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Abstract: In this paper, we present the discrete duality finite volume method (DDFV) applied to a model of (Patlak)
Keller-Segel modeling chemosensitive movements, this model consists of a coupled system of elliptic and
parabolic equations. Firstly, we prove the existence and uniqueness of the numerical solution to the proposed
scheme. Next, numerical simulations are performed to verify accuracy.

1 INTRODUCTION

Chemotaxis is the characteristic movement or orienta-
tion of cells, organisms or bacteria along chemical con-
centration gradient towards chemoattractant or away from
chemorepellant, it is very essential for organisms to search
food around them. Well-known examples, the first is the
bacteria Escherichia Coli such that there cells are known to
swim towards the amino acids serine and aspartic acid and
towards sugars such as maltose, ribose, galactose and glu-
cose, the second is the amoeba Dycliostelium discoideum
,where it has been used as a model organism in molecu-
lar biology and genetics, and is studied as an example of
cell communication, differentiation, and programmed cell
death.
There are two types of chemotaxis:
1) Positive chemotaxis: the movement of organisms to-
wards a chemical.
2) Negative chemotaxis: the movement of organisms away
from a chemical.

Patlak in 1953 (Patlak, 2953) and Keller and Segel in
1970 (Keller and Segel, 1970), were created as a classical
model to describe the evolution over time of the cell den-
sity n(x, t) and the chemical signal concentration variable
S(x, t) assuming that the cells emit directly the chemoat-
tractant which is directly diffused. A lot of theoretical and
mathematical model chemotaxis phenomena but the most
famous model is the following the classical Paltak-Keller-
Segel(PKS) system:{

∂n
∂t −div(∇n−χn∇S) = 0, on Ω× [0,T ],
−div(∇S)−µn+S = 0, on Ω× [0,T ],

(1)

where
χ : The chemotactic sensitivity function.
µ : The secretion rate at which the chemical substance is
emitted by the cells, let µ > 0.
Ω is a Convex, bounded and open set of R2 and T > 0.

The initial conditions on Ω are given by

n(x,0) = n0(x), in Ω. (2)
Therefore, the system (1) is supplemented by the following
boundary conditions on ∂Ω× [0,T ].

∇n.ν = 0, in ∂Ω× [0,T ], (3)

∇S.ν = 0, in ∂Ω× [0,T ], (4)
with ν is the unite vector.

This model is very successful for describing the aggre-
gation of the population in a finite time point-wise blowup
(in a single point).

In the literature, there exist several works present
some numerical method to solve the classical Keller-Segel
system, let us set: F. Filbet prove the existence and
uniqueness of a numerical solution to the scheme finite
volume schemes in (G.Chamoun and R.TalhoukF.Filbet,
2006) and the authors present the finite volume scheme
for a Keller-Segel model with additional cross-diffusion in
(Bessemoulin-Chatard and Jungel, 2014). In (A.J.Carrillo,
2012) the authors present the cross diffusion and nonlinear
diffusion preventing blow up in the Keller-Segel model.
A second-order positivity preserving central-upwind
scheme is presented by A. Chertock and A. Kurganov in
(A.Chertock and A.Kurganov, 2008) for chemotaxis and
haptotaxis models. Noted that, the fully discrete analysis
of a discontinuous finite element method in (Ref, a) and
the new interior penalty discontinuous Galerkin methods
in (Ref, b). Moreover, (Haŝkovec and Schmeiser, 2009;
Haŝkovec and Schmeiser, 2011) propose the numerical
and theoretical study of the stochastic particle approxi-
mation and the paper (A.Marrocco, 2003) concerned the
numerical simulation of chemotactic using the mixed finite
elements method. Finite-element method for a simplified
Keller-Segel system in (N.Saito, 2007; N.Saito, 2012) and
finite difference schemes to a parabolic-elliptic system
modelling chemotaxis in (N.Saito and T.Suzuki, 2005). An
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implicit flux-corrected transport (FCT) algorithm has been
developed for a class of chemotaxis models in (R. Strehl
and Turek, 2010). Fractional step methods applied to a
chemotaxis model in (Ref, c).

