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Abstract: We address the problem of detecting data corruption, without producing, storing or verifying mathematical 
summaries of the content, as it is typically done today. Data corruption may be either due to natural means or 
due to the malicious modification of content by some attacker or malware.  Today, data corruption detection 
is supported by producing and using security metadata such as Message Authentication Codes (MACs), 
Integrity Check Values (ICVs), checksums etc. The methodology we study, called ‘implicit data integrity’ 
avoids the use of such metadata. It supports the detection of corruption in a novel way based on the observation 
that regular unencrypted user data typically exhibit patterns. When some encrypted content becomes corrupted 
and is decrypted, it may no longer exhibit patterns. It is the absence or presence of patterns in decrypted 
content which denotes whether some content is modified or not. We present a number of pattern detectors and 
algorithms which can successfully support implicit data integrity at quantifiable security levels. We also 
demonstrate that our patterns and algorithms can characterize the overwhelming majority of client and server 
workload data. We present security analysis and performance results coming from over 111 million 
representative client workload cache lines and 1.47 billion representative server workload cache lines. We 
also present synthesis results showing the efficiency of the hardware implementations of some of our 
algorithms. 

1 INTRODUCTION 

1.1 The Concept of Implicit Data 
Integrity 

We address the problem of detecting data corruption 
without producing, storing or verifying mathematical 
summaries of the content. By ‘mathematical 
summaries of the content’  we mean integrity 
metadata such as Message Authentication Codes 
(MACs),  Integrity Check Values (ICVs), Cyclic 
Redundancy Codes (CRCs) or checksums that can be 
used for detecting whether some content has been 
unintentionally or maliciously modified. Content can 
be modified by natural means (e.g., due to noisy 
channels or interference), by software bugs (e.g., due 
to bugs corrupting memory regions) or intentionally 
(e.g., due to malware or man-in-the-middle attacks). 

Today, the standard way of supporting data 
integrity is by using integrity metadata. Integrity 
metadata can be cryptographically strong, as in the 
case of MACs (SHA-256, 2012), (SHA-3, 2016), 
(HMAC, 2008), (KMAC, 2016), or weak(er) but 
efficient as in the case of checksums, CRCs, or Reed-
Solomon codes. Furthermore, some types of metadata 

may support error correction, whereas other types of 
metadata may not. What is common in all such 
metadata is their associated latency, storage and 
communication bandwidth overheads.  

Overheads are due to the unavoidable content 
expansion resulting from producing and storing the 
metadata. In storage systems, for instance, extra space 
may be required for storing and accessing ICVs, 
Reed-Solomon codes or MACs. The cost of such 
metadata in terms of extra storage space is typically 
non-negligible. In computing systems with 
cryptographic protection of memory (McKeen, 2013) 
each cache line needs to be protected by a separate 
MAC value. In this way, a separate MAC value needs 
to be also read in every data read operation. This 
design choice may result in wasting significant 
memory access bandwidth resources in a processor, 
as each data read operation may need to be realized 
as two memory read operations in the worst case. In 
computer communication systems that need to 
reliably transmit data from a source to a destination 
end-point, integrity metadata need to be transmitted 
as well. The transmission of such metadata, whether 
checksums, CRCs, or MACs may further consume 
significant communication bandwidth resources. 
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Figure 1: Implicit Data Integrity. 

In this paper we study an alternative methodology 
that avoids the use of some security metadata  
altogether. he methodology we study employs 
pattern-based algorithms in order to support data 
corruption detection without content expansion. The 
main idea, which we study in this paper comes from 
the work by Durham et. al. (Durham, 2013, 2015) and 
is illustrated in Figure 1. If some content exhibits 
patterns (i.e., has low entropy), then such content can 
be distinguished from random data. Let’s consider 
that this content is encrypted, as shown in the figure, 
where the encryption algorithm is a wide block cipher 
and a good pseudo-random permutation. Thus, it can 
successfully approximate a random oracle (Hall, 
1998), (Gilboa, 2015). The cipher text which is 
produced in this way is no longer distinguishable 
from random data, under certain reasonable 
assumptions about the adversary.  Any corruption on 
the cipher text results in a new cipher text value, 
which is different from the original one.  
Furthermore, any decryption operation on this new 
cipher text value results in a corrupted plaintext value 
which is different from the original one as well. As 
decryption is the inverse operation of encryption, the 
decryption algorithm also approximates a random 
oracle. Because of this reason, the corrupted plaintext 
value is also indistinguishable from random data with 
very high probability.  

