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Abstract: In this study, we consider an inverse mathematical modeling problem for dynamical systems with a single 

output. Generally, the final solution of this problem is an approximation of a system transient process and a 

system state at some time point. Only those classes of models, which describe the transient process properly, 

can portray the system behavior and can be applicable for prediction and optimal control problems. One of 

possible mathematical representations of dynamical systems is differential equations, in particular, linear 

differential equations for linear systems. While solving the inverse problem, we aim to identify a differential 

equation order and parameters, an initial system state. Since all the parameters are interrelated, we propose 

to identify them by solving a two-criterion optimization problem, which includes the model adequacy (i.e. a 

distance between model outputs and observations) and the closeness of the initial value estimation to the 

observation data. To solve this complex optimization problem, we apply a Real-valued Cooperative Multi-

Objective Evolutionary Algorithm which effectiveness has been proved on the set of high-dimensional test 

problems. We investigate the dependency between the considered criteria by depicting the Pareto front 

approximation. Then, having the same amount of computational resources, we vary the system order, the 

number of control inputs and the initial state to analyze changes in the algorithm effectiveness based on 

each criterion and estimate basic limitations. Finally, we conclude that the optimization problem considered 

is quite challenging and it might be used for testing and comparing various heuristics.  

1 INTRODUCTION 

Inverse mathematical modeling problems of 

dynamical systems occur in different scientific and 

practical fields. In most cases, identification 

approaches are applicable only for processes and 

systems for which the transient processes and the 

initial state are known or there are some acceptable 

assumptions about them. Basically, one needs to 

approximate the system parameters so that the model 

output would fit the observation data in the best 

way. However, when we solve the identification 

problem in a general case, there is no information 

about the following things: the mathematical 

operator class of the transient process, mathematical 

model parameters and the initial system state. 

Moreover, all these variables have a complex 

influence on the model adequacy. 

In this study, we consider the inverse modeling 

problem reduction to a two-criterion optimization 

problem. The reduced problem includes the 

following criteria: the first one reflects the distance 

between the observation data and the model output 

and the other one means the distance between the 

initial value estimation and the data at the beginning 

of the process observation. This multi-objective 

problem formulation exposes the relation between 

the transient process and the initial system state. The 

main idea behind this two-objective problem is that 

different initial system states can produce different 

optimization problems for parameters and vice-

versa. Therefore, the system initial state and the 

transient process must be approximated 

simultaneously (Ryzhikov et al., 2016). 

The approximation of the transient process 

differs from the standard regression problem 

because the identification is applied to the field of 

differential operators and the system input is not the 

element of the vector field, but the piecewise 

continuous function. In this study, we assume that 
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the dynamical system can be described with the 

linear differential equation. Thus, the inverse 

modeling problem can be reduced to the 

identification of the differential equation order, its 

parameters and the initial state vector. In previous 

studies, such as (Ryzhikov et al., 2016) and 

(Ryzhikov and Semenkin, 2017), we have 

considered one-criterion approaches. We discovered 

that solving this problem requires some specific and 

problem-oriented algorithm modifications. 

Nevertheless, these studies lack thorough 

experiments for systems with different orders, the 

number of control inputs and different initial states. 

To solve the two-criterion optimization problem, 

we use a Real-valued Multi-Objective Evolutionary 

Algorithm based on the island model cooperation, 

which includes the following heuristics as the 

parallel working islands:  the Strength Pareto 

Evolutionary Algorithm (SPEA2) (Zitzler et al., 

2002), the Preference-Inspired Co-Evolutionary 

Algorithm with goal vectors (PICEA-g) (Wang, 

2013), and the Non-dominating Sorting Genetic 

Algorithm II (NSGA-II) (Deb et al., 2002). 

Previously, the proposed algorithm with the binary 

solution representation was successfully applied for 

solving different optimization problems (Brester and 

Semenkin, 2015) and particular inverse modeling 

problems (Brester et al., 2016a), (Semenkina et al., 

2014) and (Brester et al., 2016b). 

