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Abstract: In this paper we use the conformal transformation known as linear fractional transformation (LFT), with the
purpose of generating a discrete multivariable closed-loop benchmark from continuous multivariable closed-
loop control system, having in mind state space identification. To reach this objective we propose a procedure
based on the general framework representation (GFR) and on the multi input multi output (MIMO) LFT bilin-
ear discretization process. We first use the LFT tool to obtain the continuous joint control-output (augmented)
system form for representing the canonical closed-loop continuous system. Afterwards, we discretize the aug-
mented continuous closed-loop system in order to obtain an augmented discrete model, then, we calculate the
discrete plant and controller in the state space form. An application to the multivariable control of a continuous
chemical reactor is presented and also we use the discrete benchmark generated to identify a state space model
an example of the potential of the our proposal.

1 INTRODUCTION widely used in identification methods.

Our goal in this paper is to propose a simple but

The use of multivariable benchmarks allows the com- powerful methodology to generate discrete MIMO
parison of new methods with classical methods at low closed-loop benchmarks. It is based on the discretiza-
cost. In several areas such as robotics (Aly et al., tion of MIMO continuous closed-loop control sys-
2017), systems control (Wu et al., 2017), systems tems in the LFT augmented form representation
identification (Ase and Katayama, 2015), among oth- The method proposed here guarantees the features
ers, testing algorithms and comparing results are es'preservation of the continuous system by the use of
I evaluatg the new_methods under develop-a conformal transformation known as Linear Frac-
ment and then their comparisons with the already €x- {j,5| Transformation (LFT), widely used in control
Isting ones. . theory, usually for robust control analysis and synthe-

In c_erer to generate a dlsc_rete benchmark for the s~ Indeed this multivariable conformal mapping is
canonical fO”T.‘ presented in Figure 1 and in th_e augd- 54 Mobius transformation, a classical and fundamental
mented form (joint contro!—ou_tput), we presentin this conceptin theory of complex analysis and its multiple
work a procedure to obtain discrete benchmarks hav- applications (Nehari, 1952: Cohn, 1967; Ungar, 1997
ing in mind the identification problem. The proposed Richter et al., 19996{; Richier et e{I., 19§9b; Lui,et aI.,’
Y 2007). For our proposal we used the LFT as a general
framework representation connecting the state space
and the input-output representations for control sys-
tems (Doyle, 1984), with the following purposes: i) to
represent augmented continuous/discrete MIMO LTI
systems in closed-loop, and ii) to discretize continu-
ous systems to generate multivariable benchmarks.

This procedure can supply discrete MIMO LTI
procedure shows how to obtain the LFT augmented benchmarks exploring the discretization of continu-
representation of the continuous closed-loop systemous MIMO control systems in the augmented rep-

Figure 1: MIMO Closed-loop System.
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resentation of Figure 1 and contribute very effec- can be formulated as in the Figure 3,
tively for discrete state space identification of MIMO The set plant/controller is given by:
closed-loop systems. — i\ AC c

This work is organized as follows: first, a brief in- Xp(t) = ACXp(t) + Bcu(t)
troduction of the concepts of augmented systems and y(t) =C™%p(t) + Du(t)
linear fractional transformation are presented; then, gnq
the methodology for the representation of an aug- . A c
mented system via LFT is shown. Immediately af- Xo(t) = Acxe(t) tBC[rl(t) —y(Ct)] (5)
terwards the discretization procedure via LFT of the u(t) = ra(t) +Cc(t)xe(t) + Delra(t) — y(t)]
augmented continuous system is presented, and theR hareac BC CC. DC AS, BE, CS, DS, are the contin-

the calculation of the discrete plant model and dis- ;5,5 matrices of the piant and the controller, respec-
crete control model from the discrete augmented SYS-tively. The signalsu(t) € ™, y(t) € R™, r1(t) €

tem are presented. Finally applications of the proce- R andra(t) € R, are the inputs, outputs and the
dure to obtain multivariable benchmarks for a multi- exogenous inputs.

variable chemical-reactor control system and the sub- 110 augmented system can be expressed by:
space identification of the augmented system are pre-

