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Abstract: To search for multiple targets with swarm robots, those robots should be divided into some sub-swarm by job 
allocation, so that each sub-swarm can cooperatively work focusing on its desired target. Each sub-swarm 
searches for its target by evolutionary algorithm. In order to improve the cooperative search ability of sub-
swarm, a new particle swarm algorithm based on auxiliary orientation improvement is proposed to enhance 
the efficiency and accuracy of the search. In the simulation, the general roaming algorithm consumes a longer 
time to find the target, and reduces the overall efficiency of the system. In order to solve this problem, a spiral 
roaming method based on artificial potential field is introduced to improve the global search capability. The 
simulation results show that the search efficiency is improved significantly by using this method. 

1 INTRODUCTION 

Swarm robotic (SR) research is inspired by the group 
behaviors of bees, birds and other groups. A single 
robot is thought to be unintelligent, but it can achieve 
the desired goal through group behaviors and 
demonstrate intelligence. The concept of swarm 
robotics was first proposed by G. Beni et.al. Swarm 
intelligence studies are devoted to simulating swarm 
intelligence of natural organisms, which is to enable 
individuals with simple perception to emerge swarm 
intelligence through local communication. The 
characteristics of swarm robotics: (1) the robot has 
independent perception and communication ability. 
(2) the robot has simple ability and low cost. (3) the 
robot is independent of each other, and the structure 
is distributed. (4) the self-organization ability based 
on local communication  (Şahin, E. 2004; Balch, T. 
2004; Xue, S.,2008; Zeng, 2010; Zhuang, 2013) 

Target search is one of the benchmark problems 
in swarm robotics. Robots can perform tasks that 
humans can't accomplish or are extremely dangerous 
at low cost and price with the application of swarm 
intelligence. For example, exploration, mine 
sweeping, battlefield search, search and rescue in 
hazardous areas, etc. In view of the fact that particle 
swarm optimization uses individual effective 
information and local communication to influence the 
neighborhood individuals moving toward local 
optimum, Doctor. s et.al. (2004) introduce Particle 
Swarm Optimization (PSO) algorithm into multi 

robot search system. Aiming at the characteristics of 
dynamic neighborhood and limited communication 
range in multi robot search, Pugh et.al. (2006) 
improved the problem model and formed a classical 
swarm robotic target search model. Anh-Quy H et.al. 
(Zhang, 2014) analyzed and compared the effects of 
two improved particle swarm algorithms in the 
exploration of unknown environments. The paper 
mainly improved the missing and collision problems. 
Based on the model of swarm robotic search problem 
proposed by Doctor. S et.al. (2004) and Pugh et.al. 
(2006), Zhang et.al. (2014) proposed a model that 
robots search targets cooperatively in the unknown 
environment. In this model, the distributed robot has 
a single perception ability, and has the ability of self-
localization and local information interaction. This 
model fits the characteristics of swarm intelligence 
and is representative. However, the search efficiency 
of swarm robotics in the random search stage is not 
achieved, especially when the target location is 
remote, which slows down the overall search process. 

The improved particle swarm optimization with 
artificial potential field has achieved good results in 
solving the problem of loss and collision (Hoang, 
2016). In order to solve the problem that the 
exploration range is too concentrated and the remote 
area is easy to miss when the robot performs the 
unknown environment exploration task. In this paper, 
the artificial potential field improved spiral search 
method is used to drive other roaming robots to other 
unexplored regions. Through this improvement, the 
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target in the unknown position can get the attention of 
the search robot earlier. Thus, the robot can detect 
unknown targets as soon as possible. Simulation 
results show that the search time of roaming stage is 
reduced. 

