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The growth of solar energy resources in recent years has led to increased calls for accurate forecasts of solar

irradiance for the reliable and sustainable integration of solar into the national grid. A growing body of aca-
demic research has developed models for forecasting solar irradiance, identified metrics for comparing solar
forecasts, and described applications and end users of solar forecasts. Ontologies are explicit and formal voca-
bulary of terms and their relationships that facilitate better communication, improve interoperability, and refine
knowledge reuse by experts and users of the domain. This paper describes a step towards using ontologies to
describe the knowledge, concepts, and relationships in the domain of solar irradiance forecasting to develop a
shared understanding for diverse stakeholders that interact with the domain. A preliminary ontology on solar
irradiance forecasting, SF-ONT, was created and validated on three use cases.

1 INTRODUCTION

Spurred by declining photovoltaic (PV) module pri-
ces, favorable government policies, and growing con-
cerns about mitigating climate change, recent years
have seen a rapid growth in the proliferation of solar
electric systems. As PV markets continue to grow, the
variable, intermittent and non-dispatchable nature of
solar energy introduces additional uncertainty and va-
riability in grid operations (Widiss and Porter, 2014).
High-precision forecasts of solar energy output can
prove crucial for the reliable, affordable and sustaina-
ble grid integration of solar electric systems (Diagne
etal., 2013).

Solar irradiance forecasting (a proxy for solar
energy forecasting) is an emerging knowledge dom-
ain that integrates expertise from diverse fields - rese-
archers advancing forecast models, regulatory agen-
cies developing performance characteristics, deve-
lopers and practitioners integrating solar into the
grid and so on. Due to differing technical back-
grounds, expertise, knowledge hierarchies, termino-
logies, technical knowledge, and expectations, these
diverse stakeholders may lack a shared understanding
of the domain in which they interact.

Modern ontologies have emerged as a way to
share common understanding of structure of infor-
mation between communities of interest, either hu-
man or software agents. By separating domain kno-
wledge from operational, ontologies promote intero-
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perability, translating between different methods, mo-
dels and paradigms (Noy et al., 2001).

A literature review reveals no comprehensive se-
mantic ontology or application of semantic ontolo-
gies to represent information and knowledge about
the domain of solar irradiance forecasting. In anti-
cipation of a rapidly growing market in solar energy
generation and integration in the electric grid, we pre-
sent a solar forecasting ontology (SF-ONT) that co-
vers solar forecasting models, their performance me-
trics, likely end-users, and grid applications. This on-
tology is then is validated on hypothetical use cases
likely to be experienced by sample end-users.

2 RELATED WORK

To develop an ontology for solar forecasting it is ne-
cessary to understand about the forecasting problem
itself, the many models that have been applied to this
problem, the users and entities that may use the mo-
dels, applications for which the models help answer
questions, metrics to compare models, and what other
ontologies exist for these topics. Each of these points
will be briefly addressed in this section.

Solar energy output of a solar PV system is a
function of physical characteristics of the solar PV
system and the short-wave solar radiation flux inci-
dent on it’s surface (McEvoy et al., 2011). This solar
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irradiance is a sum of many parts. At the top of the at-
mosphere, solar radiation is constant over time. Cloud
cover, aerosol and dust particles absorb and scatter ra-
diation as solar irradiance passes through the atmos-
phere. Consequentially, the solar irradiance that rea-
ches any point on earth’s surface is a function of at-
mospheric and weather conditions above the location
of interest. All solar irradiance forecast models offer
a means to capture this relationship.

We review widely used forecast models, with con-
sideration given to their temporal and spatial forecast
horizons (Figure 1). Persistence Models are naive
models that assume solar irradiance at current time-
step persists till the next; used for short term fore-
casts to benchmark other models. Empirical Models
are based on empirical observations, not the physi-
cal relationships among inputs to the model; exam-
ples include sunshine based, temperature based, and
ASHRAE models (Paulescu, 2008).Radiative Models
employ remote sensing instruments on satellites or
ground measuring stations that model irradiance as
a function of altitude, location and atmospheric con-
ditions on clear sunny days (Ruiz-Arias and Guey-
mard, 2018). Time Series Models forecast trends in
solar irradiance based on statistical modeling of ob-
served patterns in the past. Several categories of mo-
dels include ARMA, ARIMA, ARIMAX, seasonal-
ARIMA, etc. (Prema and Rao, 2015).