Four-point scheme on triangles are not easily adapted
to obtain consistent diffusive flow in case in unstructured
meshes.
In what follows, we are interested in a finite volume method,
called the discrete duality finite volume (DDFV) method
the interest of this method is its ability to deal with arbi-
trary polygonal meshes such as nonconforming meshes or
unstructured meshes without constraints of orthogonality.

The DDFV (Discrete Duality Finite Volume ) method
presented by Hermeline (F.Hermeline, 2000), Domelevo,
Omnes (AK.Domelevo, 2005) and Andreianov, Boyer,
Hubert (B.Andreianov and F.Hubert, 2007), the DDFV
method was extended to convection-diffusion (Y.Coudière
and G.Manzini, 2010), nonlinear diffusion (Y.Coudière and
F.Hubert, 2011; Boyer and Hubert, 2008; B.Andreianov and
F.Hubert, 2007), electro and magnetostatics (S.Delcourte
and P.Omnes, 2007), miscible fluid flows in porous me-
dia (C. Chainais-Hillairet and Mouton, 2013; C.Chainais-
Hillairet and Mouton, 2015), drift-diffusion and energy-
transport models (C.Chainais-Hillairet, 2009), Stokes flows
(Krell, 2011; Krell, 2012; Krell and Manzini, 2012; Del-
courte, 2007), electromagnetism (F. Hermeline and Omnes,
2008).

Our purpose is to introduce and analyse the finite vol-
ume scheme DDFV for the classical model of PKS in gen-
eral triangular mesh (without orthogonality condition), we
demonstrate the existence and uniqueness of the solution of
the DDFV schemes using Brouwer’s fixed point theorem,
and also we presented numerical tests to show the efficiency
of the schemes and to observe the blow-up phenomenon.

The paper is organized as follows : In Section 2 we
detail the DDFV formulation. The demonstrate of the ex-
istence and uniqueness of the DDFV solutions and number
of numerical results obtained on different two-dimensional
meshes are realized in section 3 .

2 DISCRETE DUALITY FINITE
VOLUME SCHEMES FOR
MODIFIED KELLER-SEGEL
MODEL

2.1 Meshes and Notations

Let Ω be a polygonal open bounded connected subset of Rd

with d ∈ N∗, and ∂Ω = Ω\Ω its boundary .
Following Hermeline (F.Hermeline, 2000), Domelevo,

Omnes (AK.Domelevo, 2005) and Andreianov, Boyer, Hu-
bert (B.Andreianov and F.Hubert, 2007), we consider a
DDFV mesh which is a triple T = (M ,M ∗,D) described
below.

The primal mesh M is defined as the triplet (M,E ,P),
where M is a finite family of nonempty open disjoint sub-
set K of Ω (the control volume primal) such that Ω =

∪K ∈MK , with ∂K = K \K be the boundary of K , let
mK = |K | > 0 is the measure of K and let dK the diam-
eter of K , E is the set of edges σ of the mesh, mσ is the
measure of σ, Eint is the subset of interior edges of Ω. For
all K ∈M and σ ∈ EK (subset of edges of K ) , we de-
note by νK ,σ the unite vector normal to σ outward to K .
P is the subset of points of Ω indexed by M, we denote
P = {(xK )K ∈M;xK ∈K }, (xK is the barycentre of K ) we
than denote by DK ,σ the cone with vertex xK and basis K .

Then, the dual mesh M ∗ is defined as the triplet
(M∗,E∗,P∗), with M∗ is a finite family of nonempty open
disjoint subset K ∗ of Ω (the control volume dual) such that
Ω = ∪K ∗∈M∗K ∗, for all K ∗ ∈M∗ ,with ∂K ∗ = K ∗\K ∗
be the boundary of K ∗, let mK ∗ = |K ∗| > 0 is the mea-
sure of K ∗ and let dK ∗ the diameter of K ∗, E∗ is the set
of the edges σ∗ of this mesh, mσ∗ is the measure of σ∗,
E∗int is the subset of interior edges of Ω. For all K ∗ ∈M∗

and σ∗ ∈ EK ∗ (subset of edges of K ∗) , we denote by
νσ∗,K ∗ the unite vector normal to σ∗ outward to K ∗. P∗
is the subset of points of Ω indexed by M∗, we denote
{P∗ = (xK ∗)K ∗∈M∗ ;xK ∗ ∈ K ∗}, we than note by DK ∗,σ∗
the cone with vertex xK ∗ and basis K ∗

