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Abstract: Identifying parameters value is a major issue in model engineering. In discrete time agent-based models, 
time step is an important one as it determines the frequency at which agents realize their activity step. This 
parameter is commonly defined as a fixed constant during the model design stage. In particular cases, this 
may lead to biases as it may be sometimes difficult to determine if agents efficiently realize their activity 
step once each 1, 2 seconds, hour or the like. A simulation model of a rodent population has been used to 
study the effect of using a flexible time scale on its outcomes. Three types of processes have been 
considered as time dependent in the model, environment sensing, movement and life cycle (maturity, 
gestation…). A time step sensitivity analysis constitutes the principal result of this study. For the widest 
range of time step values, model’s behaviour is unrealistic and bound to algorithms artefacts. A very small 
range of time steps leads to simulation of a perennial rodents’ population. Biases bound to variable time step 
implementation are discussed. Using flexible time scale approach proved efficient to get insight into the 
model’s behaviour and fruitful clues to assess agents’ processes frequency in the actual ecosystem. 

1 INTRODUCTION 

Agent-based models are recognized as powerful 
approaches to formalize ecological processes (White, 
2016; Fu and Hao, 2018). This formalism is wide-
spread in social systems modelling (Squazzoni, 2010), 
whether animal or specifically human systems, as it 
can make emerge organization patterns out of agents’ 
interaction (Whitley, 2016). As for other models, one 
important focus must be put in agent-based models on 
calibration of parameters used to describe the 
simulated populations (Stanilov, 2011). Indeed, 
following Watts (2016), an agent-based model whose 
parameters are not conveniently fitted may be useless, 
even with a good representation of its agents’ logic. 

Several directions are proposed in the literature 
to simulate agent-based models with a particular 
distinction between discrete time and discrete events 
simulation (Buss et al., 2010). Among these 
alternatives, discrete time simulations are widely 
used (Railsback et al., 2017) as they constitute a 
practical and easier to implement approach (Floudas 
et al., 2004) to formalize concrete systems, be them 
natural  (Singh et al, 2018), social  (Sauser et al., 

2018) or economical  (Ponomarenko et al., 2018). In 
discrete time simulations, agents are sequentially 
allowed to perform one cycle of activity each given 
time step. As a general rule, parameters calibrations 
are realized for a fixed time step uniformly 
incremented (Al Rowaei et al., 2011). Recent work 
on this question put forward the significant impact 
that using a fixed time step could have on the 
outcomes of such type of models (Buss and Rowaei, 
2010, Kuo, 2015). Indeed, one cycle usually implies 
agents’ decision processes about their environment 
such as perception-deliberation-execution in a PDE 
scheme (Ferber and Müller, 1996) or Belief-Desire-
Intention in a BDI scheme (Caillou et al., 2017). 
Whatever the scheme however, it is often difficult, if 
possible, to determine if one agent has to process the 
selected scheme once each second, two seconds, 
minute, hour, day or the like.  

In this study we are interested in configuring a 
classical agent-based model of a rodent population 
in the wild. The aim is to evaluate the optimal time 
step duration to fulfil the need of the model’s 
objective, that is to say, make evolve a perennial 
population in a changing landscape. Beyond the 
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model design with its environment, agents’ 
behaviour, etc., we designed the model so as it could 
be run at various time scales in order to determine 
the convenient time step necessary for this purpose 
and thereafter use the model accordingly. 

The article is first devoted to the presentation of 
the model and the approach used to implement a 
flexible time scale. The use case is then described 
along with the simulation protocol and its associated 
time-scale sensitivity analysis. The results section 
presents the outcomes of the model for a range of 
time steps used. Results and the method used to 
formalize time scale changes are then discussed 
before concluding on perspectives and possible 
improvements. 

2 MODEL AND USE CASE 
DESCRIPTION 

2.1 General Model Overview 

The general model used is described in Le Fur et al. 
(2017). It is coded in Java using the Repast 
Simphony Platform (North et al., 2005). It is a 
combination of three connected class hierarchies; 
one for substrates at different spatial aggregation 
levels, one for genes and genomes that define 
agents’ life traits (age at maturity, gestation length, 
max age, …) and one to describe agents’ behaviours; 
the latter being a compound of moving, reproduction 
and social behaviours mechanisms.  