In the study (Ryzhikov et al., 2017), the inverse 

modeling problem for chemical disintegration 

reaction was reduced to the multi-criteria 

optimization problem, which was solved with the 

cooperation of the multi-objective evolutionary 

algorithms. That considered approach achieved the 

promising results and allowed us to solve the general 

inverse problem for the linear dynamical system. 

Our goal is to explore the algorithm performance for 

this problem and estimate how its efficiency changes 

when varying the initial problem parameters: the 

system order, the number of control inputs and the 

initial state vector. This is needed to reveal when 

and how the complexity changes. 

2 INVERSE MATHEMATICAL 

MODELING PROBLEM FOR 

LINEAR DYNAMICAL 

SYSTEMS 

Let us consider a linear time-invariant system 

inverse modeling problem. It is assumed that the 

initial system can be determined with a linear  
   

differential equation (LDE) 

   ( )

0 1

n m
i

i j j

i j

a x t b u t
 

    , (1) 

where  ( ) : , 0,ix t i n   is the system state i-

th derivative,   : , 1,ju t j m   is the j-th 

input function, n and m are the differential equation 

order and the number of input functions, 

respectively. Here, with the notation  (0)x t  we 

mean the function  x t  itself. 

Using the equation (1), we can evaluate the 

model output on some particular set of inputs if we 

know the system state at the initial time 
0t . Let us 

denote the system state as nv , so  0x t v  and 

that would lead us to the following Cauchy problem 

   ( )

0 1

n m
i

i j j

i j

a x t b u t
 

    ,  0x t v . (2) 

Now let the sets    , , 1,i iY y T t i s    be an 

observation data, where 
iy   are the system 

output measurements at times 
it  , and s  is the 

number of observations. It is assumed, that the 

system output and the observations can be 

determined with the following equation 

( ) , 1,i i iy x t i s   , (3) 

where : ( ) 0, ( )E D       is a random value and 

( )ix t  is the solution of the Cauchy problem (2) at 

the time point it t . 

In this study, we assume that the order of the 

differential equation (1) is given. Thus, we need to 

identify the parameters of the differential equation 

(1) and the initial value of the related Cauchy 

problem (2). In other words, the problem can be 

reduced to determine the parameters and initial 

values, which would maximize fitting the 

observation data by the solution of the Cauchy 

problem 

     
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( ) ( )
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ˆˆ
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i j

x t a x t b u t

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     , 

 0
ˆx t v ,  0 mint T , 

(4) 

where ˆ na , ˆ m

jb   and ˆ nv . The Cauchy 

problem (4) is modified, because if we know the 

LDE order, then its first coefficient cannot be equal 

to 0 and, thus, the equation (2) can be transformed to 

the equation (4), by dividing all its coefficients by 

this coefficient. 

According to the model representation (4) and 

using the observation data Y  and T , the inverse 
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modeling problem can be reduced to the two-

criterion optimization problem with the following 

criteria: 

 
1

1
1 ˆˆ ˆ, ,

min

s

i i
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a b v

y x t

C
s
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

 


, 
(5) 

    2 argmin ˆ
1

min min
i

T
v

C y x T   . (6) 

The first criterion (5) is a standard one that 

estimates the model adequacy. The second criterion 

(6) is the measure of the closeness of the initial 

value estimation to the observation data set. In this 

study, the norm of each criterion is chosen as the 

Manhattan norm. The reason for this decision is its 

better robustness against the abnormal values. 

As one can see, the LDE coefficients have no 

influence on the second criterion, but the initial 

value estimation influences the main criterion (5).  