Finally, We denote by D the sets of all diamonds D , let:

• DK = {D ∈D/σ ∈ EK }.
• DK ∗ = {D ∈D/σ∗ ∈ EK ∗}.
• Dint = {D ∈D/σ ∈ Eint}.
• Dext = {D ∈D/σ ∈ Eext}.
• MD = {K ∈M such that σ ∈ EK }.

• M ∗
D = {K ∗ ∈M∗ such that σ∗ ∈ EK ∗}.

• mD measure of the diamond.

• For a diamond cell D recall that (xK ,xK ∗ ,xL ,xL∗) are
the vertices of Dσ,σ∗ .

• τ the unite vector parallel to σ, oriented from K ∗ to L∗.
• τ∗ the unite vector parallel to σ∗, oriented from K to L .

• αD the angle between τ and τ∗.

• νK ,σ =−cosαD νσ∗,K ∗ + sinαD τK ,σ.

• dD the diameter of Dσ,σ∗ .

We consider the following property:

mσmσ∗

2mD
≤

mes(DK ,σ)

3
. (5)

Finally, the size of the mesh: size(T ) = max
D∈D

dD .

2.2 Discrete Operators and Duality
Formula

We define the spaces:

• RT is a linear space of scalar fields constant on the cells
of M and M∗.

RT = {uT = ((uK )K ∈M,(uK ∗)K ∗∈M∗),

with uK ∈ R, for all K ∈M

and uK ∗ ∈ R; for all K ∗ ∈M∗}.
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• (R2)D is a linear space of vector fields constant on the
cells of D .

(R2)D = {ξD = (ξD)D∈D; with ξD ∈ R2;

for all D ∈D}.

Now, we recall the definition of the discrete gradient and
the discrete divergence have been introduced respectively
in (Y. Coudiere and Villedieu, 1999) and (AK.Domelevo,
2005). We also introduce some trace operators and scalar
products
Definition 2.1. Let

∇
D :RT → (R2)D,

uT → ∇
DuT = (∇D uT )D∈D,

the discrete gradient, such that for all D ∈D{
∇D uT .τK ∗,L∗ =

uL∗−uK ∗
mσ

,

∇D uT .τK ,L =
uL−uK

mσ∗
,

equivalent to

∇
D uT =

1
sin(αD)

[
uL −uK

mσ∗
νσ,K +

uL∗ −uK ∗

mσ

νσ∗,K ∗

]
,

using the propriety mD = 1
2 mσmσ∗sin(αD), we have

∇
D uT =

1
2mD

[
(uL −uK )mσνσ,K +(uL∗ −uK ∗)mσ∗νσ∗,K ∗

]
.

Than the discrete divergence divT is defined by

Definition 2.2. The discrete divergence operator divT is a
mapping from (R2)D to RT defined for all ξ ∈ (R2)D by

divT
ξD =

(
divMξD,0,divM

∗
ξD,div∂M∗

ξD

)
,

such that
divM(ξD) = (divK (ξD))K ∈M,

divM
∗
(ξD) = (divK ∗(ξD))K ∗∈M∗ ,

div∂M∗
(ξD) = (divK ∗(ξD))K ∗∈∂M∗ ,

with

divK ξ =
1

mK
∑

D∈DK

mσξD .νσ,K , for all K ∈M,

divK ∗ξ =
1

mK ∗
∑

D∈DK ∗

mσ∗ξD .νσ∗,K ∗ , for all K ∗ ∈M∗,

divK ∗ξ =
1

mK ∗
[ ∑
D∈DK ∗

mσ∗ξD .νσ∗,K ∗+

∑
D∈DK ∗∩Dext

mσ

2
ξD .νσ,K ], for all K ∗ ∈ ∂M∗.