Artificial Neural Network (ANN) Models are gene-
ral purpose computational intelligence machines that
can be trained to learn and recognize patterns using
atmospheric variables and time-series irradiance data
as inputs (Voyant et al., 2017). Cloud Imagery Mo-
dels use satellite derived models or ground-based sky
imaging cameras to estimate cloud cover as an inverse
proxy for solar irradiance (Barbieri et al., 2017). Nu-
merical Weather Prediction (NWP) Models treat the
atmosphere as a fluid, using thermodynamics to esti-
mate the state of the fluid in the near future and pro-
ducing forecasts of about 125 weather variables inclu-
ding solar irradiance (Reikard et al., 2017).

Accurate solar forecasting has applications offe-
ring value to multiple stakeholders in the electric
grid. Long-term forecasts of utility-scale solar may
be used for reliability planning and scheduling gene-
ration sources. Medium-term forecasts of roof-top so-
lar at the distribution end may be employed in fore-
casting demand within a load-serving entity’s service
territory. Competitive electric markets may use short-
term solar forecasts for bidding and trading energy
services. Table 1 offers a summary of solar forecas-
ting applications, end users and temporal domains in
the context of the North American electric grid.

Questions stemming from a specific grid opera-
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Figure 1: Spatial and temporal domains of solar irradiance
models, adapted partly from (Pelland et al., 2013; Diagne
etal., 2013).

tions application can be linked to a irradiance fore-
casting model type via the temporal domain. For
example, a utility performing systems planning out
for several years (long term horizon) would not want
to consider a persistence irradiance forecast model
(which is valid for short term time scales). Similar
links via the spatial domain are also applicable.

Accurate solar forecasts facilitates more efficient
integration of solar into utility resources. It is im-
portant to develop metrics to measure and assess the
impact of forecasts have on integrating solar into the
national grid (Zhang et al., 2015). The United Sta-
tes’ Department of Energy Sunshot Initiative identi-
fies criteria that makes a solar forecasting model use-
ful - simple and easily understandable; provides acti-
onable insights; input data is manageable and acqui-
rable; and practical for operational and planning deci-
sions.

The solar forecasting ontology presented here is
novel to the literature, however, a few other related
ontologies exist (note, ontologies which are incorpo-
rated into SF-ONT are discussed in detail in Sec. 4.1).
Solar radiance is featured as one of many environ-
mental or meteorological variables in ontologies like
EEPSA (Esnaola-Gonzalez and Bermudez, 2015)
and SREQP (Sanchez-Cervantes et al., 2016), wit-
hout description of crucial attributes like forecast mo-
dels, duration, resolution and so on. While SF-ONT
describes models for solar energy generation, ontolo-
gies like Fiesta-Ont (FIESTA-IoT, 2017) and Power-
ont (Bonino et al., 2015) describe smart-home appli-
ances and other demand side energy management ser-
vices. As smart-grid research and development con-
tinues to drive support for unified semantic ontology
for energy management (Cuenca et al., 2017), future
updates to SF-ONT and related ontologies may im-



Table 1: Solar forecasting end-users, applications, and time-horizon; adapted from (Widiss and Porter, 2014; Zieher et al.,
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2015).

Users Applications Time-Horizon
Reliability planning Long Term
Congestion management Medium Term

ISO/RTO Unit commitment & dispatch Short & Medium Term
Load-flow, ramps & curtailment | Short & Medium Term
Security. maintenance & outage | Medium & Long Term
System planning Long Term

Distribution Utilities | OUA8¢ management

Medium Term

Load forecasting

Medium Term

Smart Grid management Short & Medium Term
Load Serving Entity | Scheduling & balancing Short & Medium Term
Energy Traders Bidding strategies Short & Medium Term
Research labs Integration & simulation studies | All Terms

Project developers

prove their interconnection and interoperability.

