Automatic Discovery and Selection of Services in Multi-PaaS

Keywords:

Abstract:

Environments

Rami Sellami and Stéphane Mouton
Software and Services Technologies department, CETIC, Charleroi, Belgium

Cloud Computing, Multi-PaaS, PaaS Service Discovery, PaaS Services Selection, Semantic Web, Ontologies.

Over the past couple of years, a new paradigm has emerged which is referred to as DevOps. It is a methodology
to efficiently manage the relationship between development and operations in order to automate applications
lifecycle. Spurred by its popularity, it is used today to manage applications in the PaaS level of the Cloud.
However, it becomes very challenging when it comes to deploying an application in multi-PaaS environments.
The first challenge is to discover and select services taking into account the application requirements and
on the PaaS capabilities. Indeed, PaaS providers do not use the same mechanisms to describe and expose
their services. Added to that, there is no standard way to describe application requirements. To tackle these
anomalies, we propose an automatic and declarative approach to discover and select services offered by PaaS
providers. It enables developers to express their requirements and PaaS providers to expose their offers in
manifests. To do so, a matching algorithm selects the most appropriate offer in terms of PaaS capabilities to
deploy the application. An offer may involve either a single or multi-PaaS provider(s). The key ingredients of
our solution are threefold: (1) manifests to describe application requirements and the offers, (2) an ontology
to remove semantic ambiguities in PaaS providers capabilities, and (3) a matching algorithm to elect the most
appropriate offer to the application.The solution is proposed as a REST API and is delivered with a Web client.

1 INTRODUCTION

Cloud Computing has become nowadays a buzzword
in the Web applications world. It is defined by the
National Institute of Standards and Technology (Peter
and Tim, 2009) as a model for enabling on-demand
remote access to a shared pool of configurable com-
puting resources (i.e. processing, storage and net-
works) that can be released as fast as they have been
provisioned to users. These resources are available
in self service and without human interaction from
Cloud service providers. Cloud Computing is cha-
racterized by its economic model referred to as “pay-
as-you-go”. This latter allows users to consume com-
puting resources as needed.

Cloud services are delivered under three well dis-
cussed layers. First, the Infrastructure as a Service
(TaaS) which ensures computer resources with a low
level of abstraction such as virtual machines, storage
and networks. Second, the Platform as a Service
(PaaS) that maintains and manages all software com-
ponents and libraries on top of the IaaS so that custo-
mers only need to deploy their applications to run it.
Third, the Software as a Service (SaaS) which repre-

182

Sellami, R. and Mouton, S.
Automatic Discovery and Selection of Services in Multi-PaaS Environments.
DOI: 10.5220/0006928401820190

sents a set of tools and software ready for the use.

For each layer, resources can be provisioned prag-
matically via Application Programming Interfaces
(API). Doing so, it is particularly important in the
case of TaaS and PaaS since applications execution
relies on the precision of the configuration of compu-
ting resources needed to run them. The price for such
automated configuration management is that develo-
pers have to program their applications requirements
in terms of infrastructure and platform. Programming
resources reservation is sometimes referred for laaS
as Infrastructure as Code (Hiittermann, 2012). In ad-
dition, remote application deployment and configura-
tion allows to reliably reproduce an environment nee-
ded to run applications. Those configuration and de-
ployment actions are usually assigned to the operation
staff. The DEVOPS term (Gene et al., 2016) has been
coined to describe the merge of the two roles, soft-
ware DEVelopment and OPerationS, in order to fully
exploit the potential of Cloud Computing.

In this context, we find today a plethora of com-
mercial solutions and research projects (Keith et al.,
2013) (Sellami et al., 2017) that have sought to sup-
port the whole application lifecycle (especially the

In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 182-190

ISBN: 978-989-758-324-7

Copyright © 2018 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

Automatic Discovery and Selection of Services in Multi-PaaS Environments

discovery and the deployment steps). These soluti-
ons target single laaS and/or PaaS environments. In
our work, we mainly focus on the PaaS level. Indeed,
a PaaS provider is supposed to support the whole ap-
plication requirements during its lifecycle. However,
these requirements frequently change. Thus, it seems
illusory to find a single PaaS provider that efficiently
supports various applications with different require-
ments.

To circumvent this obstacle, an application may
be deployed in multi-PaaS providers (Athanasopou-
los et al., 2015) (Sellami et al., 2017) (Ahmed-Nacer
et al., 2017) and benefits from various PaaS providers
capabilities at the same time. In a previous work (Sel-
lami et al., 2017), we focused on the current state-of-
the-art about applications deployment in multi-PaaS
providers and we highlighted the main requirements
of such environment. In this paper, we start realizing
these requirements and we propose a solution to auto-
matically and declaratively discover and select servi-
ces in multi-PaaS environments. More precisely, our
contributions are (1) two models enabling to describe
application requirements and PaaS providers capabi-
lities, (2) an ontology (called 2PCR) to automate the
discovery process and remove semantic ambiguities
in expressing PaaS capabilities , and (3) a matching
algorithm to select the most appropriate environment.
This latter may be composed by either a single or
multi-PaaS provider(s).

