations, thus derived system 
FSMs are always stepwise provable and thus correct. 
We discuss the three core steps more in detail. 
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3.2 Specification Patterns to Logic 

Requirements in industrial contexts exists mostly as 
unstructured text. There exists no formal process to 
convert free text into formal representation form. 
Thus, the first process step 'NL to SPS' is manual. SPS 
maintains readability while providing enough formal 
structure to allow machine based processing. 
Conversion from textual to logic representation can 
be performed with Dwyer’s ‘SPS to LTL' mapping.  

NL: Pulling the pitman arm causes the activation of 
the high beam headlight with a fixed illumination 
range of 220 m.  

SPS: (HBHeadlights[ON] AND IlumRange[220]) is 
true after PitmanArmPosition[Pushed] 

LTL: G PitmanArmPosition[Pushed] I G 
(HBHeadlights[ON] AND IlumRange[220]) 

I = Implies; G - Global 

LTL representation is minimal (compact) but it 
describes requirements in relation to each other. It 
lacks the ability to describe requirements in isolation. 
Information is nested and depending on each other. 
To remove this problem, LTL is converted into a 
state-wise time discrete FOL form.  

3.3 Temp. Logic to State Machines 

Mapping of LTL onto forward chains in FOL form 
was shown in (Walter et al., 2017). Finite state 
machines are not simple forward chains but complex 
structures consisting of arbitrary arrangements of 
states and transitions. It is called diverging structures 
for now. (Walter et al., 2018) showed a solution for 
'LTL to FOL' mapping for diverging structures. All 
variants of forward chains in diverging structure are 
extracted. Limitations are:    1. 'A forward chain must 
be free of cycles (each existing state can only occur 
once per chain)';  2. 'Start (reset) state must be the 
begin of a chain';  3. 'End state must be the end of a 
chain'. This removes repetitions, ring closures and 
methodically incorrect chains. Extracted chains are 
processed separately. It shows whether all information 
for a state or transition are consistent. Inconsistencies 
indicate contradicting requirements. Next ‘requirement 
FSMs’ are merged into ‘system FSM’. 

3.4 System Synthesis 

The process to derive static state machines was shown 
in Figure 1. It contains processing of requirements 

from text (NL) to normal form (CNF). In addition, 
different forms of finite state machines are shown. 
Each state machine type shall be defined: 

Def. 2 – Req. State Machine: A requirement FSM 
represents exactly one textual described requirement 
in form of a state machine.  

Def. 3 – Atomic Req. State Machine: An atomic 
requirement FSM represents one atomic requirement 
as a state machine. 

Def. 4 – System State Machine: System FSM 
represents unity of all requirements for the system. 

 

 
CC – Country Code; IA – Illuminated Range 

PAP – PitArmPosition; HBHL – HighBeamHeadlights 

Figure 2: Requirement FSM. 

One requirement generates one requirement state 
machine. Multiple information (e.g. ‘left’ & ‘right’) 
can be combined in one requirement in SPS. To 
aggregate the system FSM, a synthesis of the 
generated atomic requirement FSMs is necessary. 
(Walter et al. 2018) splits system synthesis into three 
steps:  

I - Atomization: Separation of requirement FSMs 
into atomic requirement FSMs 

 

Figure 3: Atomization - Atomic Requirement FSMs. 

II - Minimization: Connection and minimization of 
system FSM with three rules. 'Merge Transitions', 
'Merge States' and 'Add Links’. Identical transitions 
and identical states are merged. Links that can be 
retrieved through logic dependencies are added. 

III - Generalization: Generalization of local 
requirements with global requirements 
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Figure 4: Minimization – System FSM. 

Step II and Step III are applied in a loop until the 
model is stable. Step III is performed with the same 
approach described in Subsection 3.3. Each unique 
path through the state machine is extracted and 
checked against all global conditions. If the condition 
is not yet included, the states and transitions of that 
particular path are revised. The updated model is 
checked for potential minimization in step II. This 
loop eventually converges to a stable model. The 
retrieved model is called system FSM. It is a static 
representation of the system specified as structured 
textual requirements in form of states and transitions. 
Systems are generally dynamic. To replicate dynamic 
behaviour of the actual system accurately, an 
execution layer is included. Such layer enables the 
model to show and simulate the dynamic operations.  
In this section, we will discuss the implementation of 
such an execution layer. This includes the model 
structure, GUI for external data input, internal 
processing and output. 

4 DYNAMIC STATE MACHINE 

A static system FSM represents the system specified 
by the requirements. To makes such a model 
executable, it requires two layers. An external 
interaction layer with a GUI and output console as 
well as an internal processing layer. This layer 
contains the underlying logic and internal signal 
transfers. The FSM is exported to ‘eTrice’ and both 
layers are added to the existing ‘system FSM’. 