Let us now define the scalar products < ., . >T on RT

and < ., . >D on (R2)D by

< vT ,uT >T =
1
2

(
∑

K ∈M
mK uK vK + ∑

K ∗∈M∗
mK ∗uK ∗ vK ∗

)
,

for all uT ,vT ∈ RT .

< ξD,ϕD>D= ∑
D∈D

mD ξD .ϕD , for all ξD,ϕD ∈
(
R2
)D

.

(6)
The corresponding norms are denoted by ‖.‖p,T and ‖.‖p,D
for all 1≤ p≤+∞.

• For all uT ∈ RT and for all 1≤ p <+∞

‖uT ‖p,T =

(
1
2 ∑

K ∈M
mK |uK |p +

1
2 ∑

K ∗∈M∗
mK ∗ |uK ∗ |p

)1/p

. (7)

• For all ξD ∈
(
R2)D and for all 1≤ p <+∞.

‖ξD‖p,D =

(
∑

D∈D
mD |ξD |p

)1/p

. (8)

• For all uT ∈ RT

‖uT ‖∞,T = max

(
max

K ∈M
|uK |, max

K ∗∈M∗
|uK ∗ |

)
. (9)

• For all ξD ∈ (R2)D

‖ξD‖∞,D = max
D∈D

|ξD |, (10)

Definition 2.3 (Convection term). Let divcT : (R2)D ×
RT → RT the convection operator defined for all ξD ∈
(R2)D and vT ∈ RT by

divcT (ξD,vT ) = [divcM(ξD,vT ),0,

divcM
∗
(ξD,vT ),divc∂M∗

(ξD,vT )],

such that
divcM(ξD,vT ) = (divcK (ξD,vT ))K ∈M,

divcM
∗
(ξD,vT ) = (divcK ∗(ξD,vT ))K ∗∈M∗ ,

divc∂M∗
(ξD,vT ) = (divcK ∗(ξD,vT ))K ∗∈∂M∗ ,

with
• For all K ∈M,

divcK (ξD,vT ) =
1

mK
∑

D∈DK
σ=K /L

mσ[(ξD.νσ,K )+vK−

(ξD.νσ,K )−vL ],

• For all K ∗ ∈M∗

divcK ∗(ξD,vT ) =

1
mK ∗

∑
D∈DK ∗
σ∗=K ∗/L∗

mσ∗ [(ξD.νσ∗,K ∗)
+vK ∗−

(ξD.νσ∗,K ∗)
−vL∗ ],

• For all K ∗ ∈ ∂M∗

divcK ∗(ξD,vT ) =

1
mK ∗

( ∑
D∈DK ∗
σ∗=K ∗/L∗

mσ∗ [(ξD.νσ∗,K ∗)
+vK ∗

− (ξD.νσ∗,K ∗)
−vL∗ ]

+ ∑
D∈DK ∗∩Dext

σ=K /L

mσ

2
[(ξD.νσ,K )+vK − (ξD.νσ,K )−vL ].

ICCSRE 2018 - International Conference of Computer Science and Renewable Energies

44



where x+ = max(x,0) and x− = max(0,−x).

2.3 The Numerical Scheme

A DDFV scheme for the the discretisation of the problem
(1) is given by the following set of equations:

For all K ∈M and K ∗ ∈M∗, let

n0
K =

1
mK

∫
K

u0(x)dx and n0
K ∗ =

1
mK ∗

∫
K ∗

u0(x)dx. (11)

At each time step k, the numerical solution will be given by
(nk+1

T ,Sk+1
T ). Then, the scheme for (1) writes for all 0 <

k < NT −1
nk+1

T −nk
T

∆t −divT (∇Dnk+1
T )+divcT (nk

T ∇DSn+1
T ) = 0,

−divT (∇DSk+1
T )+µSk+1

T = nk
T .

∇D nk
T .ν = ∇D Sk

T .ν = 0,∀D ∈Dext .
(12)

Whith divT and ∇D are defined respectively by defini-
tion 2.2 and definition 2.1.