The cooperative search of swarm robotics can be 
divided into three steps. The first step is roaming 
search. The second step is to obtain local search 
information through neighborhood communication, 
and then determine their respective targets to search. 
The third step is that robots with the same goal form 
search alliances, and then search their targets 
precisely by particle swarm optimization. The 
traditional particle swarm optimization algorithm 
guides the robots to the position of the local optimal 
positions and their optimal positions. Inspired by 
localization technology, directional technology is 
introduced into particle swarm optimization. The 
directional results are used to guide the robots to 
approach the most likely positions of the targets. 
Based on the proposed roaming strategy, a particle 
swarm optimization algorithm based on auxiliary 
orientation technology is proposed. Simulation 
results show that the algorithm improves the 
efficiency of swarm robotic search. 

2 PROBLEM DESCRIPTION 

2.1 Description of environment and 
system 

The robot starts from a random location of the search 
environment to search for the task target in the 
environment space. It is assumed that the robot can 
locate itself (Pugh, 2006) in a certain positioning 
mechanism and obtain its own position relative to the 
environment. Only based on these can the robot 
acquire and update its best position and share the best 
position with other robots in the neighborhood. Then, 
the local optimal location in neighborhood is obtained 
by comparison. Finally, the particle swarm algorithm 
is used to approach and locate the target. 

Four tuple <R, E, T, S> can be used to describe 
the multi objective search problem of swarm robots 
(Kennedy, 2002): 

a. Search agents (R): R=<U, B, C>; 
R refers to a single robot. U is a collection of 

objects directly detected by the robot and indirectly 
obtained by interacting with the robots in the 
neighborhood. B is the autonomous decision-making 
behavior of the robot, that is, according to its own 
perception of the environment and information 
indirectly obtained, the robot autonomously 

determines its own search mode; C represents the 
cooperation of robots on the basis of neighborhood 
communication; 

b. Targets (T): T = { iT , i = 1 ... M}, m > 1; 

T are the targets of swarm robots, that is, the task 
set to be searched. Each target has its own signal 
frequency, which is used to distinguish different 
targets. M is the number of targets in a task. 

c. Swarm robot (S): S = { jR , j=1 ... n} n> >m; 

S is a collection of all robots participating in the 
search task. N is the total number of robots. 

d. search environment (E): two-dimensional space 
in closed space 

2.2 Robot 

N autonomous robots, as search subjects, constitute 
swarm robots, which are robots with limited detection 
distance, positioning accuracy, communication range 
and so on (Zhang, 2015). The detector configured by 
the robot can detect the signal emitted by the target 
and obtain the intensity information. However, the 
detection radius of the robot detector is relatively 
small compared with the environmental dimension.  

Based on the detected target intensity information 
and neighborhood information, each robot switches 
between three working modes: roaming mode, 
particle swarm search mode, and capturing target 
mode (Liu, 2010). When the robot does not obtain the 
target information directly or indirectly, the roaming 
mode is adopted. When the robot senses the target 
directly or indirectly, and decides to take part in the 
local search, the particle swarm search model is 
adopted. Moreover, the robot continuously exchanges 
the latest position and intensity information with 
other robots in the communication neighborhood. 
When the signal intensity directly detected by the 
robot reaches the standard, the robot enters the 
capturing target mode and announces the target to be 
searched through neighborhood communication. 
Then the robot continues to participate in the search 
for the remaining target until all the targets are 
searched. 

2.3 Communication neighborhood and 
distributed control 

In the standard particle swarm optimization 
algorithm, the neighborhood of the particle is the 
whole search space. The particle can exchange 
information with particles at any position in the 
search space. In the swarm robotic system, 
considering the communication distance and ability 
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of a single robot is bound to be limited, the 
communication distance must be greater than the 
detection distance, but it should be smaller than the 
environmental size. Otherwise, the robot will have 
global communication capability. In our model, the 
neighborhood of each robot is defined as the region 
within its maximum communication distance. The 
neighborhood is dynamic with time, because the 
robot is moving continuously (Pugh, 2007). The robot 
exchanges its own position and detected signal 
intensity with other robots in the neighborhood. 
Distributed control requires less communication 
distance and capability, and does not require a robot 
with central processor function. Full distributed 
control is an important feature of swarm robotics. 