From a system realization stand-point, the 
corrupted plaintext is indistinguishable from random 
data due to the fact that wide block ciphers, such as 
(Ferguson, 2009),  typically perform strong mixing of 
their input bits. Due to an ‘avalanche effect’ 
associated with the decryption oracle, even a single 
bit change in the cipher text affects all bits of the 
decrypted plaintext. Therefore, checking the entropy 
of the result of a decryption operation can be a reliable 
test for detecting corruption for some data. We refer 
to such methodology as ‘implicit data integrity’ or 
just ‘implicit integrity’. 

1.2 Challenges 

One of the main challenges in building systems that 
are based on the principles of implicit integrity is how 
to define ‘high’ or ‘low’ entropy. It is not 
straightforward how to determine that some content’s 
entropy is ‘low enough’ or ‘high enough’ so as to 
safely deduce that the original content has not been 
corrupted. The standard definition of entropy may not 
be easily applicable to corruption detection because 
message sizes may be small (e.g., messages may be 
memory cache lines of 512 bits), or the sizes of 
symbols where deterministic behavior is 
demonstrated may vary significantly (e.g., 
deterministic behavior may be observed over sets of 
nibbles, bytes, words or double words). A good 
corruption detection system must use algorithms that, 
on the one hand, characterize the overwhelming 
majority of the user data as ‘not random’ or ‘of low 
entropy’. On the other hand, the same algorithms 
when applied to corrupted plaintext values must 
characterize such values as ‘random’ or ‘of high 
entropy’ with probability very close to 1. Building a 
system that meets these requirements is hard. In this 
paper we present a solution that successfully 
addresses this problem. Our solution is not the only 
one that has been proposed in this space (Durham 
2013, 2015 2016). However, our solution gives the 
best results when compared to alternatives. In fact, it 
is the most optimal solution known to us and, 
according to our results, state-of-the-art for the 
aforementioned problem. 

1.3 Contributions of This Paper 

The paper makes two contributions toward building 
systems based on the principle of implicit integrity.  
A first contribution is an experimentally derived  
set of pattern detectors which characterize the 
overwhelming majority of unencrypted uncompres-
sed user data and can be used together with wide 
block ciphers for building practical working systems 
supporting implicit integrity. A second contribution 
of this paper is a proposal of a new entropy measure, 
called entropy index, which is more appropriate for 
small size quantities (e.g., 512 bits, 1024 bits) and can 
be used for quantifying the security levels offered by 
pattern detectors. 

A related approach is described in reference 
(Durham, 2013) which introduces the idea of implicit 
integrity. This approach avoids specifying how 
pattern detectors operate. We significantly expand 
upon the idea of reference (Durham, 2013), providing 
new components for implicit integrity. Another 
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related proposal is described in reference (Durham, 
2016). In this work, the content of a small size entity 
(e.g., a cache line) is deemed ‘not random’ if it 
demonstrates 4 or more 16-bit words equal to each 
other. Compared to this solution, our solution is more 
generic. It further increases the percentage of client 
and server workload data that can be protected using 
the implicit integrity methodology significantly. For 
memory workloads, the observed increase is from 
82% to 91% for client data, and from 78% to 84% for 
server data, while supporting a level of security of 31 
bits.  These results are collected from 111 million 
representative client workload cache lines and from 
1.47 billion representative server workload cache 
lines. 

1.4 Other Considerations 

From this discussion, it becomes evident that not all 
data can be protected using implicit integrity. We 
envision implementations that protect the 
overwhelming majority of user data that exhibit 
patterns using the implicit integrity methodology and 
the remaining data using standard techniques. 
Furthermore, we show that implicit integrity can be 
supported at various security levels, which are as 
measurable as MAC lengths are. In one example, for 
instance, the security level supported by our solution 
can be at 31 bits. By ‘31 bits’ of security we mean that 
the probability of having a corrupted plaintext value 
being characterized as ‘of low entropy’ is 2ିଷଵାఢ for 
some small security margin ߳. The security level 
offered is associated with an ‘entropy index’ value 
characterizing the input data, which is defined in the 
next section of the paper. The higher an entropy index 
value is, the more difficult is for an attacker to corrupt 
some data. All security considerations are with 
respect to an adversary who performs on-line attacks 
by corrupting cipher text values. By ‘on-line attacks’ 
we mean attacks where the detection of even a single 
corruption event exposes an attack. Finally, we note 
that the solution described in this paper is applicable 
to any type of data, including memory, data 
communication data and storage data. The following 
description is independent of the data types where our 
solution applies. 