The model is implemented using the so-called 
‘mechanistically rich’ approach (De Angelis and 
Mooij, 2003, Topping et al., 2010) combining abiotic, 
trophic, physiological, behavioural, social, 
demographic and environmental mechanisms, all 
being formalized in the most parsimonious way. The 
expected outcome of this approach is to formalize the 
dependency of each underlying causal chains to gain 
an insight into the overall complex patterns observed 
in the natural environments within which agents 
evolve. The ‘mechanistically rich’ approach leads to 
simulation models producing complex patterns that 
cannot be systematically interpreted but that can be 
studied by modifying the model’s logic or parameters. 

Environment is simulated using a discrete grid 
where substrate within each cell can be characterized 
and modified (road, crop, house, hedge …). It is 
superimposed with a continuous space where agents’ 
moves and sensing can be computed precisely. 
Within the use case presented, cells formalize a 
heterogeneous agricultural landscape with fields of 
different kinds such as corn, rape, meadow, alfalfa… 

(Figure 2). Each field characteristic is modified 
through time by simulated agricultural practices 
(sowing, mowing, growing, ploughing…) which 
leads to modify the interest or danger of each cell for 
the simulated rodent agents. Moreover, each year, 
the nature of each field may be modified so as to 
simulate crop rotations that are usual in this type of 
environment. Agents hence are submitted to a 
perpetually changing environment which influences 
their distribution or population size.  

Agents are individual rodents bearing different 
statuses (mature, immature, male, female, pregnant, 
weaning, etc.); they evolve in the domain fulfilling 
several desires such as foraging, reproduction, 
fleeing, suckling... Foraging agents react to their 
environment by selecting and moving to the area for 
which they perceive themselves to have the highest 
affinity. They select a destination (or choose to 
remain where they are) on the basis of their 
physiological state, location, and the perception of 
their surroundings. This is taken into account in the 
model using a ‘perception-deliberation-decision-
action’ scheme (e.g., Ferber, 1999).  

In this study, the decision process of the rodent is 
limited to aiming to a selected destination and 
interacting with its target once arrived. Agent’s 
speed, sensing radius and deliberation processes 
affect its response to its environment (Figure 1). A 
controller schedules the agents’ steps and manages 
the seasonal fluctuation of the landscape. 

 Update physiological status 
 If current place is dangerous or overloaded 
  Flee (remove target, select an aim and move at high speed) 
 Else 
  If already gets target (other relative, burrow system, crop) 
   If arrived 
    Process target (eat, suckle, mate, enter burrow…) 
    Update 'cognitive’ status (target, desire) 
   Else 
    If moving target re-compute target’s position 
     Move towards target 
  Else 
   Perceive objects within sensing area 
   Select desire (forage, reproduction, none, spawn, suckle) 
   Elaborate set of alternatives 

(deliberate out of perceived objects given desire) 
   Select target (out of possible alternatives 
(closest+random) 
   If target found 
    Compute target position 
    Move towards target 
   Else wander (choose random aim and move) 
 Grow older (increment age) 
 Check death (age dependent death probability) 

Figure 1: simplified pseudocode for the processes 
performed by each rodent agent during one time step. 
Bold: sub-models not detailed here; italics: comments on 
the corresponding sub-model; underlined: processes 
involving time-scale dependency. 
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2.2 Use Case Description 

A theoretical domain is used as a support for 
simulation. The simulated space mimics one real 
situation encountered in the French Poitou-
Charentes region (e.g., 46°16'9.91"N 0°24'26.07"W), 
an area colonized by the rodent species simulated. 
It is a square of 53x53 cells of 7.48 m side 
representing one 15.72 ha area. Various types of 
crops are arbitrarily disposed in the domain as well 
as human habitation, road and a motorway. 