Some recent work describes the role of forecasts
in managing power flow in smart grids. For instance,
authors in (Maffei et al., 2018) describe an Artifi-
cial Neural Network (ANN) model that uses hourly
energy and weather data to forecast solar irradiance.
However, they do not offer a publicly available on-
tology, or provide insights into how this domain was
mapped into the semantic vocabulary. Furthermore,
the particular forecast model described in this paper
with its specific inputs, outputs and other attributes
can be easily modeled as an instance of the super-
class ANNmodels in SF-ONT.

3 ONTOLOGIES

The domain of solar forecasting integrates know-
ledge from fields like cloud physics, statistical me-
chanics, artificial intelligence, grid-operations, and
energy markets. Due to differing technical back-
grounds, expertise, knowledge hierarchies, agents in
the same environment may lack a shared understan-
ding of the domain in which they interact. Natural
differences in the definitions of concepts, structures,
objects and relationships may lead to poor communi-
cation, reduced interoperability, and system integra-
tion challenges (Uschold and Gruninger, 1996). On-
tologies have emerged as means to preserve interope-
rability, formally modeling domain knowledge using
instances, sets of concepts, and relationships between
sets of concepts (Guarino et al., 2009). While the fe-
atures of an ontology can also vary by the language
used to describe the ontology, this paper uses Web
Ontology Language (OWL) to represent domain kno-
wledge of solar forecasting models.

Web Ontology Language (OWL) (McGuinness
et al., 2004) is a formal semantic language from the
World Wide Web Consortium (W3C) that offers a rich

set of differential logic operators (e.g., intersection,
union), allowing for complex concepts and relations-
hips to be built from simpler concepts. Any domain
can be modeled through a shared vocabulary of indi-
viduals, properties and classes. Individuals represent
objects in the domain of interest, explicitly defined as
same or different to each other. Properties are the fe-
atures and attributes of Individuals. Classes defined
by the relationships between Individuals, or through
arestriction on Properties.

3.1 Ontological Development Methods

Many approaches have been proposed for formally
developing ontologies. Uschold and King is among
the first ontology development methods publis-
hed (Uschold et al., 1998). The approach uses an ite-
ration through the following stages - identify domain
vocabulary, purpose, intended use, end-users, scope,
terms; capture and code textual concepts and relati-
onships into formal ontological language; evaluate re-
quirements; and document results from each stage to
aid the next iteration of ontology development.
SENSUS is a natural language based ontology de-
veloped to provide a broad conceptual structure for
work in machine translation. Rather than develop a
step by step or iterative process, SENSUS outlines
general principles for designing an ontology - Do not
over-commit on representational choices; extend ba-
sed on actual use conditions; integrate horizontally
with other ontologies; and cluster concepts to struc-
ture ontologies (Swartout et al., 1996).
METHODONTOLOGY acquires, evaluates and
documents domain knowledge through an iterative
process of ontology specification (vocabulary, pur-
pose, scope, term, and other factors); conceptuali-
zation (concepts, verbs, class attributes and instances
of classes); integration (reusing existing ontologies);
and implementation (check for incomplete, inconsis-
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tent and redundant knowledge) (Gruber, 1993)

This paper uses Ontology 101 (Noy et al., 2001)
and the Protégé software tool (Musen, 2015) to de-
velop an ontology for solar forecasting. This method
was chosen for its accessibility to modelers with limi-
ted prior experience and its flexibility of informal gui-
delines, providing multiple entry points into the pro-
cess of domain knowledge translation.

4 SOLAR FORECASTING
ONTOLOGY

The solar forecasting ontology (SF-ONT) developed
in this paper integrates knowledge from academic pa-
pers, grey literature, as well as industry, government,
and expert papers. This ontology is intended to be
used by project developers to compare solar forecas-
ting models, and choose an appropriate model for
their use-case scenario, while working within the 1i-
mitations of data and instrumentation availability.

4.1 Domain Knowledge Description

We will walk through a brief overview of the creation
of the SF-ONT.

Competency Questions: Table 2 enumerates a
sample of competency questions for illustrative pur-
poses and identifies the important terms that need to
be explained to the user. Our ontology will make ’sta-
tements’ about these terms through relationships be-
tween them. At this stage, terms and relationships
are expressed in the natural language without wor-
rying about overlap of concepts. Competency questi-
ons were developed with collaborators for a research
project on microgrids.