3 THE MAIN RESULTS

3.1 Existence of DDFV
Solutions

Theorem 3.1. Let Ω be an open, bonded, connected,
polygonal domain of R2 and let T be a discretization of
Ω× (0,T ) such that

mσmσ∗

2mD
≤

mes(DK ,σ)

3
. (13)

Let n0 ∈ L2(Ω),n0 ≥ 0 in Ω. Then there exists a solution
{(nk+1

T ,Sk+1
T ),0≤ k ≤ NT −1} to (11) and (12) satisfying:

for all K ∈M and K ∗ ∈M∗, for all 0≤ k ≤ NT .

nk
K ≥ 0 and nk

K ∗ ≥ 0
1
2 ∑

K ∈M
mK nk

K +
1
2 ∑

K ∗∈M∗
mK ∗nk

K ∗ =

1
2 ∑

K ∈M
mK n0

K +
1
2 ∑

K ∗∈M∗
mK ∗n0

K ∗ = ‖n0‖L1(Ω),

for all 0≤ k ≤ NT .

Proof. Let k ∈ {0,1,2,3, ...,NT } and let (nk
T ,Sk

T ) be a so-
lution to (1), we introduce the set:

XT = {v ∈ RT ;v≥ 0 in Ω,‖v‖L1(Ω) ≤ ‖n0‖L1(Ω)}.

Firstly we constructed n and S, then we demonstrate in the
first step the unicity of the solution, after in the second step
we using the Browr’s fixed point to proof the existance of
the solution.
We construct S ∈ XT using the following schemes

− ∑
σ∈EK

mσ ∇D ST .νσ,K +mK SK =

mK µnk
K , for all K ∈M,

− ∑
σ∗∈EK ∗

mσ∗ ∇D ST .νσ∗,K ∗ +mK ∗SK ∗ =

mK ∗µnk
K ∗ for all K ∗ ∈M∗,

(14)

and we comput n ∈ XT using the schemes

mK
nK−nk

K
∆t − ∑

σ∈EK

mσ∇D nT .νσ,K

+ ∑
σ∈EK

mσ[nK (∇D ST .νσ,K )+

−nL (∇D ST .νσ,K )−] = 0, for all K ∈M,

mK ∗
nK ∗−nk

K ∗
∆t − ∑

σ∗∈EK ∗

mσ∗∇D nT .νσ∗,K ∗+

∑
σ∗∈EK ∗

mσ∗ [nK ∗(∇D ST .νσ∗,K ∗)
+−

nL∗(∇D ST .νσ∗,K ∗)
−] = 0, for all K ∗ ∈M∗.

(15)

Step 1: The system (14) can be written as AS = b,
where for all K ,L ∈M such that σ = K |L and for all for
all K ∗,L∗ ∈M∗ such that σ∗ = K ∗‘|L∗, A is defined by:

AK ,K = ∑
σ∈K

m2
σ

2mD
+mK ,

AK ∗,K ∗ = ∑
σ∗∈K ∗

m∗σ
2

2mD
+mK ∗ .

AK ,L =− m2
σ

2mD
,

AK ,K ∗ =−mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

AK ,L∗ =
mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

and 
AK ∗,L∗ =−

m2
σ∗

2mD
,

AK ∗,K =−mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

AK ∗,L = mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

and bK = µmK nk
K ., bK ∗ = µmK ∗nk

K ∗ . Since for all K ∈M
and K ∗ ∈M∗:

|AK ,K |− ∑
σ∈EK

[|AK ,L |+ |AK ,L∗ |+

|AK ,K ∗ |] = mK −2 ∑
σ∈EK

mσmσ∗

2mD
|cos(αD |),

and
|AK ∗,K ∗ |− ∑

σ∗∈EK ∗

[|AK ∗,L∗ |+ |AK ∗,L |+

|AK ∗,K |] = mK ∗ −2 ∑
σ∗∈EK ∗

mσ∗mσ

2mD
|cos(αD |).

Using the hypothesis (13) we have
|AK ,K |− ∑

σ∈EK

[
|AK ,L |+ |AK ,L∗ |+ |AK ,K ∗ |

]
≥ 0

|AK ∗,K ∗ |−
∑

σ∗∈EK ∗

[
|AK ∗,L∗ |+ |AK ∗,L |+ |AK ∗,K |

]
≥ 0.