Rodents reproduce from April to October, 
during this period, reproduction prevails on 
foraging. When male mature agents perceive 
mature females they mate; females then produce 
offspring’s after a gesta-tion length (mating latency 
and weaning are also formalized). Burrow systems 
are the third spatial entity considered. They are dug 
by female rodent agents and disappear within a 
week when they are empty. Burrow systems thus 
exist for limited periods of time; they are located in 
both the discrete and continuous space in which the 
agents move. 

A common simulation output is presented on 
Figure 2. Rodents distribute themselves through 
time depending on the reproduction season and the 
evolution of the field statuses. They usually 
preferentially occupy perennial fields of meadow 
or alfalfa as well as roadside verges or field borders 
as described in the literature (e.g., Briner et al., 
2005, Topping et al., 2010). Population size (Figure 
2 middle) shows a seasonal fluctuation with births 
occurring during the reproduction season. Mortality 
peaks occur when ploughing happens in a crop 
occupied by a colony of rodents. At a yearly scale, 
population may undergo acute decline (e.g., year 7) 
leading to either population collapse or restoring. 
Mean dispersal (Figure 2 bottom) remains steady 
and fits with the observed vital domain of this 
species (Quéré and Le Louarn, 2011), maximum 
dispersal fluctuates at a value near the simulated 
domain side with less dispersal for females which 
remain more sedentary because of their childcare 
activity. 

2.3 Time Scale Mechanisms Involved 

Three major categories of processes are bound to the 
time scale used and vary accordingly to the time step 
chosen for simulation. The first involves the duration 
of each phase of the rodent life cycle (weaning, 
maturity, gestation length, etc.); the second concerns 
agents’ sensing:  

 

Figure 2: standard simulation outputs of the studied use 
case - common vole rodents in a fragmented agricultural 
landscape. Top: snapshot of the population distribution 
within the simulated domain; middle, population size and 
birth/death rates; bottom: evolution of mean and 
maximum dispersal within the period (simulation time 
step: 3hours). 
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Agents have a sensing area encompassing any 
object or agent (substrate nature, relatives, burrow 
systems) perceptible within one time step. It is 
defined as a fixed circle with a parameterized radius 
(e.g., Jia et al., 2018) corresponding to the vital 
range of this type of animal (Quéré and Le Louarn, 
2011). The sensing area moves with the agent and is 
computed precisely from the continuous space 
coordinates. The radius value is declared in m/day 
and is adjusted to the time step (or tick) scale used 
by converting it into m/tick or cell/tick depending on 
the behaviour mechanism involved in rodent’s 
activity. 

The third category of process depending on 
time scale is the common speed of the agent which 
is also expressed in m/day and converted into 
m/tick. For a given time step, the rodent speed is 
fixed except in cases where either its current place 
has exceeded the cell or burrow system carrying 
capacity or if it arrived in a dangerous area (e.g., 
road, motorway…). In such cases the rodent flees 
from its current place at a speed four times its 
normal speed until it reaches a place that is not 
overloaded. 

2.4 Flexible Time-scale Implementation 

To ensure the integrity of the multiple scales units 
and conversions dealt with and secure model’s 
verification, we have first suffixed most methods or 
properties names with the units that characterize 
them (e.g., meter, day, cell, tick, gramPerDay). 

Time and space conversion is realized using an 
extension of the standard java Gregorian calendar 
which constitutes the time reference within the 
model. This class manages both a time amount and 
a time unit (e.g., 3+hours). We also plugged a 
converter class providing all the necessary utilities 
to operate the needed conversions between time 
step units and universal units managed by the 
calendar. This permits conversion of speeds and 
sensing spheres depending of the time or space 
units in the continuous space and within the grid 
(e.g., meter per day into meter per tick or into grid 
cells per tick).  

