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Abstract: The phenomena and real world problems usually can be formulated as a representation of the problem of 

function approximation, which is to estimate the value of a function f(x), based on the relationship or pattern 

of the input-output data, that is sequences of ( ).
i i

y f x=  In practice, some applications related to the 

approximation of functions such as the problems of pattern classification, regression analysis, reconstruction 

signals, and identification systems. The purpose of this research is to compare the performance of 

Daubechies and Symlets wavelet types to estimate nonlinear functions. The characteristics of the 

Daubechies and Symlets wavelet functions are smooth, regular, have a compact of the support and lengthy 

of the filters, and an explicit the formula so it's good to handle smooth curves, reconstruct of signals, longer 

filtering processes, easy and fast on computing process. The advantages of the Daubechies and Symlets 

wavelet characteristics will be used as the basis for approximating non-linear functions.  Numerically, based 

on the means square error (MSE) indicator, the results of this research provide an overview of the accuracy 

of wavelet-based approximation by Daubechies and Symlets wavelets type for the approximation of the 

nonlinear function which is approximated is very significant.  

1 INTRODUCTION 

Some of the phenomena or real problems can be 
formulated as a representation of the problem of 
function approximation.  In general, sample data 
from observation or a result study usually in the 
form of input-output ordered pairs set. Zainuddin 
and Pauline (2011) stated that the main problem 
related to the function approximation is to estimate 
the value of a function based on the relationship that 
exists in the input-output data set represented by the 
pattern. Obviously, the function approximation can 
be interpreted as an attempt to estimate a function 
value based on a relationship or pattern that is 
formed in the representation of the relationship 
between the input-output values in the sample data. 
In general, some practical applications regarding 
function approximations are problems with pattern 
classification, data mining, signal reconstruction, 
and identification systems. 

Wavelet analysis and wavelet transformation are 
branches of mathematical studies that have been 
applied to various fields of science.  Early in its 
development, wavelets were initiated as a 
combination of pure mathematical ideas (harmonic 
analysis, functional analysis, approximation theory, 

fractal geometry) and applied mathematics (signal 
processing, and mathematical physics). Various 
studies have been carried out related to this topic. 
Some publications related to wavelet applications 
and wavelet transformation include forecasting and 
prediction problems (Matsumoto et al., 2007), 
problems of filtering data (Ahamada et al., 2010), 
adaptive data and singularity problems (Bruzda, 
2004), trend analysis issues( Alexsandrov et al., 
2008), stationary and non-stationary data problems 
(Lineesh, 2010), inflation and price index issues 
(Ysusi, 2009), multiresolution issues (Alves et al 
2002), growth problems and cycles of agricultural 
products (Chen, 2002 ), and variance and data 
correlation issues (Gallegati et al, 2005). 

The wavelet function consists of several types 
such as Haar, Daubechies, Morlet, Mexican, and B-
spline wavelets. Each type of wavelet has 
advantages and disadvantages, especially related to 
the form of a function as a wavelet representation, 
the form of wavelet curves, support areas, and so on. 
At the application level, there is a certain type of 
wavelet which because of its superiority and some 
properties it has become the reason researchers use it 
as a tool or base of analysis in the object of research 
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such as Haar wavelet, Daubechies, Symlet, or 
wavelet B-spline. 

Liu and Din (2016) revealed that Daubechies 

wavelets have the advantage of having orthogonality 

and compact support. These two properties can 

numerically improve the analysis performance in 

terms of accuracy and ensure stability in the 

computation process, and the existence of the 

wavelet scaling function on [0, + ∞] used as the 

basis functions for approximations. On the other 

hand, Symlets constitute a family of almost 

symmetric wavelets proposed by Daubechies by 

modifying the construction of the dbN.  Therefore, 

apart from the symmetry, the other properties of the 

two families are similar.  The fundamental 

difference is only in nature where the Daubechies 

wavelet is asymmetrical and the Symlet wavelet is 

almost symmetric, with the higher the order the 

higher the level of symmetry.  On the application 

side, wavelet Symlet has vanishing moments at most 

if given wide support to be one of the reasons 

researchers using the wavelet Symlets as a tool in its 

research analysis. 

Yadav and Mehra (2016) revealed that the 

superiority of Daubechies and Symlet wavelets 

could improve accuracy based on the MSE indicator 

in the denoising ECG signal process. 

Comprehensively, the advantages of the properties 

of these two-family wavelets are summarized by 

Misiti et al. (2007: 92) such as regular arbitrary, 

orthogonal with compact support, the arbitrary 

numbers of zero moments, the existence of scaling 

function, orthogonal analysis, exact reconstruction, 

continuous and discrete transformation formulas, 

and fast algorithm. 