The paper is structured as follows. In Section 2 we 
provide an overview of the algorithms discussed in 
this paper. In Section 3 we discuss related work and 
contrast our approach to the known state-of-the-art. In 
Section 4 we provide details on our approach. Finally 
in Section 5 we provide some concluding remarks. 

2 PATTENS AND ALGORITHMS 
FOR IMPLICIT INTEGRITY 

2.1 Experimentally Derived Pattern 
Detectors 

The two contributions of this paper are illustrated in 
figures 2 and 3 respectively. The first contribution, 
shown in Figure 2, is a collection of experimentally 
derived pattern detectors that support implicit 
integrity using a set of thresholds T1, T2, …, T8. This 
is the simplest of our contributions, and a rather 
straightforward algorithm to start the exploration of 
this space. The second contribution of figure 3 is an 
algorithm that performs pattern checks similar to 
those of the algorithm of figure 2, but using entropy 
index values. 

The algorithm of Figure 2, called Extended 
Pattern Matching (EPM), employs many different 
styles of pattern checks. The security levels 
associated with these pattern checks are discussed in 
Sections 2.2 and 4. One type of pattern checks detects 
entities among the input data that are equal to each 
other. Entities can be nibbles, bytes, words (16-bit) or 
double words (32-bit). Another type of pattern checks 
concerns entities among the input data which are not 
only equal to each other, but are also placed in 
continuous index positions. This second type of 
pattern checks is not necessarily the same as the first 
one. For example, one can associate these two types 
of pattern checks with different thresholds and, by 
doing so, build two different pattern detectors. Yet 
another type of pattern checks detects entities that 
take special values. Special values are values that are 
frequently encountered in regular user data but are 
infrequently encountered in random or corrupted 
plaintext data.  For example, in memory cache lines 
obtained from client data workloads, a high 
percentage of bytes take the values of 0x00 or 0xFF. 

A last type of pattern checks detects entities, the 
value histogram of which demonstrates a sum of n 
highest entries (i.e., frequencies) being higher than a 
threshold. The intuition behind this type of pattern 
check is that there are several types of input 
messages, the content of which is not as random as 
that of encrypted data, but also does not demonstrate 
patterns at the byte or word granularity. One example 
of such content  is  media data,  where  nibble  values 
may be replicated, but data do not demonstrate 
significant byte or word replications. Experimental 
studies over 111 million client cache lines and 1.47 
billion server cache lines have shown that there are 
millions of cache lines demonstrating a limited set of  
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Figure 2: EPM that uses threshold values. 

byte equalities, but a substantially higher number of 
nibble equalities. A pattern check that computes the 
maximum number of nibbles that are equal to each 
other is not appropriate in this case, as we have shown 
that such pattern check is limiting both in terms of the 
percentage of user data it is applicable to, and in terms 
of the security level it offers. An alternative pattern 
check that computes whether the sum of the n highest 
nibble frequencies exceeds a threshold is more 
efficient. If the input data consist of cache lines, this 
pattern check works best for n = 2. By checking 
whether the sum of the two highest nibble frequencies 
exceeds a threshold, a more flexible pattern detector 
can be built, which on the one hand encompasses 
significantly more regular user inputs, and on the 
other hand is associated with an event that is 
infrequent among random data. 

The types of pattern checks outlined above can be 
applied in many different types of data values and can 
be further combined resulting in stronger pattern 
detectors. The diagram of Figure 2 illustrates one 
example where 8 pattern checks are employed. The 

following computations are performed in order to be 
determined whether the resulting numbers or 
frequencies exceed a threshold: (i) the computation of 
the maximum number of bytes being equal; (ii) the 
computation of the maximum number of adjacent 
bytes being equal; (iii) the computation of the 
maximum number of bytes that take special values 
from a set V; (iv) the computation of the maximum 
number of   words being equal; (v) the computation 
of the sum of the two highest double word 
frequencies; (vi) the computation of the sum of the 
two highest nibble frequencies; (vii) the computation 
of the sum of the two highest most significant nibble 
frequencies; and (viii) the computation of the sum of 
the two highest least significant nibble frequencies. 