Related Ontologies: Reusing existing and valida-
ted ontology saves time and effort. Many concepts
defined in an different ontology can be directly impor-
ted, with little modification, and applied to the dom-
ain of interest. The following formal ontologies were
considered for reuse in SF-ONT.

e OWL-Time (W3, 2017) is a list of temporal con-
cepts built for describing time related content of
Web pages like Intervals - spans of time that have
an beginning and an end, and Instants - intervals
with zero length that are used to express notions
of time time like duration, begins, ends, etc.

e OWL-Basic-GEO (W3, 2003) is a Resource Des-
cription Foundation (RDF) vocabulary that provi-
des semantic definitions for basic geographic con-
cepts like latitude, longitude and other spatial con-
cepts.

266

e Units of Measurement (Rijgersberg et al., 2013)
is an OWL ontology of the domain of measures
expressed in terms of a base set of SI system of
units. For example, electromagnetic irradiance is
W M2

e Weather ontologies that describe concepts from
the domains of weather and weather forecas-
ting were considered (W3, 2005; Gajderowicz,
2008; Staroch, 2013). However, these ontologies
describe weather variables like sunrise time and
windspeeds that are not relevant for SF-ONT’s
purposes. Since these ontologies reused modified
concepts of OWL-Time and Units, we sought to
avoid the risk of obfuscating domain knowledge
due to overlapping classes, predicates and con-
cepts.

e Concentrated Solar Power ontology, first deve-
loped by (Piazza and Faso, 2014), largely serves
as a proof of concept for formally representing
knowledge of solar radiation modeling and fore-
casting by the means of ontologies. However, the
domain of this ontology is limited to just one type
of solar energy systems - concentrated solar power
systems, and does not include expertise on end-
users and grid applications. Nevertheless, con-
cepts like temporal and spatial domain of forecast
models were reused for SF-ONT.

Defining Classes and Hierarchy: Using compe-
tency questions motivated above (examples in Ta-
ble 2), we enumerated a list of concepts (terms and
their properties), described either in terms of clas-
ses or individual instances. Classes are organized
into a hierarchical taxonomy, where subclasses in-
herit the properties of their superclass and instance
of a subclass by definition will be an instance of the
superclass; see example in Figure 2. ANN is a sub-
class that inherits the properties and relationships of
the class ForecastModels - hasInputs & hasOutputs.
ANN; represents an individual instance of a class of
ANN models such as one implemented in (Cuenca
et al., 2017).

Defining Properties and Relationships: Classes
can also be defined by the relationships between con-
cepts. In Figure 1, short, medium and long terms are
the temporal domains of forecast models can repre-
sented by classes and relations as shown in Figure 3.
Relationships are explicitly encoded in the develop-
ment process of the ontology where models like NWP
are subclasses of the class ForecastModels, but are
connected to the class MediumTerm through the rela-
tion hasTemporalDomain. Overall, the summary sta-
tistics and top-level classes of SF-ONT are presented
in Figure 4. Full details of SF-ONT are available at
http://pages.mtu.edu/ lebrown/research/sf-ont/.
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Table 2: A sample of competency questions.

Competency questions Class Property Class
What data do I need for my model to work? ForecastModels hasInputs ForecastInputs
What models can I use with these weather variables? | ForecastModels hasOutputs ForecastOutputs
Can I use this model at this location? ForecastModels | hasGeographicAttr Lat & Long.
Who will use my forecast model and for what? EndUsers isResponsibleFor Applications
Forecastinputs
— Metrics
= - Axiom 655
7. ~— \7’_ - Declaration axioms count 191 I~ Applications
I AN Class count 96 > EndUsers
1 H — .
1 g _ Timeser: g:g(;;z:":v":;‘::"( 23 » () ForecastAttributes
\/ X Iimeseries
It ra) Individual count 57 » ForecaStDat_a
: K ‘: Annotation Property count 1 » ForecastHorizon
[ ! DL expressivity SHI(D) > ForecastMetrics
L Class axiome » @ ForecastModels
-~ SubClassOf 293 > ModelAttributes
Y EquivalentClasses 10 > s tialD o
= DisjointClasses 2 patiaiDomain .
& ANN_L 2 TemporalDomain
Hidden GCI Count 11 TemporalUnit