Therefore, based on the data characteristic of 

observation/ research which is generally non-linear, 

the extent of the application of wavelet/wavelet 

transformation in various application fields, as well 

as the superiority of wavelet characteristics of 

Daubechies and Symlets, then wavelet Daubechies 

and Symlets are selected and used as the basis for 

approximating nonlinear functions. 

2 WAVELET APPROXIMATION 

2.1 Representation of The 
Approximation Function 

Many phenomena from various application domains 
are representations of the approximation of functions 
problems. The results of observations from research 
or real problem usually can be represented as a set of 

input-output ordered pairs. In this respect, the 
problem of approximating the function is to estimate 
or estimate the value based on the pattern of the 
relationship between the input-output present in the 
sample data. 

Furthermore, in general, the representation of 
real phenomena can be formulated using a 
continuous function. To simplify the problems, let us 
assume that the function space is assumed to be 
finite. In this case, one representative function space 
is Hilbert space.  Let the function be  

 
1

( ) ( )
N

i i
i

f x w h x
=

=  (1) 

where
i

w  indicates weight parameter to be updated 
and ( )

i
h x  indicates the basis of the selected function. 

Some candidate of base functions such as 
polynomial, trigonometric, exponential, and 
orthogonal functions. One of the functional types 
that have recently been used as a base function is the 
wavelet function (Zainuddin and Pauline, 2011). 

In Hilbert space, the approximation using the 
wavelet function is defined as follows. 

 
1
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N
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f x w a x b
=

= −  (2) 

where ia  and 
i

b  respectively states the dilated and 
translational coefficients of the function of the 
mother wavelet .  

2.2  Wavelet and Wavelets 
Transformation 

Wavelets are a class of functions used to localize a 
given task in two ways, i.e., position (time) and scale 
(frequency).  This ability that causes wavelets to 
have advantages over Fourier transforms that are 
widely applied in data processing such as signal 
processing and time series analysis(Bahri,2016a, b).  

Wavelet is defined as a shortwave that 
concentrates its energy in space and time or a limited 
or localized wave (Figure 1).  Unlike the wave 
which is a function of periodic space and time. 

 

 
(i) (ii) 

Figure 1:  Graph of (i) wave and (ii) wavelet. 
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Mathematically, the wavelet is a family of 
functions constructed from the translation and 
dilation of a role, defined as follows (Debnath, 2002; 
Daubechies, 1992): 

1
( ) ,   ,  dan 0,, 2

t b
t a a b aa b

a
 

− −
=   

 
 (3) 

where a mother wavelet , a represents the scaling 
(dilation) parameter that determines the degree of 
compression or scale, and b represents the 
translation parameter that specifies the time location 
of the wavelet. The function   on (3) is called the 
mother wavelet, if it verifies the following 
admissibility conditions:  

(i) ( ) 0,t dt

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(ii)
2( ) 1,t dt


=

−
  

(iii)
2

 .
w

C dw
w


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2.1.1 The Types of  Wavelet Transform 

Wavelet transformation can be distinguished into 
two types: continuous wavelet transformation and 
discrete wavelet transformation (Boggess and 
Narcowich, 2001: 184; Mohlenkamp, 2008: 31; 
Daubechies 1992: 7-8 and Burrus, 1998: 7-9).   

If the scaling parameter a and the translation 
parameter b are continuous variables on the  field, 
with 0a  on (3), we defined a continuous  wavelet 
transform type which is given by the following 
equation: 

1
( , ) ( )  2

t bwavT f a b a f t dt
a


 − −  =       −

.  

If the scaling parameter a and the translation 
parameter b are discrete numbers on (3), we have the 
distinct wavelet transform type,  

 
/2( )  (  [ ]), 0 0

m m mt a a t nb am n o o − −= −
 

where 
0

,ma a=
0

1a 
0 0

mb nb a= and for some
0

0b   

and integer n. 

 

2.1.2 Haar, Daubechies, and Symlets 

Wavelets 

Wavelet Haar is the simplest type of wavelet that 
Alfred Haar proposed in 1909 as a function. The 
Haar function is given by Equation (4). 

( )

1, 0  1/ 2,

1
         1,   1,

2

0, others,

x

x x

 



= −  



           (4) 

with graphs as in Figure 2. 

 

Figure 2:  Graph of Haar wavelet. 