The rest of this paper is organized as follows.
Section 2 presents the MoDePaaS project and motiva-
tes our proposal. In section 3, we introduce the prin-
ciples and the key components of our solution to au-
tomatically discover services in multi-PaaS environ-
ments. In Section 4, we present our matching algo-
rithm. Section 5 introduces a proof of concept and
the evaluation of our solution. Section 6 presents the
related work and Section 7 provides a conclusion.

2 USE CASES AND MOTIVATION

The MoDePaaS project aims at defining a set of tools
and techniques to automatically deploy software ap-
plications in multi-PaaS environments. It will help
developers and alleviate the burden of their tasks. In-
deed, they are faced with several problems and ob-
stacles. They must manually discover the capabilities
of each PaaS provider, taking into account the appli-
cation requirements. Then, they have to select the
most appropriate PaaS providers in which they will
configure and deploy the application. However, these
tasks are cumbersome and costly in terms of manpo-
wer and time. This is mainly due to the lack of au-

tomation when executing a given task. Against this
background, MoDePaaS proposes to ease developers
life by tackling these problems. It aims to define an
end-to-end solution in order to automatically discover
PaaS services and deploy applications on multi-PaaS
providers. This solution is declarative so that appli-
cations requirements and PaaS providers capabilities
are easily expressed. MoDePaaS targets to provide
the following aims:

e Aim;: Define a model to declaratively express ap-
plication requirements

e Aimy: Define metadata to describe PaaS providers
capabilities and propose a mechanism to collect it

e Aimj: Define an algorithm to select one or multi-
PaaS provider(s) in order to deploy an application

e Aimy: Define a unique tool to automatically de-
ploy applications in multi-PaaS providers

Against this background, we emphasize that is im-
portant to discover and select one or multi-PaaS servi-
ces correctly. Hence, it will ease developers tasks and
automate applications deployment. In the upcoming
sections, we will introduce our approach to realize the
Aims; > 3 of the MoDePaaS project.

3 KEY INGREDIENTS OF THE
DISCOVERY AND SELECTION
APPROACH

In this section, we introduce the main components of
our solution. Indeed, we start by introducing the prin-
ciples of our approach (see Section 3.1). Afterward,
we present the structure of the Abstract Application
Manifest (AAM) (see Section 3.2). Then, we define
the three components of the broker layer that are the
PaaS capabilities repository, the 2PCR ontology, and
the Offer Manifest (OM) (see Section 3.3). It is no-
teworthy that we provide examples of the introduced
components in Section 5.1.

3.1 Principles of the Discovery and
Selection Approach

Once the developers finish their application coding,
they should discover Clouds’ services in order to de-
ploy it. In Figure 1, we showcase an overview of our
approach to discover and select services in multi-PaaS
environment. First, developers describe their applica-
tions requirements in terms of storage and computing
and some information about the deployment process
in the AAM. Second, they send it to the Discoverer

183

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

component which constructs a sample with respect to
their requirements and sends it to the Broker layer.
This layer integrates three main elements. Indeed,
we find the Paa$ capabilities repository that contains
information about services capabilities organized by
PaaS providers. The capabilities are gathered either
by using proprietary API of PaaS providers or manu-
ally. Then, we have the 2PRC ontology which is used
to (1) remove semantic ambiguities in the repository
and (2) automate the discovery process. Finally, we
have the Matcher component that constructs the OM.
This latter contains a set of offers that meet the re-
quirements described in the AAM. It is noteworthy
that an offer may involve either a single or multi-PaaS
provider(s). The resulted OM is sent to the Discoverer
component which implements the matching algorithm
in order to select an offer and construct the Deploy-
ment Model (DM).

Abstract

application /gﬁ —
requirements 2 > z /\/\
(AAM) 3f [a\
— > ~ A
1’;:;nd send E g T (E /‘
tho AAM g 3.Get Paa’ 3 NG
4 o capabilities
v sap W
2 2. Send ' —
++-the sample+« g z |
Discoverer g 5 > |) o
component 5.Send 2 S [-+3.Get PaaS P [%
€ o o] & capabilities s [\ &/
; \V
i = zlad <
6. Construct the DM ‘ E\ LE(‘ %‘g 5 -
v °)| o 37| 3GetPaas
) g Eé capabilties | } %
N< 5|28 o
Deployment model ‘ | £/3= v
(LA v

Figure 1: Overview of the discovery process.

3.2 Abstract Application Manifest

Using the AAM allows developers to declaratively ex-
press the requirements of their applications. In Figure
2, we showcase the structure of the AAM using a class
diagram. Indeed, the root class of our model is the
Abstract Application Manifest and a unique id and a
name identify it. It contains two categories of classes:
the Application and the Environment.