Figure 2: Example of hierarchy of classes in the ontology.
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Figure 3: Example of relation between classes.
4.2 Testing and Validation of SF-ONT

Once domain knowledge has been explicitly speci-
fied, the semantics of an ontology are verified to avoid
overlap of concepts and relationships. Simple reaso-
ners check for logical consistency by testing if ob-
jects and properties are linked correctly based on de-
fined rules and axioms. In the hierarchical model of
classification, the Protégé software environment that
supports asserted hierarchies that are manually named
and explicitly constructed; or inferred hierarchies that
are that are not explicitly stated in the data model but
instead are inferred using advanced reasoners. Such
advanced reasoners help populate relationships bet-
ween individuals in a domain without explicitly enco-
ding every single relationship from the domain.
Beyond such logical checks, a systematic evalu-
ation can help users make informed decisions about
choosing an ontology that best fits their needs. Onto-

Figure 4: SF-ONT summary statistics and classes expres-
sing top-level concepts in solar irradiance forecasting.

logies should be understandable, and offer a concep-
tual foundation for a range of anticipated uses. On-
tologies have to be further validated to test that they
address the requirements that motivated their crea-
tion. Validation of ontologies through illustrating use-
cases is a common practice to determine if an onto-
logy is accurate, adaptable and clear (Staab and Stu-
der, 2013). Accurate ontologies comply to the know-
ledge experts of the domain, and correctly represent
the concepts of the world. The use-cases that fol-
low were developed in consultation with collabora-
tive research projects on microgrids and by no means
exhaustive, but serve as a means to illustrate the qua-
lity of the ontology.

4.2.1 Identifying Appropriate End-users based
on Constraint on Forecast Models

Consider a real world scenario where a research lab
develops an ANN based solar forecasting model, and
is interested in identifying the end-users that would
benefit from such a model. In our domain knowledge
of solar forecasting, end-users are not explicitly rela-
ted to forecast models. However, in the Protégé soft-
ware environment, expert reasoners like FACT++ can
be used to infer a relationship. For this use case, a new
subclass ANNEndUsers, a subclass of EndUsers is
specified using the class hierarchy relationships show
in Figure 5. Figure 6 illustrates the populated inferred
dummy class.
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Description: ANNEndUsers DEEE

Equivalent To

© EndUsers and isResponsibleFor some
(Applications and hasTemporalDomain some
(TemporalDomain and isTemporalDomainOf
some ANN))

SubClass Of
© EndUsers

Figure 5: The asserted class relationships of a dummy class
called ANNEndUsers.
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Figure 6: The inferred hierarchy of the ANNEndUsers
class.

4.2.2 Identifying Appropriate Grid Applications
based on Data Constraints

Consider a scenario where a solar developer wants to
develop a forecast model to inform specific grid ap-
plication, but is constrained by the kind of data varia-
bles available as forecast model inputs. In our domain
knowledge of solar forecasting, grid applications are
not explicitly related to input variables of forecast mo-
dels. However, expert reasoners can be used to infer
a relationship. For this case, a dummy class of appli-
cations that may use solar irradiance forecasts when
only parametric constants are available is created (Fi-
gure 7) with the inferred hierarchy shown in Figure 8.

4.2.3 Selecting Appropriate Models based on
Constraints on End-users

Consider a real world scenario where a programmer
wants to develop solar forecasting tools for a specific
end user, a Load Serving Entity (LSE) for instance.
In this use case scenario, the developer is interested
in identifying all solar forecasting models that could
be used to forecast solar irradiance according to pa-
rameters that could most benefit their client. At this
stage of the development process, the developer does
not have the domain expertise to identify appropri-
ate grid applications for their forecast model. A new
subclass ModelsForLSE is created under Forecast-
Models to represent the desired class (see Figure 9).
The inferred hierarchy of ModelsForLSE is shown in
Figure 10.
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Description: ParametricConstantsApplications

Equivalent To

© Applications and hasTemporalDomain some
(TemporalDomain and isTemporalDomainOf
some (ForecastModels and hasInput some
ParametricConstants))

SubClass Of
© Applications

Figure 7: Example of identifying grid application based on
data constraints - ParametricConstraintsApplications.