The resulting numbers/frequencies are compared 
against thresholds T1, T2, …, T8   and  the  responses 
form a vector of eight Boolean values. These values 
undergo a logical OR operation. The result of this 
logical OR operation is the final response on whether 
the input is of low entropy or not.  Essentially, the 
algorithm  of  Figure 2  checks whether there exists at  
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Figure 3: EPM that uses entropy index values. 

least one pattern check from among the set employed, 
according to which the observed entities which 
exhibit the pattern exceed a threshold. If such pattern 
check exists, the input is characterized of low 
entropy, otherwise it is not. 

2.2 The Concept of the Entropy Index 

Our second contribution is illustrated in Figure 3. 
This is an extension of Extended Pattern Matching 
that does  not  require  the  use  of  thresholds.  Instead, 
the algorithm computes the number of entities that 
exhibit a pattern in some data and converts this 
number into an ‘entropy index’ value.  In what 
follows we define the concept of an entropy index. 
Let’s consider a pattern p of type π (e.g., maximum 
number of bytes being equal). If some input data x of 
fixed length L demonstrates pattern p and exactly N 
entities from x exhibit this pattern (e.g., the maximum 
number of bytes being equal is exactly N) we denote 
this fact as: ݔ ∈ ,ߨ)݌ (1) (ߋ

We define an entropy index value E associated with 
the pattern type π and entity number N as the negative 
logarithm of the probability that ݔ ∈ ,ߨ)݌  given (ߋ
that x is random (e.g, x is obtained from the output of 
a random oracle). (ߋ,ߨ)ܧ = −logଶ Prob[	x ∈ p(π, N)	| ݔ ← trunc௅(ݔ଴), ଴ݔ ← $	] (2)

where by trunc௅() we mean a function that truncates 
its input returning only L bits of it. 

According to the definition above, the probability 
of seeing the pattern ߨ)݌,  in a random data value (ߋ
x is equal to 2-E. Entropy index E is measured in bits. 
Furthermore, the expected number of random values 
we need to inspect until we find one that demonstrates 
the pattern ߨ)݌,  is 2E. As a result, the entropy  (ߋ
index E associated a pattern type π and an entity 
number N is also equal to the logarithm of the 
expected number of random values we need to inspect 
until we find one value x such that 	ݔ ∈ ,ߨ)݌  .(ߋ

The Extended Pattern Matching variant of Figure 
3 employs the same pattern checks as the algorithm 
of Figure 2 with one exception. The pattern checks do 
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Figure 4: Pass rates of the SPM and EPM algorithms. 

not return Boolean responses. Rather, the pattern 
checks return the actual numbers of the entities that 
exhibit patterns Ν1, Ν2, …, Ν8. Each of these numbers 
is converted to an entropy index value. The 
computation of every entropy index value depends on 
the type of the pattern check used and on the number 
of entities that exhibit the pattern in the data. In 
Section 4 we provide examples of how entropy index 
values can be computed for different types of pattern 
checks. The entropy index values Ε1, Ε2, …, Ε8 
obtained this way undergo a stage that selects the 
maximum of these. If the maximum entropy index E 
exceeds a threshold, then the input is characterized as 
demonstrating low entropy, otherwise it is not. 

The algorithm of Figure 3 essentially searches for 
the rarest of the patterns that are exhibited by the input 

data. The rarest of the patterns is the one that appears 
with the smallest probability among random data and 
is associated with the highest entropy index value. As 
the algorithm converts numbers Ν1, Ν2, …, Ν8 into 
entropy index values Ε1, Ε2, …, Ε8, the algorithm 
does not need to directly operate on thresholds that 
characterize the data entities exhibiting the patterns. 
Instead, the algorithm of Figure 3 operates on a single 
entropy index threshold, which has practical 
significance. This threshold reflects the expected 
number of efforts required by an adversary in order to 
produce the rarest of the patterns considered in the 
figure by corrupting cipher text data. Such probability 
is associated with the highest entropy index value. 
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3 RELATED WORK 

Message authentication is typically accomplished 
using cryptographic algorithms that involve hashing 
(SHA-256, 2012), (SHA-3, 2016), symmetric (AES, 
2001), or asymmetric encryption. Today’s techniques 
require additional storage or bandwidth for storing a 
mathematical summary of the message which is 
authenticated. An alternative approach is implicit 
integrity, which is first described in reference 
(Durham, 2013). Reference (Durham, 2013) 
introduces the idea of implicit integrity without 
specifying how pattern detectors are designed and 
operate. The degree of success of this approach 
depends on the design and implementation of the 
pattern detectors utilized. Similar to implicit integrity 
is also the idea of ‘Robust Authenticated Encryption’ 
(RAE) (Hoang, 2015), which typically involves some 
message expansion. In this approach, some 
redundancy λ is typically added to the message which 
is being protected. 