2.5 Simulation Conditions and 
Sensitivity Analysis Performed 

The rodent population is initialized with 400 
individuals and 50 burrow systems representing a 
pioneer population density of 25 ind./ha. 
Simulations are run using time steps ranging (i) from 
5 min to 90 min each 5 min, (ii) from 90 min to 48 

hours each 10 min and (iii) from 48 hours to 9 days 
each 30 min. Two constraints are imposed to stop 
simulations. The first correspond to a maximum of 
three years simulation duration, giving a one-year 
cycle to allow the model to escape from initial 
conditions and two supplementary yearly cycles 
with similar cyclic patterns. Simulations are stopped 
at the beginning of the reproduction season where 
rodents’ population is at its lowest. The second stop 
condition is triggered when either a maximum 
population of 6.000 individuals evolving within the 
domain is reached, that is a signature of a pullulating 
population, or when no female remains, hence 
signing a collapsing population. Two indicators are 
selected to study the effect of changing time step, 
the first one is the duration of the simulation; either 
max allowed time or population life before collapse. 
The second is the size of the population at the end of 
the simulation 

3 RESULTS 

Depending on the initial parameter values the 
simulated population may persist a few days to 
several centuries before collapsing. In the current 
model the latter case is rare and the population often 
collapses in the complex environment within which 
it evolves. This is expressed in Figure 3 where the 
time step values tested almost always result in the 
early extinction of the population, except for small 
tick values.  

The range of values used in this sensitivity 
analysis is intentionally larger than the supposed 
realistic range of time step values; this makes it 
possible to highlight the artefactual behaviours 
related to the model function and the simplification 
that it brings. Thus, the right of the graph shows an 
increase in the lifetime of the population as the 
time step increases with a phase transition at a time 
step of 190 hours leading to a plateau. In those 
extreme situations from 20 to 190 hour per time 
step, the increase in the population life span is 
related to the increase in rodent speed and 
perception that allows them to reach their target 
more and more quickly during a single cycle (as of 
a time step equals to 63 hours, rodents acquire a 
complete perception of the domain at each tick). 
Detailed simulations observed there indicate a 
boundary conditions effect that becomes 
preponderant with a significant rodent density 
observed abutting the limits of the domain. 
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Figure 3: Selected output indicators of the time step sensitivity analysis. Dots: population size at the end of the simulation; 
dotted line: duration of the simulation. Simulations are stopped when the rodent population collapses, when it exceeds 6.000 
individuals (proliferation), or when the duration reaches 3 years. 

The last plateau to the right of the figure starts at 
the time step 190 hours when rodents acquire a 
speed per tick allowing them to traverse the whole 
domain modelled during a single time step. At this 
stage, any target is instantly reached. However, this 
functionality does not allow the population to persist 
and in this value range no population is viable. The 
observed outputs indicate high mortality peaks 
during the winter season. These peaks are attributed 
to the non-optimal positioning of rodents related to 
their excessive displacements. 

For much shorter time steps (Figure 4), 
simulations indicate a range of tick values (in red) 
that enables a sustainable population over the 
medium term (i.e., beyond the period presented 
here). Within this interval, the population remains at 
a sufficient level to resist the hazards of its 
environment. This range of values also reflects the 
adequate frequency of agents’ deliberation/execution 
process. It lies in this case between 25 minutes and 3 
hours with optimal value at about 45 min 
corresponding to an almost steady population (see 
illustration on Figure 2). 

 

Figure 4: Sensitivity analysis outputs for small values of 
the time step: focus on the extreme left part of Figure 3; 
same caption used. 

It can be also noticed that within this interval, the 
more the time step increases, the more the dynamics 
of the population deteriorates with a smaller and 
smaller size at the end of the simulation. This 
phenomenon can be attributed to a less efficient 
adaptation of the virtual population to its simulated 
environment. It can be also interpreted as a bias 
related to the method used for computing the 
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rodents’ sensing area according to the time step, 
which will be discussed in the next section. 

For very small tick values (5 to 20 min), the 
observed phenomenon is a rodent outbreak. Detailed 
observation of each of these simulations (not 
figured) suggests that, using these small tick values, 
rodents’ moves remain very limited from one time 
step to another. The burrow systems then constitute 
foci where rodents maintain themselves in dense 
groups that reproduce intensely. In addition, when 
burrows are established in stable areas, resident 
populations may be less subject to the hazards of the 
environment than when they move further. 