Then the matrix A is strictly diagonally dominant with re-
spect to the columns and hence, A is invertible. This shows
the unique solvability of (14).

Now, the system (15) equivalent to the system Bn =C,
with:

BK ,K = ∑
σ∈EK

m2
σ

2mD
+

mK
∆t

+ ∑
σ∈EK

mσ(∇D S.νσ,K )+,
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and

BK ∗,K ∗ = ∑
σ∗∈EK ∗

m2
σ∗

2mD
+

mK ∗

∆t
+ ∑

σ∗∈EK ∗

mσ∗(∇D S.νσ∗,K ∗)
+.


BK ,L =− m2

σ

2mD
−mσ(∇D S.νσ,K )−,

BK ,K ∗ =
mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

BK ,L∗ =−mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

and


BK ∗,L∗ =−

m2
σ∗

2mD
−mσ∗(∇D S.νσ∗,K ∗)

−,

BK ∗,K = mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

BK ∗,L =−mσmσ∗
2mD

νK ,σ.νK ∗,σ∗ ,

and cK =
mK nk

K
∆t , cK ∗ =

mK ∗nk
K ∗

∆t . Since for all K ∈M and
K ∗ ∈M∗:

|BK ,K |− ∑
σ∈EK

[
|BK ,L |+ |BK ,L∗ |+ |BK ,K ∗ |

]
=

mK
∆t + ∑

σ∈EK

mσ|(∇D S.νσ,K )+|

− ∑
σ∈EK

mσ|(∇D S.νσ,K )−|−

2 ∑
σ∈EK

mσmσ∗

2mD
|cos(αD |),

|BK ∗,K ∗ |− ∑
σ∗∈EK ∗

[
|BK ∗,L∗ |+ |BK ∗,L |+ |BK ∗,K |

]
=

mK ∗
∆t + ∑

σ∗∈EK ∗

mσ∗ |(∇D S.νσ∗,K ∗)
+|

− ∑
σ∗∈EK ∗

mσ∗ |(∇D S.νσ∗,K ∗)
−|−

2 ∑
σ∗∈EK ∗

mσ∗mσ

2mD
|cos(αD |),

for all σ ∈ EK and σ∗ ∈ EK ∗ we have{
∇D S.νσ,K =−∇D S.νσ,L
∇D S.νσ∗,K ∗ =−∇D S.νσ∗,L∗

(16)

which yields{
(∇D S.νσ,K )− = (∇D S.νσ,L )

+,

(∇D S.νσ∗,K ∗)
− = (∇D S.νσ∗,L∗)

+,
(17)

that’s give

|BK ,K |− ∑
σ∈EK

[
|BK ,L |+ |BK ,L∗ |+ |BK ,K ∗ |

]
=

mK
∆t −2 ∑

σ∈EK

mσmσ∗

2mD
|cos(αD |)

|BK ∗,K ∗ |− ∑
σ∗∈EK ∗

[
|BK ∗,L∗ |+ |BK ∗,L |+ |BK ∗,K |

]
=

mK ∗
∆t −2 ∑

σ∗∈EK ∗

mσ∗mσ

2mD
|cos(αD |)

using the hypothesis (13) we have
|BK ,K |− ∑

σ∈EK

[
|BK ,L |+ |BK ,L∗ |+ |BK ,K ∗ |

]
≥ 0

|BK ∗ ,K ∗ |− ∑
σ∗∈EK ∗

[
|BK ∗ ,L∗ |+ |BK ∗ ,L |+ |BK ∗ ,K |

]
≥ 0.

Then the matrix B is strictly diagonally dominant with re-
spect to the columns and hence, B is invertible. This shows
the unique solvability of (15). Then n is nonnegative, im-
plies that n satisfies (14).

In (15), summing the first equation over K ∈M and the
second equation over K ∗ ∈M∗, we obtain

∑
K ∈M

mK nK = ∑
K ∈M

mK nk
K .

∑
K ∗∈M∗

mK ∗nK ∗ = ∑
K ∗∈M∗

mK ∗nk
K ∗ .