4.1 External Interaction Layer 

The external layer serves the purpose to control the 
user inputs into the system FSM. The user (tester, 
specification engineer, system designer) can change 
parameters through a GUI as shown in Figure 5. This 
triggers the internal processing layer. The parameters 
displayed at the GUI, are all parameters that affect the 
system to transition between states. The complete list 
of GUI entries is created by crawling all transition 
inputs for unique Parameter[StateValue] 
combinations. Parameters are methodically split into 
two classes. First, parameters for user interactions 
(e.g. buttons). Second, parameters that observe the 

environment (e.g. sensors). Buttons are intended for 
user interaction. Sensors are used for passive 
controlling. 

Through internal logic, current state is 
transitioned to a new current state and a signal with 
an output message is sent. This output has to be 
represented alongside the new current state. 
Therefore, beside input control, the second purpose 
of the external layer is displaying output messages. 
In its simplest form, this can be performed through 
console outputs shown in Figure 5. Next state and 
output message are variables of the finite state 
machine. In Moore DFSM next state is a function of 
current state and transition logic. The internal 
processing layer executes this function and returns 
the next state to the console. In addition, output logic 
which is a function of current state only, generates 
the output message and returns that message to the 
console. 

 

Figure 5: External Interaction Layer (Input / Output). 

4.2 Internal Interaction Layer 

To make a FSM truly executable, user interaction 
must be possible. It includes user input, processing 
and system reaction as feedback. Parameters at  
the input layer are parameters that occur in 
transitions while parameters at the output layer 
occur in states.  

 

Figure 6: Communication Layer. 

Def. 5 – Atomic FSM: An atomic FSM represents a 
FSM for one parameter with all possible values (one 
state per value) and all possible transitions. All other 
FSMs (requirement, atomic requirement and system) 
consist of combinations of atomic FSMs. 
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Implementation occurs in the way that each atomic 
FSM is extended with its personal communication 
layer. This makes the atomic FSM executable. Once 
input changes a particular atomic FSM, atomic FSM 
receives a message with new parameter[value] and 
current state for the atomic FSM is changed. System 
FSM cannot actively request current atomic FSM 
states but receives push messages from the particular 
atomic FSM once a change occurs. Start state, 
therefore current state of system FSM is reset state. 
Communicated input is compared with a transition 
condition from current state to all connected states. If 
fulfilled, system FSM changes its current state and 
generates output (see: Figure. 6). 

4.3 Execution Example 

Overall, section 4 discussed all steps to answer RQ1 
with qualitative examples. This is consolidated now 
in one overall example. All graphical visualizations 
of GUIs and FSM are represented in Figure 7.  

 

Figure 7: Execution Example. 

Initially input shows 
HazardWarningSwitch[OFF]. Output shows all 
DirectionIndicators as initially [OFF]. The current 
state for the Atomic FSM and System FSM are in 
accordance (Atomic FSM I is in state [OFF] and 
System FSM is in state S1). User input changes 
HazardWarningSwitch[ON]. The communication 
layer broadcasts this change to the Atomic FSM 
where current state is changed to [ON]. Further, 
Atomic FSMs communicate changes to system FSM. 
Here, the transition condition at current state is 
checked. Since it is now fulfilled, current state is 
adjusted from S1 to S2. The corresponding output is 
generated in the form that all DirectionIndicators turn 
to [ON]. Again, the transition condition at the new 

current state (S2) is checked. It is fulfilled, thus 
current state changes back to S1 with its 
corresponding output of all DirectionIndicators equal 
to [OFF]. Obviously, as long as the Atomic FSM is 
in state [ON], the System FSM changes between S1 
and S2 periodically. Transition condition of S1 and S2 
are not fulfilled as soon as input changes 
HazardWarningSwitch[OFF]. This change is broad-
casted to the Atomic FSM, which communicates this 
change to System FSM. In this case all 
DirectionIndicators remain [OFF]. 

5 APPLICATION 

In this section, RQ2 is addressed. We show the 
derived executable model in an industrial case study. 
With the Adaptive Outside Light Control (AOLC)  
a Mercedes-Benz Car Systems is investigated.  
We show correctness of our executable model by 
applying a set of test cases for functional  
system tests against the model and comparing the 
generated output messages to the expected results 
for the test cases. Subsection 5.1 provides a brief 
overview of the assumptions and requirements for 
data and tool chain. Subsection 5.2 explains case 
study and detailed approach. It is evaluated in 
Subsection 5.3. 