First, the Environment class represents informa-
tion about the environment where the application will
be deployed and from which the applications will pro-
vision its services. Such an environment can be for-
med by one or multi-PaaS solution(s). This class is
identified by a unique id and a name. It is composed
by one or multi-classes of the following types. For
ease of presentation, we propose to designate these
four classes by the term node.

e The Service class: It denotes a service offered by
a PaaS provider. It is identified by a unique id,
a type (e.g. a database, monitoring, search, etc.),

184

Abstract Application Manifest

+id: string
+ name: string
1 1 1
Application Environment
+id: string +id: string
+ name: string + name: string
+ environment: string
Version | Service | Dockerfile
+id: string +id: string +1d: string
+name string +type: string +name: string
+ label: string +name: string + description: string
1 * + version: string
+ pricing: string
Deployable Instance Buildpack Cartridges
+1id: string +id: string +id: string +id: string

+ content type: + name: string
+ name: string + initial_state: string
+ location: string + default_instance: string

Figure 2: The AAM structure.

+ name: string
+ description:

+name: string
+ description: string

a name, a version, a pricing (e.g. free, price per
hour, price per month, etc.).

e The Dockerfile class: It presents a dockerfile !
which is a file containing a set of instructions used
to build and run a docker image. It is identified by
aunique id, a name and a description to give more
details about its features. It is noteworthy that we
use these three attributes to define the two follo-
wing classes.

e The Buildpack class: It allows the developer to
deploy and launch the application using the build-
packs?. This latter is a set of scripts that enables
to detect the framework and runtime of a given
application, to compile it and to run it.

e The Cartridge class: It is dedicated to a specific
Paa$ provider which is Openshift’. It is similar to
the Buildpack class.

Elements in this part of the AAM are filled with
constant values when the developer is sure about the
requirements. However, the developer may fill it in
a flexible manner. Indeed, if there is a doubt, it is
possible to use a joker in order to denote any value.
To do so, the developer should use the ”x” charac-
ter. In addition, it is possible to express two kinds
of constraints by using either the comparison opera-
tors or the logical operators. In fact, comparison ope-
rators enable to approximately express requirements
regarding a given property. The specified operators
are the following: ”—" to represent the relationship
lower than, ”+ to represent the relationship greater
than, ”— =" to represent the relationship lower than
or equal to and "+ =" to represent the relationship
greater than or equal to. Whereas the logical opera-
tors express multiple requirements regarding a given

Uhttps://docs.docker.com/engine/reference/builder/
Zhttps://devcenter.heroku.com/articles/buildpacks

3https://developers.openshift.com/overview/basic-
terminology.html

Automatic Discovery and Selection of Services in Multi-PaaS Environments

property. It can be either a conjunction (i.e. AND) or
a disjunction (i.e. OR) between two values.

The second category defines information about
the application to deploy illustrated by the Applica-
tion class. It is characterized by a unique id, a name
and an environment where the application will be de-
ployed. The developer may specify several versions
of the same application. And for each version, he/she
needs to precise information related to the deploya-
ble artifacts and to the to-be-run instances. A Ver-
sion class is identified by a unique id, a name and a
label. 1Tt also contains a set of Deployable and In-
stance classes. The Deployable class represents the
application executable file. It is identified by a uni-
que id, a name, a content_type defining the executable
file type, and a location containing the URL where
such element can be retrieved. Whereas the Instance
class represents the running application instances re-
quired by the developer. This class is identified by a
unique id, a name, an initial_state defining the state
of the application (e.g. running, stopped, etc.) and
a default_instance representing the running instances
by default.

3.3 Broker Layer

This layer integrates three key components in order
to correctly construct the OM. Indeed, it includes the
PaasS capabilities repository that exposes information
about the nodes delivered by each PaaS provider. It
also includes the 2PCR ontology in order to remove
semantic ambiguities in nodes information and to au-
tomate the discovery process. Finally, it uses the Ma-
tcher component that allows to construct the OM ba-
sed on the Sample.

3.3.1 PaaS Capabilities Repository

In this section, we introduce the PaasS capabilities re-
pository and its different parameters. This compo-
nent plays the role of the catalog that exposes a list
of nodes and its details. These details are gathered
in two ways: either exported using PaaS providers
proprietary APIs or manually added by analyzing the
marketplace of a given PaaS solution. This informa-
tion concerns the four categories of a node. Each cate-
gory contains almost the same parameters that are: the
name of a given node, its PaaS provider, its credenti-
als, and its pricing. Nevertheless, the Service element
is further characterized by a version and a type. Whe-
reas the three other elements are characterized by a
description. It is noteworthy that we remain faithful
to the original names of these elements as it is offe-
red in the marketplace of the PaaS Solutions. In order
to unify the access to this information and to cover

the different semantic ambiguities that may exist be-
tween two equivalent nodes, we propose to semanti-
cally annotate the PaaS capabilities repository using
the 2PCR ontology.

Name PaaS

Name Version ||
provider
Type Credentials Descrption
{erona]

Dockerfile

Paas "
\ Service)

Name PaaS
provider
Credentials
Cartridge

ipack
Paas capabilities repository

Figure 3: PaaS capabilities repository structure.