4 DISCUSSION 

Performing a sensitivity analysis of the model on a 
wide range of time scales provided two types of 
insights. On the one hand it permitted to get better 
understanding of the model function and limitations. 
On the other hand it provided a mean to infer a 
reasonable range of validity from the logic of the 
modelled processes, such as here the frequency of 
decision/action processes performed by rodents over 
a period of time and leading to a perennial 
population in a given environment. The valid range 
of frequency here suggests that rodents in the wild 
would perform a deliberation process from each 3 
min to each 3 hours. To our knowledge, this value is 
not accessible to experimentation or sampling. 
However, it could constitute a clue to estimate the 
order of magnitude of the cognitive activity that 
these small animals realize in their environment. 
Nevertheless, these results have to be considered 
with caution and as only indicative since they come 
from a single parameter sensitivity analysis, that is, 
all other things being equal otherwise. It is almost 
certain that the model is also sensitive to numerous 
other aspects such as the spatial resolution or the 
initial conditions imposed. Changing values for 
these parameters would be susceptible to modify the 
resulting optimal time scale that rose out of the 
analysis. Multi-criteria sensitivity analysis (e.g., 
Saltelli et al., 2004) would therefore be necessary to 
get more confident insight into the model’s 
potential. 

Simulations indicated large variation of the 
selected indicator outputs; the population life time 
and size. In an ideal scheme, the expected outcome 
of such analysis would be that the simulated 
population dynamics and indicator values would 
remain unchanged whatever the time scale chosen. 

Some contexts permits to reach such objective. 
 

These occur when relationships between time 
dependent parameters and time scale are linear. This 
was here the case for life traits parameters such as 
gestation, weaning duration, ageing.... Changing 
time scale did not change the rodent agents’ life 
cycle whatever the time step chosen. Kuo et al. 
(2012) developed an epidemiological stochastic 
agent-based model where probabilities could be 
adjusted relative to time scale. In this case also, their 
study led to almost reproducible results whatever the 
time scale chosen. When however relationships 
between time step and time-dependent parameters 
are not linear, discrepancies appear and increasing 
biases occur with increasing changes in time steps.  

This is particularly the case here for time scaling 
of agents’ perception area. Little literature was 
found on formalization of agents' perception area. 
Jia et al. (2018) used sensing circle radius as the 
parameter defining the perception area of an agent. 
This parameter was also used in this study to define 
the agents’ sensing area and perform the conversion 
from one time scale to the other. In a fixed time step 
context, this approach is indeed the more logical and 
straightforward. However, in a multi-time-scale 
context, where sensing area must be scaled as a 
function of time, it is not clear if this approach 
comes out as a satisfactory solution. Geometry 
calculations made before this study indicate that, in 
the case of a straight line movement, the cumulated 
area perceived by a rodent during several small time 
steps is greater than that of a circle corresponding to 
the area perceived on a larger time step equivalent to 
the sum of the previous ones. At the same time, if 
one considers that the rodent does not usually move 
in a straight line but in an erratic or semi-erratic 
trajectory such as in Lévy flight’s (Chechkin et al., 
2008), as it is the case during foraging, this travelled 
area then decreases and converges toward the same 
order of magnitude than the integrated circle.  

In any case therefore, the area actually perceived 
depends on the detail of the agent’s trajectory. It is 
indeed logical that the perception area computed at 
any timescale depends on the simulated trajectories 
of rodents. Since these trajectories are moreover 
themselves dependent on time and objects, changing 
time scale produces biases in the model outcome 
that may be difficult to reduce.  

5 CONCLUSION 

Exploitation of the model output at different time 
scales proved valuable to better understand the 
model potential, limitation and functioning. This 
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approach also provided a better insight on the 
plausible range of activity of rodents in the wild 
such as the frequency at which they should react to 
their environment by mean of the perception/ 
deliberation scheme, within the limitation of such 
simplified model.  

This work also raises question on the best way to 
formalize sensing. In this domain, comparative study 
of different means to formalize time-dependent 
perception, for example by using a surface, a radius, 
or making agents’ sensing area a time-independent 
parameter, would help improving modelling of 
ecosystem-dependent agents. 
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