Daubechies wavelet is one type of orthogonal 
wavelet that is very popular for digital signal 
processing. Ingrid Daubechies developed this 
wavelet type in 1990. Unlike the Haar wavelet, 
Daubechies wavelets have several variations which 
are characterized as an order of Daubechies 
wavelets, known as Daubechies wavelets with an N-
th order (DbN), for some natural number N. 
Especially for N = 1 or Db1, Daubechies wavelet is 
Haar wavelet. Wavelet Daubechies order 2,N   has 
2N vanishing moment and has small support an 
interval [0, 2N-1]. The N-th order of Daubechies 
wavelets is related to the Daubechies polynomial 
order. 

Daubechies polynomial order N-1 is defined as 
follows: 

 ( ) ( )
1 2 1 1

  11
0

N N N kkP y y yN
kk

− −  − −
= −  −

 =

 (5) 

Graphically the Daubechies were scaling, and 
wavelet functions built by Daubechies polynomial 
N-th order, N = 2, 3, 4, ..., eight are given by   
Figure 3. 

Symlet Wavelet is a modification of Daubechies 
wavelet which has almost symmetrical 
characteristics, with the higher character, the higher 
the symmetry quality.  As a result of the change of 
Daubechies wavelets, Symlet and Daubechies 
wavelets have similar symptoms. 
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Figure 3: The graph variation of types of Daubechies 

wavelet with order, 2,3, ,8i =  

 

Figurer 4:  The graph variation of the kinds of Symlet 

wavelet 𝑖th order 2,3, ,8i = . 

The graphs from the Symlet wavelet for some i-th 
order are given in Figure 4.  Like the Daubechies 
wavelet, the Symlet order 1 (Sym1) wavelet is also 
the Haar wavelet. 

2.3   Wavelets and Approximation of 
Function 

Suppose
2

[ , ]f L a b , and ( )
 

2

,

.
a b

f t dt   The 

wavelet representation of a function f  is given by  
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 and 

 
1

, ( ) ( ) ,, ,,
0

f f t t dtj k j kj k
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with orthonormal base functions ,j k , associated 

with scale 2 j−  and position 2 .jk −
   Functions ,j k  

are called wavelets of scale 2 j− and position 2 .jk −
 

3 RESULTS AND DISCUSSION 

The use of wavelets to estimate nonlinear functions 
is a relatively new method. In this study, two types 
of wavelets Daubechies and Symlets are used to 
show the advantages of wavelets in approximating 
nonlinear functions applied to three sample data as 
nonlinear function representation such as dynamical 
system data, chaotic Mackey-Glass data, and 
hydrological data. 

 

3.1   Dynamical System Data 

In this example, the data used are dynamically 
generated system data based on the iteration 
equation (Banakar and Azeem, 2006): 

( )
5 ( )

1 0,5 ( ) 0,5 ( 1) 0,5 ( 2),
21 ( )

x n
x n x n x n x n

x n
+ = − − − + −

+
 (6) 

with the initial state (0) 0.2,x = (1) 0.3,x = and 

(2) 1.x =  

The approximation of nonlinear iteration 

function (6) uses wavelet approximation based on 

Daubechies and Symlets type wavelets in various 

orders (1-st, 2-and, 3-rd, 4-Th, and 8-the order) level 

3-rd respectively given by Figure 5 and Figure 6. 

 

Figure 5: Original data (dynamical system example) 

versus approximated data using wavelet denoised with 

several orders of Daubechies wavelet. 

Based on Figure 5 and 6, the approximation of the 

nonlinear function represented by Equation (6) 

using several orders of the Daubechies wavelet 

level 3-rd gives the result that the order 1-set of the 

Daubechies has the smallest MSE, that is 0.401 and 

the 8-the order of the Daubechies has the largest 

MSE that is 0.63856. For the same case, then the 

best approximation by Symlets wavelet type is 

given by the 1-st order with a value of MSE is 
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0.401 and the worst approximation is given by the 

8-th order with a value of MSE is 0.62875. 

 
 

Figure 6: Original data (dynamical system example) 

versus approximated data using wavelet denoised with 

several orders of Symlets wavelet. 

3.2 Chaotic Mackey-Glass Data 

In this example, the data used is data generated 
based on the Mackey-Glass differential delay 
equation given by the Equation (7) (Banakar and 
Azeem, 2006). 

 ( )
0,2 ( )

1 0,1 ( )
101 ( )

x t
x n x t

x t





• −
+ = −

+ −
 (7) 

with the initial state (0) 1.2,x = 17, = and ( ) 0,x t =  
for 0.t   

The approximation of nonlinear differential 

delay Equation (7) uses wavelet approximation 

based on Daubechies and Symlet type wavelets in 

various orders (1-st, 2-and, 3-rd, 4-the and 8-the 

order) level 3-rd respectively given by Figure 7 and 

8. 