3.3.2 PaaS Providers Capabilities Repository
(2PCR) Ontology

Based on the different nodes delivered by PaaS pro-
viders, we define the 2PCR ontology (see Figure 4).
This ontology enables to remove semantic ambigui-
ties between two nodes coming from two different
PaaS providers. In addition, it is used to automate
the discovery process by semantically annotating the
PaaS capabilities repository. Then, the 2PCR onto-
logy is populated with information coming from the
repository in order to create a knowledge base with
PaaS capabilities. Finally, these capabilities are dis-
covered using SPARQL queries. It is noteworthy that
for lack of space and ease of presentation, we do not
present all the concepts and the relationships in the
rest of the section. To introduce our ontology, we rely
on Definition 1:

Definition 1. The 2PCR ontology is defined by the
4-tuples < Capcr, DTrpcr, OPapcr,A2pcr >

o Copcr: Concepts defining the different nodes sto-
red in the PaaS capabilities repository,

o DTopcg: Information about a concept,
e OP»pcr: Relationships between two concepts,

e Aopcr: A set of evident truths used to enrich the
Copcr and the OP>pcR.

In the following, we separately define each ele-
ment of the 4-tuples. We start by the Copcg. The root
concept is the PaaS capabilities repository which is
composed by four concepts: a Service, a Cartridge, a
Buildpacks, and a Dockerfile. By analogy, these con-
cepts are the same as the four elements composing
the PaaS capabilities repository and they are identi-
fied with the same parameters.

The second tuple is the DT>pcg. It provides ad-
ditional information aboutthe four nodes. Indeed,
the Description element provides information about

185

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

Paas capabilities
repository

-..Datatype _ e Subclass —_ Object
Datatype property "~ > property > property

Figure 4: The 2PCR ontology structure.

a given node and the BelongTo element identifies the
PaaS offering a node.

The third tuple is called OP>pcg. It defines rela-
tionships between two concepts. We introduce these
relationships and its meaning in Table 1. Finally, the
fourth tuple is the axioms set Apcg. It provides evi-
dent truths used to enrich OP>pcg and Chpcr sets.

Table 1: The relationships OP;pcg set meaning.

Relationship Meaning

hasNameOfService Denotes the name of a given service
hasNameMongoDB Denotes the name of a service of type MongoDB
hasNameTomcatApach Denotes the name of a service of type Tomcat Apache

Defines the environment name of a dockerfile,
a buildpack, or a cartridge

hasNameOfEnvironment

hasPrice Introduces the pricing model of a given service
hasVersion Defines the version of a given service

hasType Denotes the type of a given service
hasTypeDatabase Defines the type of a database service

hasTypeSearch Denotes the type of a search engine service

Besides, we can enrich our ontology by defining
some rules. These rules are an alternative way of de-
fining new relationships between concepts in order to
complement the ontology. The definition of a rule is
based on the OP>pcg and the Copcg sets and it is defi-
ned as follow:

Definition 2. A rule is defined as: A(x,y) AB(x) A
C(x,z2) AD(2) A ... = E(y,z) where:
e A(x,y), C(x, z), E(y, z): predicates defining relati-
onships (OPapcg);
e B(x), D(z): predicates defining Concepts (Copcr);
e x, y, - variables, literals, individuals, etc.

3.3.3 Offer Manifest
This manifest contains information about nodes ca-
pabilities coming from one or multi-PaaS provider(s).

In Figure 5, we present the OM structure based on a
class diagram. Indeed, the root class is Offer Manifest

186

and it is identified by an id and a name. It contains one
or multiple Offer(s) and each offer may involve single
or multi-PaaS provider(s). An Offer class is identified
by an id and is formed by a set of Service, Dockerfile,
Buildpacks, and Cartridges classes. These classes are
well presented in Section 3.2. And, we would like to
clarify that we have added a new attribute referred to
as cloud_provider_name to denote the Cloud provider
offering the given service.

Service
+id: string
+type: string
+name: string
" [+ version: string

Buildpack
+ id: string
= +name: string
Dockerfile + description: string

+id: string + cloud_provider_name: string
" + pricing: string

+ cloud_provider_name: string
+ pricing: string

Offer Manifest

+id: string
+ name: string

+ name: string
+description: string

Cartridges

+ cloud._provider_name: sting | [~

+ pricing: string + name: sting

+ description: string
+ cloud_provider_name: string
+ pricing: string

Figure 5: The OM structure.

4 MATCHING ALGORITHM

Based on the different components that we have in-
troduced in the previous section, we present our mat-
ching algorithm (see Algorithm 1). It selects the most
appropriate offer with respect to the application re-
quirements defined in the AAM. Such an offer, may
involve one or multi-PaaS provider(s). The algorithm
takes as input (1) an AAM, (2) a threshold to limit
the number of differences between the AAM and the
OM, (3) the 2PCR ontology and (4) the PaaS capabi-
lities repository. This latter is semantically annotated
using the 2PCR ontology. The algorithm outputs a
DM containing information about the selected envi-
ronment where the application will be deployed.

Algorithm 1: Matching algorithm.