(18)

That’s give
1
2 ∑

K ∈M
mK nK +

1
2 ∑

K ∗∈M∗
mK ∗nK ∗ =

1
2 ∑

K ∈M
mK nk

K +
1
2 ∑

K ∗∈M∗
mK ∗nk

K ∗ = ‖n
0‖L1(Ω).

(19)
step 2: Let H : XT →XT the operator define by the solution
to (14) and (15) such that H(n) = n, it must be shown that
the operator H is continuous to apply Brouwer fixed point
thm (i.e) we have to prove that nβ→ n as β→ ∞ such that:

(nβ)β∈NNN ⊂ XT be a sequence verified
nβ→ n as β→ ∞ in XT ,

H(nβ) = nβ,

H(n) = n.

(20)

It easy to show that Sβ − S → 0 in XT as β → ∞,
since the map n → S is linear on the finite dimensional
space XT and continuous. Later, using (15) and an adap-
tation of the proof of theorem 2.1 in (G.Chamoun and
R.TalhoukF.Filbet, 2006) leads to:

∑
K ∈M

mK |n
β

K −nK | ≤ 2∆t

(
∑

K ∈M
|nK |2

)1/2

(
∑

K ∈M
∑

σ∈EK

mσ|∇D(Sβ−S).νσ,K |2
)1/2

,

∑
K ∗∈M∗

mK ∗ |n
β

K ∗ −nK ∗ | ≤ 2∆t

(
∑

K ∗∈M∗
|nK ∗ |2

)1/2

 ∑
K ∗∈M∗

∑
σ∗∈EK ∗

mσ∗ |∇D(Sβ−S).νσ∗,K ∗ |2
1/2

,

Let c1 > 0 such that 2∆t ∑
K ∈M

|nK |2 ≤ c1‖n0
T ‖L2(Ω) and

2∆t ∑
K ∗∈M∗

|nK ∗ |2 ≤ c1‖n0
T ‖L2(Ω), then



∑
K ∈M

mK |nβ

K −nK | ≤

c1‖n0
T ‖L2(Ω)

 ∑
K ∈M

∑
σ∈EK

mσ|∇D (Sβ−S).νσ,K |2
1/2

,

∑
K ∗∈M∗

mK ∗ |n
β

K ∗ −nK ∗ | ≤

c1‖n0
T ‖L2(Ω)

 ∑
K ∗∈M∗

∑
σ∗∈EK ∗

mσ∗ |∇D (Sβ−S).νσ∗ ,K ∗ |2
1/2

,
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then

1
2 ∑

K ∈M
mK |n

β

K −nK |2 +
1
2 ∑

K ∗∈M∗
mK ∗ |n

β

K ∗ −nK ∗ |2 ≤

c2
1‖n0

T ‖
2
L2(Ω)(

1
2 ∑

K ∈M
∑

σ∈EK

mσ|∇D(Sβ−S).νσ,K |2

+
1
2 ∑

K ∗∈M∗
∑

σ∗∈EK ∗

mσ∗ |∇D(Sβ−S).νσ∗,K ∗ |2),

using the poincare inequality, we have

1
2 ∑

K ∈M
mK |n

β

K −nK |2 +
1
2 ∑

K ∗∈M∗
mK ∗ |n

β

K ∗ −nK ∗ |2 ≤

c2
1‖n0

T ‖
2
L2(Ω)‖∇D(Sβ−S)‖2

D ≤ c1)
2‖n0

T ‖
2
L2(Ω)‖S

β−S‖2
2,T ,

then  ‖nβ

K −nK ‖2
2,T ≤

c2
1‖n0

T ‖
2
L2(Ω)

‖∇D (Sβ−S)‖2
D ≤ c2

1‖n0
T ‖

2
L2(Ω)

‖Sβ−S‖2
2,T .

‖n0
T ‖L2(Ω) is bounded and Sβ−S→ 0 as β→∞, then nβ→

n in HT implies that H is a continuous operator.
Therefore using the Brouwer fixed point thm the opera-

tor H has a fixed point, hence the prove of thm.