2.4 Signal intensity 

In particle swarm optimization, the local optimum 
positions and the optimal locations of individuals are 
determined by the intensity of the perceived signals. 
Suppose each robot is equipped with a signal detector, 
which can detect the intensity of different frequency 
signals emitted by different targets. Xue et.al. (2008) 
made a detailed analysis of the signal. The signal 
intensity model of this paper is Eq.1  (Pugh, 2007): 

2/ ()i iI P d                               (1) 

P is the power of the signal source. d is the 
Euclidean distance between the robot and the signal 
source.   is a random disturbance. Assuming that the 

detection threshold is mI , then max( )mI I R . If the 

distance between the robot and the target exceeds the 
maximum detection radius of maxR , the target signal 

cannot be detected. 

2.5 Collision problem and speed limit 

Particles are assumed to be infinitely small in particle 
swarm algorithms, so they cannot conflict with each 
other. But in the robot cooperative search system, 
both the robot and the target have their own geometric 
dimensions, so the collision problem needs to be 
considered. Pugh et.al. (2007) adopts the Braitenberg 
obstacle avoidance method, which is that the robot 
will continue to select the previous motion speed after 
changing direction. The obstacle avoidance method 
proposed by Liu et.al. (2012) requires the current 
state of motion of each robot and the speed at the next 
moment. It is difficult to apply for robot with limited 
detection ability and accuracy. Anh et.al. applies the 
artificial potential field method to particle swarm 

optimization to solve the problems of disconnection 
and collision in multi-robot target search  (Hoang, 
2016). This paper uses the same method to solve the 
obstacle avoidance problem in particle swarm 
optimization. 

The particles in the basic particle swarm 
optimization algorithm have no acceleration and 
speed constraints, but the speed of the robot is limited 
in reality. If the speed of the robot obtained by particle 
swarm algorithm exceeds the maximum, the speed 
will be set to the maximum value. Only in this way 
can the collision problem be handled at each step and 
the robot can avoid crossing each other. Furthermore, 
in order to make each step of the robot not seem to be 
done in a flash. The moving distance of the robot in 
each loop is divided into several segments to make its 
moving trajectory smoother. 

2.6 Division of tasks 

One of the most commonly used methods of task 
assignment is market based strategy (Dias, 2006). It 
is not suitable to adopt the market based strategy in 
swarm robotic system. The decomposition of the 
tasks is accomplished by the robots autonomously in 
the framework of swarm robotic system (Liu, L., 
2012). The global division of tasks is completed after 
each robot decides its own goal. Therefore, the most 
commonly used method of division in swarm robot 
system is the method based on threshold (Zhang, 
2014). This paper adopts the method based on 
threshold to divide the tasks. 

2.7 Adjustment of division 

The target detected first will take the attention of 
much more robots. It is possible all the robots that 
have detected the target will take the target as their 
goals, if we do not introduce the adjustment of task 
selection. Which will cause local crowding and waste 
the resources of system. Furthermore, it will reduce 
the efficiency of global search.  

Based on the intensities of the objective signal 
detected by the robots. We rank the robots those 
choose to search the same target. Zhang et.al. (2014) 
point out that the ideal search efficiency can be 
achieved by setting the maximum number of robots 
to six in an alliance. The alliance is composed of the 
robots with the same target to search. Only the top six 
robots can join in the alliance, while there are more 
than six robots choose the same target. The other 
robots should convert to roaming mode. On the other 
hand, while there are less than six robots choose the 
same target, all these robots can join in the alliance. 
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Furthermore, we adopt the mechanisms of exit and 
punishment (Zhang, 2014). 