: input AAM: the abstract application manifest

. input threshold: the threshold to limit the number of differences

. input ontology: the 2PCR ontology

. input repository: the semantically annotated repository using the 2PCR ontology

: output DM: the deployment model

. sample «— constructSample(AAM)

: populatedOntology < populateOntology(ontology, repository)

. OM < constructOM (sample, populated Ontology)

: while (exist(Offer O in OM)) do

10: distanceli] < 0

11: for each node N in AAM do

12: for each property prop in N do

13: if (!valid(prop, OM.O.node.prop)) then

14: distanceli] + distanceli]+
OM.0O.node.prop)

15: end if

16: end for

17: end for

18: i—i+1

19: end while

20: selectedOf fer +—selectOffer(distance, threshold)

21: return createDM(AAM, OM, selectedOf fer)

©C 0N U A WN —

updateDistance(prop,

Automatic Discovery and Selection of Services in Multi-PaaS Environments

First, the algorithm constructs the sample based
on the AAM (line 6) and populates the 2PCR on-
tology with information stored in the semantically
annotated repository in order to construct a know-
ledge base (line 7). This knowledge base is deno-
ted by the populatedOntology variable. Based on
this, it constructs the OM by computing all the pos-
sible offers that may cover the application require-
ments (line 8). It is important to highlight that the OM
is constructed using parameterized SPARQL queries
based on the sample and executed on the knowledge
base populatedOntology. Afterward, it computes the
number of differences between each offer in the OM
and the AAM (lines 9-19). Numbers of differences
are stored in the data structure distance. These va-
lues are calculated as follows: for each property in the
both manifests, if they are not corresponding then we
update the distance by adding the appropriate penalty
to the property. The two properties correspond if the
value of the OM property fulfills the requirement ex-
pressed by the AAM property (which is either a con-
stant, a joker or a constraint). By default, all penalties
are fixed at 1; however the user can configure these
penalties according to the importance that he/she gi-
ves to the properties. Once this step is achieved, the
algorithm selects an offer using the operation selec-
tOffer (line 20). This operation takes as inputs the
data structure distance and the threshold and returns
the identifier of the selected offer. The selected offer
has the smallest value of distance bounded between 0
and the threshold. Finally, it constructs the DM (line
21).

S IMPLEMENTATION AND
EXPERIMENTATION

All along this paper, we proposed an approach ena-
bling the support of developers during the discovery
and selection of services in multi-PaaS environments.
In this context, we propose to validate and evaluate
our approach through two main steps. First, we pre-
sent the implementations that we realized as a proof
of concept (see Section 5.1). Second, we expose the
experiments that we have conducted. These experi-
ments enable to empirically evaluate the efficiency of
our solution and to prove that it eases the developers
task (see Section 5.2).

5.1 Proofs of Concept
In this section, we present the proof of concept that

we have implemented in order to show the feasibility
and the utility of our approach. Indeed, we develop

the matching algorithm in the form of a REST APIL
To do so, we specified the API using an open source
design tool referred to as Swagger editor* and we im-
plemented it using JAVA. Today, it is provided as a
runnable RESTful web application. In order to easily
use our API, we provide a web client to declaratively
express the application requirements and to select an
appropriate offer. This Web application integrates the
REST API and it is implemented using the Restlet fra-
mework® of JAVA.

In Figure 6, we showcase a screenshot of the Web
interface enabling the user to edit the AAM. As it
is depicted, we propose to present the AAM model
using the XML syntax. Indeed, it is a universal syn-
tax and it is easily understandable. In the example,
the user requires three services. The first one is of
type Database and it is required to be either a Mon-
goDB or a CouchDB. It should have a version equal
to 1. The second one is also of type Database and
has the name Redis. Its version is lower than or equal
to 1. The third one is of type MessageQueue and it
is named RabbitMQ. 1t is noteworthy that all required
services must be free. To ease the presentation, we il-
lustrate a sample containing efficient information for
the discovery and selection step (e.g.). And, we de-
cide to hide the information that are used in the de-
ployment step (e.g.the name of services, the versions,
etc.) the name of the executable of the application,
the number of instances, etc.).

Enter an Abstract Application Manifest:

<?xml version="1.0"?>
<abstract_application_manifest id="1" name="AAM">
<environment id="11" name="EnvAAM">
<service id="111">
<type>Database</type>
<name>MongoDB OR CouchDB</name>
<version>1</version>
<pricing>0</pricing>
</service>
<service id="113">
<type>Database</type>
<name>Redis</name>
<version>-=1</version>
<pricing>0</pricing>
</service>
<service id="112">
<type>MessageQueue</type>
<name>RabbitMQ</name>
<version>1</version>
<pricing>0</pricing>
</service>
</environment>
</abstract_application_manifest>

Figure 6: Screenshot of the interface to edit the AAM.

In order to prove the feasibility of our approach,
it would be certainly worthwhile to discover and se-
lect services coming from real PaaS providers. Hence,
we select three open source PaaS providers that are
DEIS ©, Openshift Origin 7, and Dokku &. We install

“https://swagger.io/
Shttp://restlet.org/
Shttps://deis.com/
"https://www.openshift.org/
8http://dokku.viewdocs.io/dokku/

187

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

and test these solutions on our infrastructure. For in-
terested readers, we provide more details about the in-
stallation of these solutions in a blog post ?. Then, we
fill the Paa$ capabilities repository with information
about the offerings collected from their marketplaces.
Afterward, we semantically annotate the PaaS capa-
bilities repository using the 2PCR ontology in order
to populate it and obtain a knowledge base. Once the
ontology is populated, we dynamically construct the
SPARQL queries based on the AAM in order to col-
lect the offers. Based on the input AAM, our algo-
rithm generates four SPARQL queries to collect of-
ferings for each of the following services: MongoDB,
CouchDB, Redis, and RabbitM(Q. For instance, in Lis-
ting 1, we illustrate the generated SPARQL query to
discover MongoDB services with respect to the requi-
rements in the AAM (see Figure 6).