The solution of the problem considered is the 

Pareto set of non-dominated alternatives. The Pareto 

set can be determined as 

  2 2: :n m n mP p z z p        , where 

with the notation 1 2z z  we mean that both 

   1 1 1 2С z С z  and    2 1 2 2С z С z  conditions 

are met and at least one of the following conditions 

is met:    1 1 1 2С z С z  or    2 1 2 2С z С z . It is 

impossible to calculate the Pareto set analytically, as 

well as, the Pareto front for the problem (5)-(6), and, 

thus, we need to approximate it. 

The solution of the Cauchy problem (4) is 

evaluated with the Runge-Kutta 4-th order numerical 

integration scheme. For each particular considered 

Cauchy problem, the initial and final integration 

time points are known and the integration step is 

equal to 0.05. 

All the identification problems considered in this 

study have been generated without the additive 

noise. We can consider the performance of the 

modeling approach, regardless the distortion of the 

observation data. 

3 MULTI-OBJECTIVE 

COOPERATIVE GENETIC 

ALGORITHM WITH THE 

ISLAND META-HEURISTIC 

In multi-objective optimization, we aim at achieving 

a compromise between competing criteria. The 

Pareto-dominance idea (Goldberg, 1989) is widely 

used to compare alternative solutions. While solving 

multi-criteria problems, we expect to obtain a set of 

non-dominated points, which cannot be preferred to 

one another based on all the objectives considered.  

Evolutionary-based algorithms (in particular, 

Genetic Algorithms (GAs)) operate with a set of 

solutions at each generation, and therefore, they 

were considered as an effective tool to find Pareto 

set and front approximations. Nevertheless, there are 

some open questions researchers usually face when 

they apply Multi-Objective Evolutionary Algorithms 

(MOEAs) in practical problems.  

Firstly, different fitness assignment strategies 

might be proposed (Zitzler, 2004): the dominance 

depth, the dominance rank or the dominance count 

might be used to assign a fitness function.  

Next, various diversity preservation techniques 

might be applied. In (Silverman, 1986) these 

techniques are introduced: nearest neighbour 

techniques, kernel methods, histograms. 

Furthermore, the idea of elitism has been 

proposed to avoid the loss of good individuals 

during the stochastic algorithm execution. There are 

two ways to implement it: to merge the parent 

population with the offspring and then to employ 

environmental selection or to use an additional set 

for keeping promising solutions. 

Remembering these issues, we decided to apply a 

cooperative MOEA (Brester and Semenkin, 2015) 

which includes three algorithms based on different 

heuristics. The cooperative MOEA enables us to 

eliminate the choice of the appropriate algorithm and 

avoid many experiments with different MOEAs. The 

cooperative MOEA uses an island model (Whitley et 

al., 1997) and includes NSGA-II, PICEA-g, and 

SPEA2 as its islands work in a parallel way. The 

initial number of individuals is spread across 

subpopulations equally. The fitness function 

evaluation for different subpopulations is 

implemented in parallel threads. At each T-th 

generation algorithms exchange the best solutions 

(migration). There are two parameters: migration 

size, the number of candidates for migration, and 

migration interval, the number of generations 

between migrations.  

Moreover, the island model topology should be 

determined, in other words, the scheme of migration. 

The fully connected topology is applied, meaning 

that each algorithm shares its best solutions with all 

other algorithms included in the island model.  

Originally, GAs operate with binary strings, 

however, for real-valued optimization problems a 

number of genetic operators have been developed.  
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To select effective solutions for the offspring 

generation, we apply binary tournament selection. 

As a crossover operator, we use intermediate 

recombination. In a mutation operator, we 

implement the next scheme (Liu et al., 2009):  
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  (7) 
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j
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
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 



  

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 (8) 

where U is a uniformly random number [0, 1]. There 

are two control parameters: the mutation rate 

n
pm

1
 , where n is the chromosome length, and the 

distribution index   is equal to 1.0. ja  and jb  are 

the lower and the upper bounds of the j-th variable 

in the chromosome. 