 

Figure 7:  Original data (chaotic Mackey Glass) versus 

approximated data using denoised wavelet with several 

orders of Daubechies wavelet. 

Figure 7 and 8 establish for the Chaotic Mackey-

Glass case that the approximation of nonlinear 

functions using Daubechies and Symes wavelets 

provides excellent results based on the MSE 

indicator. The approximation using Daubechies and 

Symlets wavelets type with several orders 

1, 2,3, 4,  and 8j = gives the effect that the best 

approximation is obtained in the 2-nd order with 

the value of MSE is
42.8566 10 .−  For the same 

case, the value of MSE of the worst approximator 

using by Daubechies wavelet type is 44.2149 10−

from 8-th order and 
44.2058 10− using by Symlets 

wavelet type from 1-st order. 

 

Figure 8:  Original data (chaotic Mackey Glass) versus 

approximated data using denoised wavelet with several 

orders of Symlets wavelet. 

3.3 Hydrological Data 

 In this case, the data used is the data (daily) of water 
discharge of Sungai Ancar  Mataram Region, 
Lombok NTB period 2014-2016 (Source: Balai 
Nusa Tenggara I River Region). The approximation 
of the nonlinear function represented by debit of the 
Ancar River data using the wavelet approximation 
based on Daubechies and Symlet types in various 
orders (1-st, 2-nd, 3-rd, 4-th and 8-th order) level 3-
rd respectively is given by Figure9 and 10.  

Based on three case examples, the performance 
of approximation functions based on Daubechies 
and Symlets type wavelet functions on actual 
nonlinear functions (specific functions) or nonlinear 
function representations based on data on each given 
case sample based on variations in Daubechies and 
Symlet wavelet orders is provided by Table 1.  

For the daily hydrological data, Figure 9 and 10 
show that the approximation of nonlinear functions 
using Daubechies and Symles wavelets type 
provides a good result based on MSE value 
indicators. The best estimate of the nonlinear 
function for this case give the value of MSE is 

ICMIs 2018 - International Conference on Mathematics and Islam

304



 

21.4891 10− for Daubechies wavelet type from Db1 
and 37.7689 10−  Symlets wavelet type from Sym8.  
But, for the worst approximators, Daubechies 
wavelets type given by Db8 with MSE values equal 
to 21.9411 10− and Symlets wavelet type given by 
Sym4 with the value of MSE like

21.7508 10 .−  

 

Figure 9:  Original data (daily hydrology data) versus 

approximated data using wavelet denoised with several 

orders of Daubechies wavelet. 

 

Figure 10:  Original data (daily hydrological data) versus 

approximated data using wavelet denoised with several 

orders of Symlets wavelet. 

Furthermore, based on Table 2 for the three case 
samples observed, the first two examples of 
dynamical system data and chaotic Mackey-Glass 
data obtained the same results. For dynamical 
system data, the best accuracy is given by the same 
order of the two types of wavelets, namely Db1 and 
Sym1 with the same level of skill, which is equal to 
MSE = 0.401.  Similar to the chaotic Mackey-Glass 
data, the best accuracy is given by the same order, 
i.e. Db2 and Sym2 with the same level of skill, 
which is equal to MSE = 2.8566

4
 10 .

−
  

With the daily hydrological data, the best 
accuracy for the Daubechies wavelet type is 
generated by the first order Daubechies wavelet (db1 
or Haar wavelet) with accuracy (MSE) of 1.4891

2
 10

−
 .  For Symlets wavelet type, the best efficiency 
is given by the Symlet 8-the order wavelet with an 
accuracy of 7.7689 3 10− . 

Table 1: The value of mean square error (MSE) of data 

with various orders of Daubechies and Symlets wavelet. 

 

Table 2: Best accuration of the approximation with 

Daubechies and Symlets wavelets. 

 

4 CONCLUSIONS 

The simulation results of the approximation of the 

nonlinear function using the Daubechies and 

Symlets wavelet type provide a reasonably good 

accuracy based on the mean square error (MSE) 

indicator. The performance of two wavelets base for 

the first two cases, the dynamical system, and 

chaotic Mackey-Glass data, shows that the two 

wavelet bases with the same order provide the same 

level of accuracy. But, for the case of the nonlinear 

function represented by real data, the debit of Ancar 

River data, the approximation function based on 

Daubechies wavelet is given by 1-st order (Db1), 

while for Symlets wavelet type is given by 8-th 

order (sym8). 
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