1 PREFIX 2PCR: <http ://www.semanticweb.org/.../2PCR#>
2 PREFIX rdf: <http ://www.w3.0rg/1999/02/22 — rdf —syntax —ns#
3 PREFIX xsd: <http ://www.w3.o0rg/2001/XMLSchema#>

4 PREFIX rdfs: <http ://www.w3.0rg/2000/01/rdf —schema#>
5 SELECT ?CP ?service ?type ?parentType ?name

6 ?parentName ?version ?price

7 WHERE {

8 ?service rdf:type 2PCR: Service.

9 ?service 2PCR:hasName ?name.

10 ?7name a ?parentName.

11 ?service 2PCR:hasType ?type.

12 2type a ?parentType.

13 ?service 2PCR:hasVersion ?version.

14 ?service 2PCR:hasPrice ?price.

15 ?service 2PCR:belongTo ?CP.

16 FILTER (!regex(str(?parentName), ”Thing”, 7i”))

17 FILTER (!regex(str(?parentName), “Name”, 7i”))

18 FILTER (!regex(str(?parentName), “Resource”, "i”))

19 FILTER (!regex(str(?parentType), ”Thing”, 7i”))

20 FILTER (!regex(str(?parentType), "Type”, 7i”))

21 FILTER (!regex(str(?parentType), ”NamedIndividual”, "i”))

22 FILTER (!regex (str(?parentType), “Resource”, 7i”))
23 ?7type rdf:type 2PCR:Database.

24 FILTER regex (str (?parentName), “"MongoDB”, 7i”)}

Listing 1: SPARQL query to discover MongoDB servi-
ces from the PaaS capabilities repository.

After running all the queries and collecting their
results, we construct the OM that contains offers in-
volving DEIS, OpenShift Origin, and Dokku capabi-
lities with respect to the requirements in the AAM.
In Listing 5.1, we exemplify a sample of two offers
from the resulted OM. The first one is identified by 4
and proposes a MongoDB service and a Redis service
coming from Dokku and a RabbitMQ service coming
from OpenShift Origin. Whereas the second one is
identified by 16 and it offers a MongoDB service and
a RabbitMQ service coming from OpenShift Origin
and a Redis service coming from Dokku. Based on
the resulted OM, we apply our matching algorithm in
order to select the most appropriate offer in the form
of the DM.

https://www.cetic.be/Open-Source-PaaS-Solutions-
Analysis

188

29 <offer id="16">
1 <offer_manifest id="1" 30 <service id="137">
2 name="OM"> 31 <type>Database </type>
3 .. X . 32 <name>mongoLab </name>
4 <offe1; ldf 4“> . 33 <version >1</version>
5 <service i1d="1420"> 34 <pricing >0</pricing>
6 <type>Database </type> 35 <provider>OpenShift
7 <name>Lab—MongoDB </name> 36 </provider>
8 <version >1</version> 37 </service>
9 <pricing >0</pricing> 38 <service id="147">
10 <provider>Dokku</provider 39 <type>Database </type>
11 </serylce_> N . 40 <name>Redis—Cloud </name>
12 <service id="1415"> 41 <version >1</version>
13 <Lype>Database</l_ype> 42 <pricing >0</pricing>
14 <name>Heroku—Redis </name> 43 <provider>Dokku</provider
15 <version >I1</version> 44 </service>
16 <pricing >0</pricing> 45 <service id="1311">
17 <pr0vl1der>D0kku</pr0v1der 46 <type>MessageQueue </type>
18 </SEFY1CC? . R 47 <name>CloudAMQP</name>
19 <service id="1311"> 48 <version >1</version>
20 <type>MessageQueue </type> 49 <pricing >0</pricing>
21 <name>CloudAMQP </name> 50 <provider>OpenShift
22 <version >1</version> 51 </provider>
23 <pricing >0</pricing> 52 </service>
24 <provider>OpenShift 53 </offer>
25 </provider> 54 ...
26 </service> 55 </offer-manifest>
27 </offer>
28 ...

Listing 2: Samples of offers from the OM.
5.2 Ease of Use of the Approach

Our approach is intended to ease the developers task
while discovering and selecting services in multi-
PaaS environments. However, it would be certainly
worthwhile to concretely evaluate this and prove that
we really alleviate the burden on them. To do so,
we propose to evaluate the gain in terms of time for
developers by using our approach (i.e. Scenario;)
instead of manually discover and select services (i.e.
Scenarioy). For this purpose, we asked three de-
velopers (i.e. a trainee, a researcher, and an engi-
neer) to discover and select services taking into ac-
count a set of predefined requirements. Indeed, de-
velopers should (1) become familiar with both scena-
rios, (2) express the requirements of their application,
(3) discover PaaS services capabilities, and (4) select
a set of services supporting the predefined require-
ments. To realize this experimentation, we propose to
use as PaaS providers Openshift Origin, Dokku, and
Deis that we presented in the previous section and the
AAM depicted in Figure 6.