3 APE IMPROVED SPIRAL 
ROAMING STRATEGY 

3.1 APE 

Proposed by Khatib.O in 1986 for single robot path 
planning (Kennedy,  2002), APF is now widely used 
in works on multi-robot system. APF generates 
around each robot a virtual potential field containing 
a repulsive field and an attractive field. The attractive 
field directs each robot towards other robots in the 
system while the repulsive field keeps them far away 
from other robots or obstacles. The magnitude of 
potential forces exerted on each robot are 
continuously updated based on the information it gets 
from the immediate surrounding environment, or 
from other robots via connection network (Hoang, 
2016). 

3.2 Spiral roaming strategy 

The size of the space to be explored is much larger 
than the maximum detection distance of the detector 
configured by the robot. When the search begins, the 
robot first enters the random wandering state to find 
the target signal (Xue, 2009). In order to cover as 
much space as possible in the shortest time, we can 
adopt the spiral roaming strategy mentioned by AT 
Hayes (2002), and the explosion dispersing roaming 
strategy proposed by Meng et.al. (2008). In view of 
the fact that the explosive dispersion roaming strategy 
may be too dispersed in the long distance, and then 
the blind zone appears, the spiral roaming strategy is 
adopted in this paper. The spiral can be realized by 
Eq.2. 

cos( / 4 )

sin( / 4 )

x v t w t

y v t w t




    
     

                  (2) 

Where, x and y are the coordinates of the points 
on the spiral, t is the time variable, v is the linear 
velocity, w is angular velocity, / 4  is the initial 
angle. The divergence of the spiral can be controlled 
by controlling those parameters. 

 
 
 

3.3 APE-Spiral Roam 

In the simulation of (Liu, 2010; Xue, 2009) or in this 
paper, in the original spiral roaming state, the robot 
search paths are close to each other, and do not play 
the proper efficiency of multiple robots. The 
efficiency of swarm robotic search has been greatly 
affected. At this point, the machines appear to be 
unintelligent, and on the contrary, when people 
cooperate to find the target, they will inform the 
people within the scope of communication "there is 
no target here. 

It is not a new idea to applying APF to multi-robot 
system. However, in previous works, they are only 
used for formation control and path planning (Hoang, 
2016; Pugh, 2006; Liu, 2012). Furthermore, Anh-Quy 
H et.al. (2016) use APE for the task of space 
exploration. To solve the problem mentioned above, 
we use artificial potential field to simulate human 
communication, that is to tell the surrounding robot, 
search elsewhere. Thus, the original spiral roaming 
strategy is improved. 

 

Figure 1: Potential field. 

The potential field of each robot is shown in Fig.1, 
with the center of the position of each robot as the 
center of the circle, and three circular regions with 
radius of 1R , 2R  and 3R  are established 

respectively. 
In the figure, 0R  is the center of the robot. 1R  is 

the radius of attractive field. The robots are attracted 
by the robot at 0R  when they are between 1R  and 2R

. Between 2R  and 3R , the robots are not affected by 

the robots at 0R  in this area. 3R  is the radius of the 

repulsive field, and the robots are repulsed by the 
robot at 0R  when they are in the repulsive field. 

Under the combined action of attractive field and 
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repulsive field. It avoids the gaps between the robots 
become the blind area of the detection, and also 
prevents the robot from penetrating into the detection 
area of other robots. After introducing the concept 
mentioned above. We let the roaming robot adopt the 
spiral roaming strategy. This is called the Ape-Spiral 
Roam method. To illustrate this method, the 
following Eq.3 is introduced: 

1 2
1 2 1 2 1 2 1 1 2 23

1 2

1 2 3

[u (r ) u (r r ) k u (r r )

k u (r r )]                                                  3

A P E

G m m
F

r
   

 

1 2r

（ ）

 

1,   0
( )

0,   0

t
u t

t


  

                          (4) 

G is the gravitational constant in the formula, and 
k is the adjustment factor. 1m  and 2m  represent the 

reliability values of robots. 12R  is the distance vector 

from robot 1 to robot 2. 12F  is the force of robot 1 

acting on robot 2. The combinative force of other 
robots under robot j is calculated by Eq.5: 

1
APEj AP

N

i
EijF F



                            (5) 

The combinative force gives an additional 
acceleration component to each robot. The velocity of 
each robot is calculated by Eq.6: 

     1 = +i i APEiv t v t v t            (6) 

4 AO IMPROVED PSO 

4.1 Premature convergence of PSO 

PSO algorithm shows good performance in multi-
target search. But in the traditional particle swarm 
algorithm, in the later stage of the search process, 
after several cycles, the particles are likely to follow 
the local optimal particles to fly. Thus, the ability of 
individual exploration decreases and premature 
convergence occurs. 