5.1 Assumptions 

The AOLC system has to fulfil a set of conditions and 
constraints: Requirements are represented in a 
structured specification while test cases exist in a 
structured test specification. All requirements and test 
cases are tagged for the attribute 'object type' with 
either 'requirement' or 'test case'. Linking between 
requirements and test cases exists. Requirements, 
tests cases and links are stored in a requirements 
management tool with ReqIF file export (e.g. IBM 
Rational Doors). The systems is initially represented 
in natural language expressions. Requirements are 
converted from text to SPS. Tests remain in natural 
language. Textual representation prevents machine-
based processing, which is not needed in our case. 
The static model is derived in Design Cockpit 43 
(DC43), which is based on an Eclipse framework. 
The executable model therefore is represented in the 
Eclipse extension ‘eTrice’. 

5.2 Setup and Approach 

This section explains the data set of the AOLC 
system, setup and approach used to generate the 
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results for the evaluation. We choose this system 
based on availability. AOLC is a publicly available 
set of requirements and tests of the original system. It 
was investigated (Föcker et al., 2015 and Walter et 
al., 2018) and is therefore already formalized in SPS. 
Table 1 shows the system in quantitative form. From 
the full set of 50 requirements we only choose 38 
functional requirements for the investigation. Data is 
structured by functions. Each function contains 
requirements and test cases that are linked to each 
other. Overall, we consider 38 requirements and 38 
test cases. Our approach for the given data set is to 
derive the executable model and to apply the 
specified test cases. The static model is based on the 
functional requirements. The process generated a 
system FSM with 47 system states and 256 
transitions. Test cases are compared against output 
generated for a specific system state. A test case 
contains a set of steps (TS), where each step has a 
precondition, action and pass condition. All tests are 
represented in natural language.  

Table 1: System metrics AOLC. 

Function 
Total 
Req. 

Func. 
Req. 

Test 
Cases 

Turn and Warning Sig. 21 15 20 
Low Beam Headlight 9 6 7 
Adapt. HB Headlights 9 9 2 
Man. HB Headlights 2 2 2 

Fault Detection 6 3 6 
Headlight Technology 3 3 1 

Total System 50 38 38 

Linking between tests and requirement in addition 
to the traceability between requirement and system 
states, allows locating the system states related to a 
particular test case. (Walter et al., 2018) showed 
correctness and practicality of the generated static 
system FSMs. We intend to verify the executable 
machine by execution of the related buttons at the 
GUI and comparing output to specified tests in a 
black box test. The assumption is that requirements 
and test cases are correct. We do not intend to test the 
system specification but we show that the executable 
machine represents the specification.  

5.3 Evaluation 

In this subsection we evaluate the case study. We 
discuss our findings, comment on the results and 
overall answer RQ2. Table 2 shows the quantitative 
evaluation of the test steps. The results of test steps 
are divided into three branches: Passed test steps, 
blocked TS and failed TS. Passed test steps generate 
the specified output. Starting with the precondition, 

performing the given action and checking the pass 
conditions. Passed tests are in alignment with the 
approach and need no further discussion. Blocked 
tests sequence of precondition, action and pass 
condition which are not executable. A closer look at 
these test steps and the reason for the blocking has 
to be considered. Failed test steps are characterized 
with incorrect output generation (pass condition) 
after performing the specified action starting from 
the specified precondition. Occurrences of failed TS 
are critical and have to be reviewed to assure that 
such a test does not challenge the overall  
approach. Generally, 63 out of 80 test steps are 
classified as passed test steps and therefore need no 
further discussion. Eight test steps turned out to be 
blocked. All eight of them, located in the vehicle 
function ‘Turn and Warning Signalling', are blocked 
due to a not yet fully developed interface to 'eTrice'. 
The 'Bounded existence' pattern requires encoding 
of a counter, which caused implementation 
problems. 

Table 2: Evaluation AOLC with test steps (TS). 

Function Passed Blocked Failed 
Turn and Warning Sig. 36 8 2 
Low Beam Headlight 17 0 2 
Adapt. HB Headlights 4 0 2 
Man. HB Headlights 4 0 0 

Fault Detection 2 0 3 
Headlight Technology 0 0 0 

Total System 63 8 9 

A fully developed interface should change these 
test steps to passed test steps. The failed test steps are 
distributed among nearly all vehicle functions. A 
case-wise review and analysis is required. Two failed 
tests were caused by imprecise structuring of 
requirements text at the manual transformation from 
NL to SPS. The remaining seven test steps can be 
traced back to incomplete specifications in the initial 
text form. In conclusion, neither blocked nor failed 
test steps are caused by our developed formalization 
process. Our findings for the selected AOLC system 
validate correctness of the generated system FSM. All 
states and transitions are plausible. All blocked and 
failed tests were caused by pre-processing errors or 
‘eTrice’ limitations. Thus, our approach to derive 
state machines from structured text with the provided 
process seems valid. 