In Table 2, we illustrate a comparison between the
familiarization time and the discovery and selection
time to execute both scenarios. It is worthy to say
that the familiarization time depends on the execu-
ted scenario. In Scenarioq, it includes the time of the
familiarization with our approach by discovering the
AAM structure and its syntax. Whereas, in Scenario,,
it denotes the time of the familiarization with the mar-
ketplaces of each PaaS provider and how it presents
its services. Regarding the discovery and selection
time, we evaluate the execution time of the end-to-
end process. In Scenario;, we evaluate the time of

Automatic Discovery and Selection of Services in Multi-PaaS Environments

editing the AAM with the application requirements
and the execution of our algorithm in order to elect
the most appropriate offer. In Scenario,, we compute
the time spent by the developers to manually disco-
ver and select the appropriate services to their appli-
cation. To compare between the two scenarios, we
propose to evaluate the gain in terms of the famili-
arization time and the discovery and selection pro-
cess time. The gain is obtained by calculating the ra-
tio between the difference between the time recorded
in Scenario, and that recorded in Scenario;, and the
time recorded in Scenario,:

timeScenqriuZ —timescenariol * l 00
tmescenario2
tlmeScenqer7ttm_eScenarm1) %100
timeScenario2

8AlN familiarization —

8AiNgisc&selec = (

Table 2: Evaluation of the gain in terms of the familiariza-
tion time and the discovery and selection process time.

Developer Developer; Developers
— I IS i~ o
=] 2 8] =] 2
=4 = = =) = =)
< < < =1 < =1
= = = = = =
b5} 5] o) o) o] 5
9 Q9 9 9 Q9 9
w 12} 12} 12} 12} 12}
Familiarization
time (mn) 10 30 9 23 11 29
Discovery and selection
time (mn) 3 10 4 11 4 10
84in gamiliarization (%) 67 61 62
8aingisc&selec (%) 70 64 60

Using these two formulas, we obtain an average
8AiN familiarization €quals to 63,33% and an average
8aingisc&selec €quals to 64,66%. These results are im-
portant since they prove that we really alleviate the
burden on developers and we ease their tasks. Indeed,
this gain regarding the two times encourages the use
of our approach since (1) it improves the developers
productivity, (2) it increase the adoption of our algo-
rithm, (3) it decreases the errors and the omissions
during the discovery and selection process. For in-
stance, when developers manually discover services,
they may forget a given service that is more relevant
than other services to the application requirements.

6 RELATED WORK

Several works deal with the problem of services dis-
covery and selection in Cloud environments (Keppe-
ler et al., 2014) (Sellami et al., 2017). Generally, these
solutions enable developers to describe their applica-
tions requirements using a very specific model (e.g. a
manifest, a SLA-based model, a metric-based model,
etc.). Then, they propose mechanisms enabling the
selection of the most appropriate PaaS provider(s) to
deploy the application.

In a previous work (Sellami et al., 2015) (Sellami
et al., 2016), we proposed an approach to automati-

cally discover data resources in a single PaaS envi-
ronment. Indeed, developers express their require-
ments in terms of data stores. Then, our matching
algorithm discovers PaaS providers capabilities and,
for each PaaS provider, it compares the application
requirements and its capabilities in order to select the
most appropriate PaaS provider. In this solution, we
mainly focused on the data services discovery in a sin-
gle PaaS environment.

Redl et al. (Redl et al., 2012) present an automa-
tic approach to check if the elements of the SLA are
valid or not. Doing so, they map each PaaS SLA to
an ontology and they define a matching algorithm to
compare the SLAs. Results of this matching are ana-
lyzed in order to select the most appropriate services
provider. Although the idea of selecting Cloud ser-
vices based on the SLA is interesting, this approach
does not enable to describe application requirements
in terms of deployment in multi-PaaS providers.

Wittern et al.(Wittern et al., 2012) propose a mo-
del based solution to select services in a Cloud envi-
ronment in order to express users requirements and
services capabilities. For this purpose, they define an
algorithm to select services using a set of predefined
criteria. However, they do not support the multi-PaaS
discovery.

In the SeaClouds project, Athanasopoulos et al.
(Athanasopoulos et al., 2015) propose an open source
platform to support applications in a multi-clouds en-
vironments. Indeed, one of its key component is
the SeaClouds Discoverer which enables to discover
available capabilities and add-ons offered by availa-
ble cloud providers. It allows to declaratively select
multi-Cloud services based on the QoS expressed by
the user. A matching algorithm is implemented in or-
der to select the Cloud provider corresponding to the
QoS required by the user. However, this solution lack
of automation.