A related proposal described in reference 
(Durham, 2016), concerns a pattern detector that 
detects whether 4 or more 16-bit words are equal to 
each other in a cache line. Compared to this solution, 
ours is more general, avoids the use of fixed 
thresholds, and increases the percentage of data that 
are protected with implicit integrity significantly. In 
memory systems, such increase is from 82% to 91% 
on client data, and from 78% to 84% on server data, 
while supporting the same level of security (31 bits). 
These results are collected from 111 million 
representative client workload cache lines and from 
1.47 billion representative server workload cache 
lines. Pass rate comparisons between the solution of 
reference (Durham, 2016) and our solution are shown 
in Figure 4. By ‘pass rates’ we mean the percentages 
of data that demonstrate specific patterns such as 
those of Figures 2 and 3.  

In the figure, we refer to the solution of reference 
(Durham, 2013) as Standard Pattern Matching 
(SPM). Our solution is referred to as Extended Pattern 
Matching (EPM). The pass rates for many different 
client workloads are shown in the figure.  As is 
evident from the figure, there are many typical client 
workloads (e.g., Microsoft® Office, transcoding, 
video player) the pass rates of which range between 
75%-80% using Standard Pattern Matching. These 
pass rates are boosted to 98% when Extended Pattern 
Matching is employed. Overall, the average pass rate 
with Standard Pattern Matching is 80%. The average 
pass rate with Extended Pattern Matching is 91%. For 
server data, the corresponding pass rate values are 
78% and 84% respectively. 

Figure 4 also shows pass rates for data that are not 
protected using the implicit integrity methodology 
but for which Integrity Check Values (ICVs) are 
stored in a quickly accessible cache unit. It is assumed 
that in addition to the implicit integrity methodology, 
an ICV cache unit is employed to protect those cache 
lines which do not demonstrate patterns. A 4 KB ICV 
cache unit is used for the charts of Figure 4. Average 
pass rates for the two algorithms are 97% and 99% 
respectively in this case. 

4 SECURITY ANALYSIS AND 
IMPLEMENTATION 

In our work we assume that the security levels 
supported by our algorithms are significantly smaller 
than   the   sizes   of the input messages. For on-line 
attacks such assumption is not limiting. Neither the 
security offered is limiting, as in on-line attacks the 
adversary has only one chance to succeed. An 
unsuccessful attack exposes the adversary, resulting 
in a possible re-encryption of the data with a new key. 
For example, for memory cache lines of 512 bits we 
can safely support security levels up to 64 bits using 
our methodology. The reason why is because 
attackers do not in reality attack ideal primitives such 
as random oracles but block ciphers that perform 
encryption and decryption. The analysis presented in 
this   paper   focuses   on    adversaries   that   aim   in 
producing outputs exhibiting patterns when attacking 
systems that output truly random data. Block ciphers, 
on the other hand, are permutations and do not output 
truly random data.  In fact, it is well known that block 
ciphers can be distinguished from random oracles for 
sufficiently large query budgets (Hall, 1998), (Gilboa, 
2015). In order for our analysis to be valid, we limit 
the adversary query budgets and their associated 
security levels to values for which block cipher 
outputs are practically indistinguishable from the 
truncated outputs of random oracles. For example, the 
64-bit limit we mention above derives from the 
analysis found in references (Hall, 1998), (Gilboa, 
2015). 

4.1 Security of the Byte and Word 
Equality Patter Detectors 

Byte and word equality checks are applicable to the 
protection of memory and storage data because many 
data units in computing systems contain code or data 
structures which demonstrate significant byte or word 
value replications. The entropy index E associated 
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with a data unit consisting of n bytes, which 
demonstrates m bytes being equal to each other is 
given by: 

ܧ ≅ −logଶ	(ቀ ݊݉ ቁ ൬ 1256൰௠ିଵ ∙ ൬1 − 1256൰	௡ି௠) (3)

Similarly the entropy index E associated with a 
data unit consisting of n 16-bit words, which 
demonstrates m words being equal to each other is 
given by: 