Similarly, the location of the local optimal robot 
is not the location of the target in multi-target search 
system. Premature convergence is also easy to 
happen. It is better to direct robots to the potential 
target position than to direct robots to the optimal 
position in the neighborhood. 

4.2 Auxiliary orientation technology 

Inspired by localization technology, directional 
technology is introduced into particle swarm 
optimization. Before the premature convergence 
occurs, the position of the target is estimated by using 
the robot which satisfies the distance between each 
other by local communication. The estimated position 
is introduced into particle swarm optimization to 
improve the searching ability of PSO. 
 

The signal intensity perceived by the optimal 
robot is directly related to the distance between the 
robot and the signal source. The signal intensity can 
be used to estimate the distance between the signal 
source and the local optimal robot by Eq.7. Where i 
is the number of the robot. It can be inferred that the 
signal source is in a circular orbit around the local 
optimum robot, whose radius is the estimated 
distance. 

d | / I |i iP                            (7) 

If there is another robot directly detects the same 
source. We can find the distance between the second 
robot and the signal source in the same way. The 
signal source is also in a circular orbit around the 
robot, whose radius is the estimated distance. 
Suppose the coordinates of two robots are 1, 1( )x y  and 

2, 2( )x y . Then two intersection points can be obtained 

by solving the system of Eq.8 formed by two circles. 

2 2 2
1 1 1

2 2 2
2 2 2

( ) ( )

( ) ( )

x x y y d

x x y y d

    


   
                (8) 

Suppose the coordinates of two intersection points 
are 1, 1( )s z  and 2, 2( )s z . The coordinates of the third 

robot are 3, 3( )x y . And 3d  is the distance between the 

third robot and the signal source. Find the distances 
between third robot relative to the two intersections 
by Eq.9. 

2 2
3 3 3( ) ( )i i id x s y z                 (9) 

As the follow Eq.10. If the two distances are not 
equal. The distance which is closer to 3d  is used to 

inferred the position of the signal source. And h is the 
adjustable constant to avoid the mistake choice. In 
this paper we select h=10. 

ICECTT 2018 - 3rd International Conference on Electromechanical Control Technology and Transportation

480



 

3 3 3 3

,
3 3 3 3

( , ),| | | |

( , ),| | | |
i i i j

s z
j j j i

s z d d h d d
x

s z d d h d d

        
     (10) 

Where ,s zx  is the estimation position of the signal 

source. Which is introduced into particle swarm 
optimization by Eq.11. 
 

'
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( )
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t

t



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                      (12) 

Where fsd  is the distance from the first robot to 

the second robot that detect the same target. L is the 
adjustable factor to avoid the second robot being too 
close to the first robot. In this paper we select L=20. 
Nd represent the number of robots that detect the 

same target directly. (t)  is the unit step function, 

,i jx  is the best position of the individual robot, ' ,i j
x  

is the best position of the sub-swarm robots. w is the 
weight of inertia, pw  is the weight of the best 

position of the individual, nw  is the weight of local 

best position. 

, , ,( 1) ( ) ( )i j i j i jx t x t v t          (13) 

The position of every robots is calculated by 
Eq.13. This algorithm is called auxiliary orientation 
technology improved Particle swarm optimization 
algorithm (AO-PSO). 

