REFERENCES 
Bachant,  P.  and  Wosnik,  M.  (2015).  Performance 
measurements of cylindrical- and spherical- helical 
crossflow marine hydrokinetic turbines, with estimates 
of exergy efficiency. Renew Energy. 
Castelli,  M.R.,  G.  Ardizzon,  L.  Battisti,  E.  Benini,  G. 
Pavesi.  (2010).  Modeling strategy and numerical 
validation for a Darrieus vertical axis micro-wind 
turbine.  in:  ASME  2010  International  Mechanical 
Engineering  Congress  and  Exposition,  Vancouver, 
British Columbia, Canada.  
Dai  YM,  W.  Lam.  (2009).  Numerical study of straight-
bladed darrieus-type tidal turbine.  Proc.  Institution 
Civ. Eng. Energy.  
Duvoy, P., Hydrokal., T. H. (2012). A Moduleforin-stream 
Hydro Kinetic Resource Assessment.  Computer  & 
Geosciences. 39: 171–81.   
Fish,  F.  E.,  and  Battle,  J.  M.  (1995).  Hydrodynamic 
Design of the Humpback Whale Flipper.  Journal  of 
Morphology,pp.5160.doi:10.1002/jmor.1052250105. 
Vol. 225 
H.  Johari,  C.  Henoch,  D.  Custodio,  and  A.  Levshin. 
(2007).  Effects of Leading-Edge Protuberances on 
Airfoil Performance, AIAA Journal Vol. 45, No. 11.  
Hydrovolts.  (2006).  In-stream Hydrokinetic Turbines. 
Power tech Labs, Available from hydrovolts.com. 
Jing,  Fengmei.  (2014).  Experimental Research on Tidal 
Current Vertical Axis Turbine with Variable-Pitch 
Blades. Ocean Engineering, 88:228-241. 
Khan,  M.  J.,  Bhuyan,  G.,  Iqbal,  M.  T.,  Quaicoe,  J.  E. 
(2009). Hydro kinetic Energy Conversion Systems and 
Assessment of Horizontal and Vertical Axis Turbines 
for River and Tidal Applications: A Technology Status 
Review. Applied Energy. 86(10): 1823–35.  
Kirke, B. K. and Lazauskas, L. (2011). Limitations of fixed 
pitch Darrieus hydrokinetic turbines and the challenge 
of variable pitch.  Renewable  Energy  36  2011  893-
897: Elsevier. 
Li, Shengmao dan Yan Li. (2010). Numerical study on the 
performance effect of solidity on the straight-bladed 
vertical axis wind turbine. Scientific Research Fund of 
Heilongjiang  Provincial  Education  Department 
(No.:1153h01); Scientific Research Foundation for the 
Returned Overseas Chinese Scholars. 
Madi, M E N Sasono, Y S Hadiwidodo and S H Sujiatanti. 
(2019).  Application of Savonius Turbine behind The 
Propeller as Energy Source of Fishing Vessel in 
Indonesia.  IOP  Conf.  Series:  Materials  Science  and 
Engineering, IOP Publisher.  
Malipeddi  A.R.  and  D.  Chatterjee.  (2012).  Influence of 
duct geometry on the performance of Darrieus 
hydroturbine. Renew. Energy.  
Marsh,  D.  Ranmuthugala,  I.  Penesis,  G.  Thomas.  (2012). 
Three dimensional numerical simulations of a 
straight-bladed vertical axis tidal turbine.  in: 
Proceedings of the 18th Australasian Fluid Mechanics 
Conference, Launceston, Tasmania.   
Marsh,  D.  Ranmuthugala,  I.  Penesis,  G.  Thomas.  (2013). 
Performance predictions of a straight-bladed vertical 
axis turbine using double-multiple streamtube and 
computational fluid dynamics. J. Ocean Technol. 
Marsh,  D.  Ranmuthugala,  I.  Penesis,  G.  Thomas.  (2014). 
Numerical simulation of straight-bladed vertical axis 
turbines,  in:  2nd  Asian  Wave  and  Tidal  Energy 
Conference (AWTEC), Tokyo Japan. 
Marsh,  D.  Ranmuthulaga,  I.  Penesis  and  G.  Thomas. 
(2015).  Three dimensional numerical simulation of 
straight-bladed vertical axis tidal turbines 
investigating power output, torque ripple and 
mounting force, Renewable Energy 83 67-77: Elsevier.  
Marsh,  D.  Ranmuthulaga,  I.  Penesis  and  G.  Thomas. 
(2015).  Numerical investigation of the influence of 
blade helicity on the performance characteristic of 
vertical axis tidal turbine, Renewable Energy 81 926-
935: Elsevier.  
Marsh,  D.  Ranmuthulaga,  I.  Penesis  and  G.  Thomas. 
(2016).  Numerical simulation of the loading 
characteristics of straight and helical-bladed vertical 
axis tidal turbines.  Renewable  Energy  94  418-428: 
Elsevier.  
Marsh,  D.  Ranmuthulaga,  I.  Penesis  and  G.  Thomas. 
(2017). The influence of turbulence model and two and 
three-dimensional domain selection on the simulated 
performance characteristics of vertical axis tidal 
turbines, Renewable Energy 105 106-116: Elsevier.   
Mukhtasor, Susilohadi, Erwandi, Pandoe, W., Iswadi, A., 
Firdaus, A. M., Prabowo, H., Sudjono, E., Prasetyo, E. 
dan  Iluhade,  D.  (2014).  Potensi Energi Laut 
Indonesia.  Badan  Litbang  Kementrian  Energi  dan 
Sumberdaya  Mineral  (ESDM)  dan  Asosiasi  Energi 
Laut Indonesia (ASELI). 
Quang  Le,  Kwang  Soo  Le,  Jin  Soon  Park  and  Jin  Hwan 
Ko.  (2014).  Flow-driven rotor simulation of vertical 
axis tidal turbines: A comparison of helical and 
straight blades. Int. J. Nav. Archit. Ocean Eng.  
Rawlings  G.  (2008).  Parametric characterization of an 
experimental vertical axis hydro turbine.  MSC 
dissertation. University of British Columbia.  
Satrio,  Dendy.,  I.K.A.P  Utama.,  Mukhtasor.  (2016). 
Vertical Axis Current Turbine Advantages and 
Challenges Review. Proceeding of Ocean, Mechanical 
and  Aeroscope.  Science  and  Engineering  Vol.3,  Hal. 
64-71. Universiti Malaysia Terengganu, Malaysia.     
Satrio,  Dendy.,  I.K.A.P  Utama.,  Mukhtasor.  (2018).  The 
influence of time step setting on the CFD simulation 
result of vertical axis tidal current turbine. Journal of 
Mechanical  Engineering  and  Sciences.  Volume  12, 
Issue 1, Hal. 3399-3409. UMP Publisher. 
Satrio,  Dendy.,  I.K.A.P  Utama.,  Mukhtasor.  (2018). 
Numerical Investigation of Contra Rotating Vertical-
Axis Tidal Current Turbine. Journal of Marine Science 
and Application. Hal. 3399-3409. UMP Publisher. 
Satrio,  Dendy.,  I.K.A.P  Utama.,  Mukhtasor.  (2018). 
Performance Enhancement Effort for Vertical Axis 
Current Turbine in Low Water Velocity. 
 Proceeding  of  The  4
th
  Asian  Wave  and  Tidal  Energy 
Converence  (AWTEC).  National  Taiwan  Ocean 
University, Taiwan.