6 LIMITATIONS 

In this section we discuss limitations to our approach 
and with this we answer RQ3. First we have to 
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address the general scope of the described approach. 
The specification patterns we used are designed for 
functional requirements. It is possible to include 
certain non-functional requirements, but the majority 
cannot be formalized in SPS. Informal knowledge is 
a problem that exceeds the scope of this paper. We 
therefore limit the overall approach to functional 
requirements with the possibility to process selected 
non-functional requirements. Regarding scale, we 
observe multiple points to discuss: We see run time 
for scaled systems as uncritical. Tasks like importing 
scaled ReqIF data sets and generating industry sized 
graphs were performed and did not cause extended 
run times. More critical is readability for particular 
states and its descriptions in scaled systems. The 
shown application contained up to ten parameters for 
a state description. In scaled systems this will 
dramatically increase and might reduce human 
readability drastically. One solution is to use this 
approach mostly for machine based analysis.  Second, 
it is possible to investigate only reduced systems for 
particular analysis by filtering the overall system for 
particular parameters. This option maintains the 
complexity and correctness of the represented system 
FSM while focusing the analysis on the particular 
parameters relevant. Last, we want to discuss scope. 
We applied this approach only to the automotive light 
domain, yet we strongly believe that other domains 
can use this approach without adaptations. Once a 
specification pattern can express a requirement, it can 
be used for modelling. SPS were developed domain 
independent. We showed work in the field of 
automotive. Yet, we emphasize other fields to use this 
approach. We see no hindrance to express 
requirements of various domains in SPS and to derive 
system FSMs. Pre-processing of requirements in SPS 
and representation as system FSM should still be 
reviewed by domain experts.  

7 RELATED WORK 

This work included previous work in various fields. 
In the introduction, we discussed the structured 
representation of requirements in form of 
specification patterns. Common patterns are Master 
(Sophist, 2018) EARS (Mavin and Wilkinson, 2009), 
Volere (Robertson and Robertson, 2009) and 
Specification Pattern Systems (SPS) (Dwyer et al., 
1998). SPS are tightly connected with linear temporal 
logic. Linear temporal logic was initially described by 
(Prior, 1967, and Kamp, 1968). Representation of 
complex systems is often performed in form of state 
machines. We used the work of (Kam et al., 2013) as 

the foundation for finite state machines. The 
connection between linear temporal logic and state 
machines occurs through mapping. We based our 
own mapping efforts on (Gastin and Oddoux, 2001, 
Lu and Luo 2012 and Walter et al., 2018). To 
represent derived state machines we use Design 
Cockpit 43 as a software. Design Cockpit 43 is based 
on design grammars. (Rudolph, 2006, Rudolph et al., 
2013, Alber et al., 2002) described the underlying 
methodology of vocabularies, rule set, production 
system and compiler. The Graph-based design 
methodology paired with the described processing 
chain, allows us to derive a consistent model from 
textual requirements. The general idea for model 
generation from structured text was provided by 
(Walter et al., 2017) and extend here towards 
executable models.  

8 CONCLUSIONS AND 
OUTLOOK 

This paper showed an approach to formally process 
structured textual requirements into executable finite 
state machines. The process chain from textual requi-
rement representation to system creation is often not 
continuous and contains gaps. This leads to informal 
decision making throughout the process and signify-
cantly limits the exploration of the solution space 
during system design. Our approach bridges that gap 
by providing a systematic transformation chain that 
generates a formally correct executable representation 
of the system specified through its requirements. We 
see this as a valuable support for specification and 
system design. The approach limits manual decision 
making in steps where decisions can be formally 
derived. It allows specification engineers and system 
design engineers to evaluate what consequences and 
design constraints arise from creation or adjustment of 
a particular requirement. Execution of the derived state 
machine enables engineers to expose missing states 
and transitions, non-deterministic behaviours and 
inconsistencies in their specification or design. In this 
setup, an executable FSM serves as a model in the loop 
(MIL). Specifications can be adjusted and changes in 
the system can be evaluated instantly. We provide a 
qualitative example and a quantitative case study to 
show applicability in industrial setups. This work 
provides the basis for further applications. We would 
like to show scalability and intend to add further 
system design steps towards a requirement driven 
digital design process for complex (automotive) 
systems. 
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