4.3 Extension of Directional technology 

In the early stage of particle swarm algorithm, there 
is only one robot that detects the target directly. 
Inspired by the characteristics of directional Yagi 
antenna. The position information and the target 
intensity information of the robot which uniquely 
detects the target are stored. The early position of the 
target is estimated by the position information and 
intensity information of a single robot in the scattered 
position. Using the estimated location information to 
direct other robots to detect the target as early as 
possible. 

5 SIMULATION AND RESULTS 

In order to evaluate the effectiveness of the algorithm, 
visual simulation was performed under Matlab. Two 
groups of experiments were carried out under two 
conditions. According to the different experimental 
purposes, various parameters were changed and 
repeated experiments were carried out. The 
experimental results are analyzed and compared with 
the existing methods, and the statistical results are 
obtained. 

5.1 Parameters and conditions 

The main parameters of the simulation include 
subject, object, environment, etc. The parameters are 
shown in Table 1. 

The initial position of each robot is randomly 
generated in the range of 20 to 120 from the starting 
point. The initial velocity of the robot is randomly 
generated between 1 and 5, and the direction is 
random. The target is generated at a random location 
at a certain distance from the starting point. 
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Table 1: Parameter settings for simulation. 

Symbol Meaning Value 

Nrob Number of robots 6-100 

D Number of targets 1-12 

E Size of environment 
1000*1000-
2000*2000 

Rmax Detection distance 100-200 

Rcom Communication radius 300 

P 
The power of the signal 

emitted by the target 
1000 

λ gain 10 

Nmax 
Upper limit of alliance 

size 
6 

T Maximum time 2000 

Vmax Maximum speed 5 

5.2 Experiment 1 

In the first set of experiments. In order to facilitate the 
comparison, the swarm robotic search method in 
paper  (Liu, 2010) is called algorithm 1, and the 
method after using the improved roaming strategy of 
APE in this paper is algorithm M1. 

In order to highlight the difference of search 
efficiency between two algorithms in roaming stage, 
the algorithm stops when the roaming algorithm gets 
the initial position of the target. What enhances the 
alignment of the experiment and highlights the effect 
of the improved roaming algorithm. 

The starting point of robot is fixed near the 
coordinate origin, and the position of target is 
changed continuously. This enhances the adaptability 
of the model and is more suitable for the search model 
in unknown environments. The number of robots is 
adjusted to 6 and 12, and the number of targets is 
adjusted to 1. Environment size, maximum detection 
distance, and other parameters are shown in Table 2. 

 
 
 
 
 
 
 
 
 
 
 

Table 2: Parameter settings for Experiment 1. 

Symbol Meaning Value 

Nrob Number of robots 6-12 

D Number of targets 1 

E Size of environment 
1000*1000-
2000*2000

Rmax Detection distance 100-150 

R1 
Radius of attraction 

force
300 

R2 Radius of stable region 280 

R3 
Radius of repulsive 

force
180 

P 
The power of the 

signal emitted by the 
target

1000 

λ gain 10 

T Maximum time 2000 

Vmax Maximum speed 5 

 
Performance criteria: the probability of 

completing tasks, the average steps required to 
complete the task, the average path length, the 
scalability of the system scale, the adaptability of the 
environmental scale, and the adaptability of the 
detection range. 

In each case, we have done 120 repetitions. Then 
the average of the results is calculated. The 
probability of the two algorithms to complete the task 
is one hundred percent. The comparison of other data 
is shown in Fig.2 to Fig.5. 

 

 

Figure 2: For 6 robots with the detect range of 100. 
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Figure 3: For 12 robots with the detect range of 100. 

We can see from Fig.2 and Fig.3 In aspect of 
system size, the number of robots in the system 
increased from 6 to 12. In aspect of environmental 
scale adaptation, the position of the target varies from 
(500,500) to (900,900). Compared with the algorithm 
1, the algorithm M1 has significant improvement in 
two aspects: the average steps required to complete 
the task and the average length of the path to complete 
the task. 

 

Figure 4: For 6 robots with the detect range of 150. 