The cooperative MOEA was investigated on the 

set of complex benchmark problems CEC 2009 

(Zhang, 2008) and proved its effectiveness (Brester 

and Semenkin, 2015). 

4 INVERSE MODELING 

PROBLEM SOLVING  

In the experiments conducted, we considered 

different LDEs and Cauchy problems: we varied the 

order of the LDE, the initial values and the number 

of the inputs. To solve all the considered problems, 

the proposed MOEA was applied. The maximum 

number of objective function evaluations was 30000 

for each algorithm in the island model. Each 

algorithm had 300 generations and 100 individuals 

for its population. The migration interval was 25 

generations and the migration set size was 10. The 

limitation of the total amount of the fitness function 

evaluations was 90000. For each problem, the 

MOEA was launched for 20 times. 

The initial population was generated randomly 

within the hypercube  
2

1,1
n m 

 , and the borders for 

the heuristic search were   
2

5 , 2 0
n m 

 . The 

influence of the initial population generation on the 

algorithm efficiency is beyond the scope of this 

article.  

First, we analyzed the influence of the LDE 

order. The coefficients of the LDE are given in 

Table 1. The input function for these experiments 

was chosen as the unit-step function, 

   , 1u t t m   . The initial values of the system 

and the coefficients of the control inputs were equal 

to 0 dR  and 1, respectively, and d  was the LDE 

order. The fixed control coefficients and initial 

values allowed us to estimate the complexity 

growth, which was caused only by the order 

increase. The initial time was equal to 0 for all the 

Cauchy problems. The final time was equal to 10 for 

problems of orders 2 or 3 and 20 for problems of 

other orders. 

Table 1: Cauchy problems: orders and equation 

coefficients. 

Order Parameters 

2  1, 2a   

3  1, 2,1a   

4  1, 2, 4,1a   

5  0.25,1.75, 4.75, 6.25, 4a   

6  0.25, 2, 6.5,11,10.25, 5a   

7  0.125,1.25, 5.25,12,16.125,12.75, 5.5a   

The results obtained are given in Figures 1 and 2 

for the first criterion (5) and the second one (6), 

respectively, and boxplots reflect the algorithm 

efficiency. The best solution, according to each 

criterion, was chosen from the Pareto front 

estimation in each particular algorithm run. We can 

see that the first criterion (5) values become worse 

with the increase of the LDE order and this 

deterioration is nonlinear. The second criterion (6) 

values are close to 0, which is not informative, in 

contrast to the first one, therefore, we exclude it 

from the further analysis and focus on the Pareto 

front estimations and the first criterion (5) 

distribution.  

 

Figure 1: Pareto front estimation statistics for different 

LDE orders. The first criterion (5). 
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Figure 2: Pareto front estimation statistics for different 

LDE orders. The second criterion (6). 

In Figures 3 and 4, the Pareto front estimation 

distributions are presented for the system of the 2nd 

order and for the system of the 7th order, 

respectively. 

The heat maps show that the distribution of the 

solutions for the system of the 7th order is more 

complex. For the 2nd order systems the distribution 

of the front approximation is closer to 0 by the first 

criterion (5). At the same time, for the 7th order the 

distribution is much closer to 0 by the second 

criterion (6). 

 

Figure 3: The Pareto front distribution for the 2nd order 

inverse problem (Table 1). X-axis corresponds to the first 

criterion, Y-axis corresponds to the second criterion. 

 

Figure 4: The Pareto front distribution for the 7th order 

inverse problem (Table 1). X-axis corresponds to the first 

criterion, Y-axis corresponds to the second criterion. 

The next factor is the number of control inputs 

and their influence on the problem complexity. To 

investigate it, we performed the same experiment for 

the system of the 2nd order from Table 1, for which 

the control inputs are listed in Table 2. The initial 

values were equal to 0 and the final integration time 

was 10. 

Table 2: Cauchy problems: control inputs. 