A SimulationStudies

GridMaintenance )

bilityPlanning

emPlanning )

{IntegrationStudies

Figure 8: The inferred hierarchy of the ParametricCon-
straintsApplications class.

S CONCLUSION AND FUTURE
WORK

This paper describes the basics of solar irradiance
and forecasting, reviews academic literature on recent
advancements in improved solar forecasting models,
and identifies grid applications and end-users that will
benefit from accurate solar forecasts. In doing so,
the paper integrates knowledge from a growing body
of academic research advancing models for forecas-
ting solar irradiance, with expertise from practitioners
developing applications for integrating solar into the
grid.

Due to differing technical backgrounds, expertise,
knowledge hierarchies, terminologies, technical kno-
wledge, and expectations, the diverse stakeholders
in the world of solar forecasting may lack a shared
understanding of the domain in which they interact.
In anticipation of a rapidly growing market in solar
energy generation and integration, this paper descri-
bes a step towards improving communication, intero-
perability and knowledge-sharing about solar forecas-
ting, using ontologies.

Subsequently, the paper describes ontologies and
briefly reviews methodologies for developing ontolo-
gies. Using Ontology 101, an ontology development
methodology, the paper then describes SF-ONT - a
formal ontology that maps the knowledge domain of
solar irradiance forecasting. Finally, the paper des-



Description: ModelsForLSE DEEE

Equivalent To
© ForecastModels and hasTemporalDomain some
(TemporalDomain and isTemporalDomainOf
some (Applicati and i ibilityOf some
LSE))

SubClass Of
© ForecastModels

Figure 9: Class hierarchy relationship to identify class Mo-
delsForLSE.
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Figure 10: The inferred class hierarchy of ModelsForLSE.

cribes the testing and validating of solar forecasting
ontology for accuracy and completeness using built-
in Protégé software reasoners.

SF-ONT is presented as a starting point and a first
step for co-creating a shared ontological mapping of
the of the solar forecasting domain. Currently, SF-
ONT identifies all the top level concepts in the dom-
ain of solar irradiance forecasting, and models their
relationships within the context of the current know-
ledge in the domain.

As research advances forecast models with bet-
ter spatial and temporal resolution, and as regula-
tory agencies continue to refine metrics for compa-
ring forecast qualities, and as energy markets con-
tinue to evolve, SF-ONT will need to be updated
to reflect the most current state of domain know-
ledge. New instances will have to be populated
and existing relationships, properties and classes may
have to be (re)defined. To facilitate reuse, dupli-
cation and updates, SF-ONT is made available at
http://pages.mtu.edu/ lebrown/research/sf-ont/.

As knowledge in the domain expands, this onto-
logy can be extended from the basic building box, mo-
dified and maintained to suit the evolving needs of the
users. One priority area for SF-ONT extension is to
capture domain knowledge of PV systems planning
and design. For instance, concentrated solar plants

An Ontology for Solar Irradiation Forecast Models

(CSP) and utility-scale solar farms (USF) are high
intensity generators directly connected to the trans-
mission infrastructure and dispatched through energy
markets, which calls for location specific forecasts at
a high temporal resolution. By contrast, rooftop solar
is connected to the distribution grid, often times ’be-
hind the meter’ with lower expectations for forecast
resolutions.

Another priority area for extension is PV system
security and cyber-security, with a particular empha-
sis on grid resiliency. The key challenge in this con-
text will be preserving interoperability between diffe-
rent domains of knowledge as their formal ontologies
are developed and mapped independently. In this con-
text, future updates to SF-ONT may need to actively
involve domain experts and end-users in the ontology
development process. Ontology engineering metho-
dologies like HCOME (Kotis and Vouros, 2006) em-
power domain experts and end users to “manage on-
tologies shaping their common information space”,
which can lead to richer, more relevant, and regularly
updated “living” ontologies.
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