(4)

sented . X(t) = Arcx(t) + Breii(t) ©)
¥(t) = Crex(t) + Drcd(t)
the continuous matricerc, Brc, Crc, Drc describe
2 LINEAR FRACTIONAL the continuous augmented system (the calculation of
TRANSFORMATION these matrices are presented in Section 3); this set of
matrices has adequate sizes. The signals
The linear fractional transformation (Nehari, 1952;
Zhou et al., 1996; Doyle et al., 1991) for a complex at) = [rl(t)] ,
variables € C! is a functionF : C — C that can be ra(t)
generalized for the matrix case with the complex ma- _ y(t)
trix of coefficients: y(t) = [u(t)}
M — [Mn Mlz] e C(PL+p2)x (ql+a2) (1) in the augmented system in (6) represent the joint in-
Mz1 Mg ’ puts and joint outputs respectively.

and the matrixy, € C(92xP2),
The LFT has two forms, the lower one given by:

3 DISCRETE AUGMENTED

FM, A1) 2 M1+ M2 81 (I =Mz2 1) M21 (2) SYSTEMS VIA LFT
and the upper: REPRESENTATION
A _ -1
Fu(M. 2u) = Mzz+Ma1 Ay (I = Mi1 Au)“Ma2 (3) The system in FigureZwith plant and controller is
supposing thatl — M2 )"t and given by:
il -1 exi
(I =M11 Ay) ™+, exist. Xpki1 = AXpk+ Bug
: Yk = Cxpk+ Du )
2.1 Continuous Augmented Systems K pk =k
and
Closed-loop continuous systems presented in Fig- Xok1 = AcXek + Be[r 1k — Yid
ure 2, can be represented as augmented systems (Ver- B D (8)
haegen, 1993; van der Veen et al., 2013; Ljung, 1999); U = 12k + CoXek + Delr i — Yid
they have taken this name because the size of the state  and the problem of representing the control-output
vector is increased as: set can be given as an output/input relationship.
_ [%p(t) Ithe set of complex variables is denoted 8y:
X(t) : f
Xe(t) 2In Equations (7) and (8)A, B, C, D, Ac, Be, Ce, D,

n . are the discrete matrices of the plant and the controller, re
wherexp(t) € R" is the state vector associated to the gpectively. The signais, c ™, yi € ™, ry € R™ and

plant, andk:(t) € " is the state vector associated to r,, ¢ Rz, are the discrete inputs, outputs and the exoge-
the controller. nous inputs.
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Figure 2: Continuous Closed-loop MIMO System.

1k

Figure 3: Discrete Closed-loop MIMO System.

With the assumption tha = 0 in Figure 2, we
have that the control-outptset is given by:

Xpk+1 Xpk
Xek+1 Xck
Usk | =M |rsk 9
Yk Ik ©)
Uk Ik
rsk = Duk

or

B} /50_| Bo, B2
M= Co_' Doo ' Doz _ (1)
Cz ' D1o ! D11
Then the system can be represented by the LFT as:
G2 = fu{A(M,D),z 1} (12)

with the direct transfer matri® = 0 in (12), the sys-
tem can be represented by Figure 4
The LFT in (12), can be simplified B = 0, in this

whereM is the matrix calculated from the topology case the system can be represented by:

on Figure 2 as a general framework representation via

LFT given by:
A-BDLC BGC , —BD:,BD:; B
—-B.C A B 1 B O
M=| _-DLC G_ D | De I
C o + 1 + 0 O
-DC G ! —D¢ ! D¢ |
(10)

Suy in the Figure 3 is splitted in two parts, the signgl
before the grey box is callegk, and the signali after the
grey box is calledigk
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A-BDC BG,BD. B
| -BC A B O
M=l"""T "0 770 0 (13)
-D.C C | D¢ |
‘Y_/ I\\f—/
L c | D J

Xpk+1 — Xp

Xek+1 | _ é_ @_ Xc
Yo | [ C'D ] Fak (14)
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Figure 4: LFT Closed-loop System Diagram.
Then the discrete augmented system is given by:
Xk = /&Xk + B_Gk
i (15)
Yk = Cx + DUk

whereA, B, C, D are the discrete state matrices with
adequate sizes and the discrete signals

- r
O = |: ZK] c Knr1+nr2’

Ik

S [ Yk my+nu

Vi = [UJ ER
and

Xpk n+m
X= | P e
k |:Xck] R

represents the joint input , and the joint output, re-
spectively.