Number of 

inputs, m  Input:  
1

m

j

j

u t


  

1    1u t t   

2    2 sinu t t  

3    3 cosu t t  

4  4u t t  

5    5 sin 2u t t   

6    6 cos 2u t t   

7    7 ln 1u t t   

The results of the Pareto front estimation for 

problems with different number of inputs are given 

in Figure 5. The distributions of the Pareto front for 

one and seven control inputs are given in Figures 6 

and 7, respectively. 

 

Figure 5: Pareto front estimation statistics for the different 

number of inputs. The first criterion (5). 

 

Figure 6: The Pareto front distribution for the 2nd order 

inverse problem (Table 1) and one control input (Table 2). 
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Figure 7: The Pareto front distribution for the 2nd order 

inverse problem (Table 1) and seven control inputs (Table 

2). 

Then, we considered the initial value of the 

system and its influence on the problem complexity. 

For this experiment, we took the system of the 4th 

order from Table 1. The different initial values are 

given in Table 3. The final integration time was 

equal to 15 and the input was the unit-step function. 

Table 3: Cauchy problems: initial values. 

Problem  Initial value 

1  0 0 0 0v   

2  1 0 0 0v   

3  0 1 0 0v   

4  0 0 1 0v   

5  0 0 0 1v   

The results of the Pareto front estimations for the 

different combinations of the initial values are given 

in Figures 8, 9 and 10. 

 

Figure 8: Pareto front estimation statistics for different 

initial values (Table 3). The first criterion (5). 

All the Cauchy problems were considered for the 

stable LDEs. Here the stable system was generated 

via the characteristic equation so that each root had 

the negative real part. 

 

Figure 9: The Pareto front distribution for the 4th order 

inverse problem (Table 1) and the 2nd initial value (Table 

3). 

 

Figure 10: The Pareto front distribution for the 2th order 

inverse problem (Table 1) and the 5th initial value (Table 

3). 

As the Pareto front distribution approximations 

show, the front is localized but still has a complex 

structure. Anyway, the inverse mapping of the close 

Pareto front elements could give us completely 

different alternatives, which makes the inverse 

modeling problem complex. 

5 CONCLUSION  

In this study, the inverse mathematical modeling 

problem was reduced to the two-criterion 

optimization problem on the real vector space, 

which was solved by the real-valued cooperative 

MOEA.  

The complexity of the problem considered 

depends on the LDE order, the number of inputs and 

the initial values. The complexity growth can be 

estimated by changing the objective criterion values, 

which are found by the MOEA. In our experiments, 

the computational resources were the same for all 

the problems, so it was possible to estimate the 

influence of the certain parameter, such as the 

differential equation order, the number of inputs and 

the initial state. 
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The order of the differential equation has the 

strongest effect on the algorithm efficiency and thus, 

the problem complexity. The possible reason for that 

is not only the increased dimension of the search 

space, but also the increased variance and the 

maximum absolute value of the LDE coefficients, 

which makes the search space wider. The increase of 

the order by 1 increases the dimension by 2, since 

each order is related to the coefficient and the initial 

value. 

The number of control inputs also determines the 

search space dimension and makes the reduced 

problem more complex, when the number of inputs 

increases. There is another significant detail, which 

is hard to be formalized: when the number of inputs 

increases, their impacts overlap and this can mislead 

the algorithm. 

The search space dimension does not change 

when we vary the initial values. However, the 

problem becomes more challenging, as there are the 

initial values of the high orders, which are not equal 

to 0. Therefore, changing the analyzed parameters, 

we may create various challenging test problems for 

MOEAs. 

Future research will be related to the estimation 

of the computational resources, which would be 

required to keep the algorithm performance at the 

same level while changing the parameters. This 

study is a prior to the development of the automatic 

identification of the causative control inputs and the 

differential equation order. The gathered information 

also would be used to develop the problem-oriented 

algorithms with higher performance. 
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