3.2 Numerical Experiments

In this section, we show three numerical simulations of
model (1) in a two dimensional space to show the effi-
ciency of the DDFV scheme. the system (1) is describes
the evolution over time of the cell density n(x, t) and the
chemical signal concentration variable S(x, t), Some of the
tests cases come from the paper (Bessemoulin-Chatard and
Jungel, 2014) where a finite volume scheme is used, and
our results compare very well to the ones in this refer-
ence. We simulate the model in a two dimensional domain
Ω = (0;5)× (0;5) for which we consider a nonuniform and
non-admissible grid figure.1,

Figure 1: The mesh supported in the numerical tests with
h = 0.0471

3.2.1 Test 1

Firstly, we chose the nonsymmetric initial data on a square
(0;5)× (0;5) and we present the numerical solution of (1)
for different values of t. in this subsection, µ = 1, ξ = 1, the

time step is ∆t = 10−3, the number of triangles is 1296 and
the nonsymmetric initial functions is given by

n0,1(x,y) =
M

2πθ
exp
(
− (x− x0)

2 +(y− y0)
2

2θ

)
, (21)

with the total mass is M = 6π, θ = 10−2 and x0 = y0 = 0.1.

Figure 2: Test 1: Time evolution of ‖n‖L∞(Ω) computed
from the radially non-symmetric initial datum n0,1 with
M = 6π

Figure 3: Initial datum n0,1, t = 0 and t = 0.005

Figure 4: Initial datum n0,1, t = 0.015 and t = 1

3.2.2 Test 2

Next, we present the numerical solution of (1) for differ-
ent values of t. in this subsection, µ = 1, ξ = 1, the time
step is ∆t = 10−3, the number of triangles is 1296 and the
nonsymmetric initial functions is given by: n0,2(x,y) = 4π

2πθ
exp
(
− (x−x0)

2+(y−y0)
2

2θ

)
+

2π

2πθ
exp
(
− (x−x1)

2+(y−y1)
2

2θ

)
,

(22)

with θ = 10−2, x0 = y0 = 0.1, and x1 = y1 =−0.2.
Test 2: Cell density computed from nonsymmetric ini-

tial data with M = 6π for different values of t.
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Figure 5: Test 2: Time evolution of ‖n‖L∞(Ω) computed
from the radially non-symmetric initial datum n0,2 with the
total mass is M = 6π

Figure 6: Initial datum n0,2, t = 0.01 and t = 0.045

Figure 7: Initial datum n0,2, t = 0.55 and t = 0.15

Figure 8: Initial datum n0,1, t = 0 and t = 0.01.

Figure 9: Initial datum n0,1, t = 0.045 and t = 1

3.2.3 Test 3

We now consider the case of radially symmetric initial func-
tions, we present the numerical solution of (1) for different
values of δ. in this subsection, µ = 1, ∆t = 2×10−2 and the

radially symmetric initial function is given by:

n0,3(x,y) =
M

2πθ
exp
(
−x2 + y2

2θ

)
, (23)

with the mass M = 20π, ξ = 1 and θ = 10−2.

Figure 10: Initial datum n0,3, t = 0 and t = 1.5

Figure 11: Initial datum n0,3, t = 3 and t = 5

Figure 12: Test 3 : Time evolution of ‖n‖L∞(Ω) computed
from the radially symmetric initial datum n0,3 with M =
20π.

Figure 13: Test 3 : Chemical signal concentration computed
from symmetric initial data with M = 20π for t = 0 and
t = 5.5.
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4     CONCLUSION

Our numerical results, in the case of radially non-
symmetrical initial data (test 1 and 2), show that the blow-
up occurs at the nearest corner of the point of inoculation
from the 0.1 instant for n0;1 and 0.4 for n0;2 , which is com-
patible with cellular dynamics. In the case where the initial
datum is radially symmetrical(test3, the figures show that
the explosion of the solution of Keller-Segel classical mod-
els occurs at the center of the domain.
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Haŝkovec, J. and Schmeiser, C. (2009). Stochastic particle
approximation for measure valued solutions of the 2d
keller-segel system. J. Stat. Phys., 135:133–151.
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