 

Figure 5: For 12 robots with the detect range of 150. 

Compared with Fig.2 and Fig.3, the detection 
distances in Fig.4 and Fig.5 are increased from 100 to 
150. Compared with algorithm 1, the algorithm M1 
still has significant improvement in two aspects: the 
average steps required to complete the task and the 
average length of the path to complete the task. Thus, 
the advantages of the algorithm M1 are verified in the 
detection range adaptation. 

In summary, the APE improved roaming strategy 
proposed in this paper has obvious effect in 
improving the search efficiency of roaming stage. 

5.3 Experiment 2 

In the second experiment, the particle swarm 
optimization algorithm in the literature  (Zhang, 
2014) is called algorithm 2, and the AO-PSO 
algorithm is called algorithm M2. 

In order to emphasize the difference between the 
two algorithms in the particle swarm search stage, the 
roaming stage is not improved. In order to compare 
the efficiency of particle swarm optimization after the 
improvement of AO-PSO, and enhance the contrast 
effect, the maximum detection distance is expanded 
to 250. Other parameters such as the size of the 
environment, the number of robots, the number of 
targets, etc. are shown in Table 3. 
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Table 3: Parameter settings for Experiment 2. 

Symbol Meaning Value 

Nrob Number of robots 12-18 

D Number of targets 1 

E Size of environment 
1000*1000-
2000*2000

Rmax Detection distance 150-250 

P 
The power of the 

signal emitted by the 
target

1000 

λ gain 10 

T Maximum time 2000 

Vmax Maximum speed 5 

 
Performance criteria: the probability of 

completing tasks, the average steps required to 
complete the task, the average path length, the 
scalability of the system scale, the adaptability of the 
environmental scale, and the adaptability of the 
detection range. 

In each case, we have done 120 repetitions. Then 
the average of the results is calculated. The 
probability of the two algorithms to complete the task 
is one hundred percent. The comparison of other data 
is shown in Fig.6 to Fig.9. 

 

Figure 6: For 12 robots with the detect range of 150. 

 

Figure 7: For 18 robots with the detect range of 150. 

We can see from Fig.6 and Fig.7. In the aspect of 
system size, the number of robots in the system 
increased from 12 to 18. In the aspect of 
environmental scale adaptation, the target position 
varies from (500,500) to (900,900). Compared with 
the algorithm 2, the algorithm M2 has significant 
improvement in two aspects: the average steps 
required to complete the task and the average length 
of the path to complete the task. 

 

Figure 8: For 12 robots with the detect range of 250. 
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Figure 9: For 18 robots with the detect range of 250. 

Compared with Fig.6 and Fig.7, the detection 
distances in Fig.8 and Fig.9 are increased from 150 to 
250. Compared with algorithm 2, the algorithm M2 
still has significant improvement in two aspects: the 
average steps required to complete the task and the 
average length of the path to complete the task. Thus, 
the advantage of the algorithm M2 has the 
adaptability of detection range. 

In summary, the AO-PSO algorithm proposed in 
this paper has obvious effect in improving the 
efficiency of particle swarm optimization search 
stage. 

6 CONCLUSIONS 

In this paper, we propose algorithm M1 and algorithm 
M2. Two algorithms are used to solve the problem of 
comprehensive efficiency in swarm robotic search. 
The simulation results show that the algorithm M1 
and the algorithm M2 maintain good environment, 
system scale, and detection distance fitness. In the 
case of the same completion rate, the two improved 
algorithms have greatly improved the search 
efficiency compared with the original method. 
Compared with the algorithm 1, through the 
improvement of the M1 algorithm, the time and the 
average path to find the approximate location of the 
target in the roaming phase are reduced. It effectively 
improves the search efficiency of the roaming phase 
in swarm robotic search. Compared with the 
algorithm 2, the improvement of M2 algorithm 
reduces the time consuming and average path of 

collaborative search stage, and improves the search 
efficiency in the collaborative search phase. 
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