Li et al. (Li et al., 2010a) (Li et al., 2010b) define
an automatic solution to select the most appropriate
PaaS provider to application requirements. It is re-
ferred to as CloudCmp. It compares the performance
and the cost of cloud providers in terms of compu-
ting, storage, and networking resources using bench-
mark tasks. It aims to select the cloud provider that
has the best performance and the less cost. It supports
four cloud providers that namely are Amazon AWS,
Microsoft Azure, Google AppEngine, and Rackspace
CloudServers. Although the importance of this solu-
tion, it does not support services discovery in a multi-
PaaS environments.

Kang et al. (Kang and Sim, 2011) (Kang and Sim,
2016) propose an agent-based solution to discover
cloud resources using ontologies in order to semanti-

189

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

cally describe resources and the relationships between
each others. The user requirements are defined in the
form of classAds. Authors introduce the discovery
process using four stages: the selection, the evalua-
tion, the filtering, and the recommendation. Authors
do not consider the multi-PaaS environments.

7 CONCLUSION

In this paper, we proposed an automatic and decla-
rative solution to discover and select Cloud services
in multi-PaaS environments. The key ingredients of
our work are threefold. First, we presented the AAM
and the OM that enable to express application requi-
rements and PaaS providers capabilities respectively.
Second, we defined the 2PCR ontology that allows to
semantically annotate the PaaS capabilities repository
in order to populate the ontology and create a know-
ledge base. Third, we proposed a matching algorithm
that enables to compare the AAM and OM in order
to select the most appropriate offer to the application.
This offer involves either a single or a multi-Paa$S pro-
vider(s) in which the application may be deployed.

Currently, we are working on applying our appro-
ach to other qualitatively and quantitatively real use
cases in order to identify possible discrepancies and
make our work more reliable. Second, we are aware
that we do not take into account the pricing aspect and
we would like to integrate it in our approach. Finally,
we target to realize the Aimy that we have introduced
in Section 2. Indeed, we will define a declarative and
an automatic tool to deploy applications in multi-PaaS
environments.

ACKNOWLEDGMENTS

This work has been funded by the Belgian research
project MoDePaaS identified by the number 1610385.

REFERENCES

Ahmed-Nacer, M. et al. (2017). Provisioning of component-
based applications across multiple clouds. In CLO-
SER 2017 - Proceedings of the 7th International Con-
ference on Cloud Computing and Services Science,
Porto, Portugal, April 24-26, 2017., pages 104—114.

Athanasopoulos, D. et al. (2015). Seaclouds: Agile mana-
gement of complex applications across multiple hete-

rogeneous clouds. In STAF Projects Showcase, vo-
lume 1400, pages 54-61.

190

Gene, K. et al. (2016). The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security
in Technology Organizations. IT Revolution Press.

Hiittermann, M. (2012). DevOps for Developers. Apress.

Kang, J. and Sim, K. M. (2011). Towards agents and on-
tology for cloud service discovery. In International
Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery, CyberC, Beijing, China,
October 10-12, pages 483-490.

Kang, J. and Sim, K. M. (2016). Ontology-enhanced agent-
based cloud service discovery. IJCC, 5(1/2):144-171.

Keith, J. et al. (2013). A vision for better cloud ap-
plications. In Proceedings of the International
Workshop on Multi-cloud Applications and Federated
Clouds,MultiCloud, Prague, Czech Republic, April
22, pages 7-12.

Keppeler, J. et al. (2014). A description and retrieval
model for web services including extended semantic
and commercial attributes. In 8th IEEE Internatio-
nal Symposium on Service Oriented System Engineer-
ing, SOSE 2014, Oxford, United Kingdom, April 7-11,
2014, pages 258-265.

Li, A. et al. (2010a). Cloudcmp: comparing public cloud
providers. In Proceedings of the 10th ACM SIG-
COMM Internet Measurement Conference, IMC, Mel-
bourne, Australia - November 1-3, pages 1-14.

Li, A. et al. (2010b). Cloudemp: Shopping for a cloud
made easy. In 2nd USENIX Workshop on Hot Topics
in Cloud Computing. USENIX.

Peter, M. and Tim, G. (2009). The NIST definition of
cloud computing. National Institute of Standards and
Technology, 53(6):50.

Redl, C. et al. (2012). Automatic SLA matching and pro-
vider selection in grid and cloud computing markets.
In 13th ACM/IEEE International Conference on Grid
Computing, GRID, Beijing, China, September 20-23,
pages 85-94.

Sellami, R. et al. (2015). Automating resources discovery
for multiple data stores cloud applications. In CLO-
SER, Proceedings of the 5th International Conference
on Cloud Computing and Services Science, Lisbon,
Portugal, 20-22 May, pages 397-405.

Sellami, R. et al. (2016). Supporting multi data stores appli-
cations in cloud environments. [EEE Trans. Services
Computing, 9(1):59-71.

Sellami, R. et al. (2017). Applications deployment in multi-
ple paas environments: Requirements, challenges and
solutions. In CLOSER - Proceedings of the 7th Inter-
national Conference on Cloud Computing and Servi-
ces Science, Porto, Portugal, April 24-26, pages 636—
643.

Wittern, E., Kuhlenkamp, J., and Menzel, M. (2012).
Cloud service selection based on variability modeling.
In Service-Oriented Computing - 10th International
Conference, ICSOC, Shanghai, China, November 12-
15, pages 127-141.