ܧ ≅ −logଶ	(	ቀ ݊݉ ቁ ൬ 165536൰௠ିଵ
 

∙ ൬1 − 165536൰	௡ି௠) 
(4)

In order for an adversary to successfully attack the 
byte or the word equality pattern detector, the 
adversary needs to produce corrupted plaintext data 
demonstrating m or more equal byte/word values. We 
consider a simple adversary model, where the 
adversary repeatedly attempts to corrupt some 
ciphertext, so as to produce plaintext that 
demonstrates patterns. The only requirement we 
introduce for the adversary is that the number of 
adversary queries should be bounded so that the 
system which is being attacked (e.g., a wide block 
cipher) should be practically indistinguishable from a 
truncated output random oracle. The advantage of 
such adversary is equal to the probability of seeing 
some specific patterns among random data plus the 
advantage of distinguishing the real cryptographic 
system used (i.e., a pseudo-random permutation) 
from a truncated output random oracle. The security 
analysis, which will follow, will be focused on the 
probability of seeing specific patterns among random 
data. 

For random data, byte or word equalities are 
observed with probability computed as the birthday 
collision probability associated n elements, m 
collisions and 256 or 65536 birthdays for bytes and 
words respectively. Such probability can be 
approximated in many ways, for example using a 
number of recent analytical results (Klamkin, 1967), 
(Suzuki, 2006), (Kounavis, 2017). Using the 
approximation from reference (Kounavis, 2017) we 
obtain: 

ܲ(௕௬௧௘௦ି௘௤௨௔௟) ≅ 1 − ෑ	௡ିଵ
௜ୀ଴ ෍ ൬݊ − ݅ − 1݆ ൰௠ିଶ

௝ୀ଴  

∙ ൬ 1256൰௝ ∙ ൬255256൰௡ି௜ି௝ିଵ 

(5)

and 

ܲ(௪௢௥ௗ௦ି௘௤௨௔௟) ≅ 1 − ෑ	௡ିଵ
௜ୀ଴ ෍ ൬݊ − ݅ − 1݆ ൰௠ିଶ

௝ୀ଴  

∙ ൬ 165536൰௝ ∙ ൬6553565536൰௡ି௜ି௝ିଵ 

(6)

The advantage of an adversary who corrupts 
ciphertext values, hoping that his corruptions will 
pass undetected, Adv(C), is computed from the 
probabilities P(bytes-equal) (n, m) and  P(words-equal) (n, m) 
as follows: ܞ܌ۯ(஼) ≤ ܲ(௕௬௧௘௦ି௘௤௨௔௟)(݊,݉)  ,(஽)ܞ܌ۯ	+

for byte equalities ܞ܌ۯ(஼) ≤ ܲ(௪௢௥ௗ௦ି௘௤௨௔௟)(݊,݉)  ,(஽)ܞ܌ۯ	+
for word equalities 

(7)

where Adv(D) is the advantage of distinguishing the 
cryptographic system used from a truncated output 
random oracle. 

The birthday collision probabilities presented in 
equations 5 and 6 are a little higher than the 
probability values 2-E associated with the entropy 
index values given above. This is because these 
birthday collision probabilities include all events 
where there are more than m values being equal in a 
data unit. In Tables 1 and 2, we show the cumulative 
entropy index distribution computed over 111 million 
cache lines for the byte and word equality pattern 
checks respectively. The corresponding threshold 
values associated with each entropy index value are 
also shown. 

As is evident from the tables, entropy index values 
corresponding to reasonably high security levels (e.g., 
32 bits, 24 bits) for implicit integrity are associated 
with high pass rates in regular client data cache lines. 
This is demonstrated by both the byte equality and the 
word equality pattern checks. For example, for the 
security level of 32 bits, the percentage of cache lines 
that demonstrate this entropy index or higher is 
85.28% if the byte equality pattern check is used. For 
the security level of 24 bits, the percentage of cache 
lines that demonstrate this entropy index value or 
higher is increased to 91.48%. 
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Table 1: Entropy index distribution for the byte equality 
pattern check. 

minimum 
entropy index 

(bits) 

corresponding 
threshold  

% of cache 
lines 

8 5 97.27
16 7 93.55
24 8 91.48
32 10 85.28
40 11 83.30

Table 2: Entropy index distribution for the word equality 
pattern check. 

minimum 
entropy index 

(bits) 

corresponding 
threshold  

% of cache 
lines 

8 3 87.37
16 3 87.37
24 4 82.26
32 4 82.26
40 5 77.70

4.2 Security of a Detector That 
Combines All Pattern Checks 

The entropy index and security levels associated with 
other types of pattern checks can be computed using 
similar analytical tools from probability theory. The 
pass rates for a scheme that combines all 
aforementioned pattern checks are shown in Table 3.  
For the 32-bit security level, the combined scheme 
demonstrates a pass rate of 91.11%. For the 24-bit 
security level the combined scheme demonstrates a 
pass rate of 94.48%. 

When different pattern checks are combined, an 
attacker succeeds if the attacker produces any of the 
considered patterns over some corrupted plaintext. 
Due to this fact, the overall security level supported 
by the combined pattern detector is not equal to the 
maximum entropy index characterizing the patterns, 
but lower by some small parameter ߳, which needs to 
be taken into account. 

Table 3: Entropy index distribution for a scheme that 
combines all pattern checks of Figures 2 and 3. 

minimum 
entropy index 

(bits) 

patterns 
considered  

% of cache 
lines 

8 all (1-8) 98.13
16 all (1-8) 96.50
24 all (1-8) 94.48
32 all (1-8) 91.11
40 all (1-8) 88.88

Table 4: Synthesis results for the Extended Pattern 
Matching algorithm of Figure 2. 

patterns cycles μm2 cells 
equal words 2 3523 15.8K 

eq. words, adj. eq. bytes,
bytes with spec. values,

most sig. nibbles 
3 7179 32.1K 

eq. words, eq. bytes, 3 14350 64.2K 
eq. words, eq. bytes, 

most sig. nibbles 3 17119 76.6K 

all 8 patterns 4 26218 117.3K

4.3 Hardware Realization 

Implementing the aforementioned pattern checks 
efficiently in hardware is feasible.  This section is 
focused on the hardware implementation of the 
pattern detectors of Figure 2, as these are the most 
area and latency efficient. For the byte and word 
equality patterns, interconnect wiring is required, 
which connects every byte or word in a data unit with 
every other byte or word. The necessary amount XOR 
gates can be employed to perform comparisons 
between such entities, followed by a layer of AND 
gates and counters that compute the number of 
matches associated with each entity. The pattern 
detectors that compute the sum of the two highest 
nibble frequencies are the most complex. These 
circuits can be implemented using a combination of 
decoders, counters and trees of comparators. Each 
nibble value is first passed to a decoder circuit which 
generates 16 lines, each corresponding to a different 
nibble value from 0 to 15.  The decoder outputs 
corresponding to the same nibble value are added to 
each other. There are 16 different summation outputs 
from this stage. These outputs constitute the 
histogram of nibble values produced from the input 
data.  Our synthesis results produced using Intel’s ® 
14 nm process technology (Jan, 2015) and the 
frequency of 1.67 GHz are shown in Table 4. 

5 DISCUSSION 

One issue that needs addressing is how to detect 
corruption if data do not exhibit patterns. As we 
demonstrated above, patterns can be found in up to 
91% of client workload cache lines and 84% of server 
workload cache lines. Whereas such data can be 
protected using implicit integrity, the remaining 9%-
16% of the data need protecting also. 

Such design issue can be easily addressed. 
Implementations can protect the overwhelming 
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majority of user data that exhibit patterns using 
implicit integrity and the remaining data using 
standard techniques. There is nothing in the implicit 
integrity methodology, discussed here, that prevents 
it from being used together with other independent 
integrity mechanisms such as MACs. Such solutions 
can co-exist with implicit integrity. 

If some decrypted content exhibits patterns, then 
there is some assurance that no corruption has 
occurred. If no patterns are exhibited, however, a 
search can be made for a MAC associated with the 
content. If no MAC is found then the data is deemed 
corrupted. Otherwise, an integrity check is made 
using the returned MAC. Such implementation can 
use a content addressable memory unit or a hash table 
for accessing and managing MACs. Further 
investigation on hardware and operating system 
changes required in order to support implicit integrity 
are the subject of future work. 

Finally, a reasonable question that can be asked is 
why not simply compress the data and augment it by 
a MAC in the now free space. Compressing and 
decompressing in combinatorial logic, for some 
patterns such as the nibble-based ones, can be in fact 
quite costly. Ongoing research of ours shows that the 
client cache lines that can be compressed at 
reasonable cost are significantly fewer than those 
protected via implicit integrity (78% as opposed to 
91%). Such analysis is the subject of future work. 
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