Finally, the control and the plant, calculated from
the discrete augmented system are given by:

-1 -1
P = [ AO_%FHCZ I B2'(3)11 } (16)
and
Ao —BD;{Cs | Bo—BD;1D1o
_ 17
Ck { D1iCz | DyiDio 4

4 AUGMENTED CONTINUOUS
SYSTEM DISCRETIZATION

In this section using the properties of the LFT rep-

obtain the discrete model given in the equation (15).
If the relationship between theandz complex fre-
guencies, is given by:
2 (z+1
N —=— 1
P (z—l) (18)
thens can be expressed as an upper LFT given by:

é% Fu(N,z71) (19)

with matrices:

and
A=Z
whereTy represents the sampling period.
From N andz ! in (19) we obtain the discrete

closed-loop system LFT represented in Figure 5,
where the star product between the state matrices and

71

L——

Agtc Borc  Barc

Corc  Doorc Doitc

Corc Digre Dirre

Dtc

Figure 5: LFT Closed-Loop System Discretization Dia-
gram.

theN matrix, gives
Agtc  Borc  Borc
Ful Fi{N* |Corc Doorc Dorrc| ,Drc p,zt
Corc Diorc  Dure
where

Agtc  Borc  Barc B
N+ |Corc Doorc Doirc| =M
Corc Daiorc Darrce

is given by (20), andF, {# {M,D}.z1} contains

resentation and the bilinear approximation (18), we the discretized matrices of the continuous system.
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(20)

5 BENCHMARK GENERATION 5.1 Closed-loop State Space
Identification of the Augmented

The proposed procedure presented here can be sum- System

marized by the following steps: i. Represent the con-
trol system in closed-loop as an augmented model in
the joint control-output form. ii. Discretize the con-
tinuous augmented model via LFT, and iii. Calculate
the discrete controller and plant from the discrete aug-
mented model .

In (MacFarlane and Kouvaritakis, 1977) is presente
the design of a controller for a continuous chemical
reactor; this model has been widely used in the lit-
erature. First we obtain the augmented continuous
system representation according to the procedure de
scribed above:

In this section, we show how to use the benchmark
in (23). First we use the joint inpui to excite the
discrete augmented model in (23) in order to obtain
the joint outputys. The second step is the use of a
d subspace method to identify the augmented system;
in this work we use a Canonical Correlation Analy-
sis identification method presented in (Katayama and
Picci, 1999; Forero et al., 2015), to obtain the state
Space matrices. The discrete augmented matrices
identified are presented in (26).

Mtc =
Arc | Bre 6 CONCLUSION
Arc—BrcDercCre  BreCere | BreDerc Bre _ _ - _
 =BercCrc. . Astc 1 Bere . 0 In this work a simple and efficient procedure is pro-
Cre 0 ! 0 0 posed to obtain discrete multivariable benchmarks for
—DercCre Gere ' Dere | closed-loop control systems from continuous MIMO
— ——- N—_—— . .
e [ Drc control systems, widely used to design, to evaluate

(21) and to test its performance. The procedure allows
- ) _ to find benchmarks for data generation, in the joint
The coefficient matrices of the augmented continuous ¢ nirol-output form, which are very useful for closed-
system (21), are given in (22). , loop systems identification. It also allows the use
_ Then the discretization of the continuous system q the "canonical feedback form with MIMO plant
is performed. The matrikl is calculated by (20), and  3ng controller models supposedly known for discrete

given by: MIMO state space identification. The features of the
r A ' By ] continuous system, due to the augmented LFT repre-
—_—— sentation of the discrete system are conserved.
A-BDLC BC  BD: B Finally, i) a discrete MIMO benchmark of a chem-
M= |-- BLC A B O ical reactor system is provided by our proposal for
C 0o , 0 O tests and comparisons of multivariable discrete identi-
DL G ! De | fication techniques in closed-loop aii)da state space
? | \5’;/ augmented closed-loop identification is provided us-

ing the discrete benchmark and the Canonical Corre-
The coefficients matrices of the augmented discrete |ation method for LTI systems identification.

system, are given in (23). Finally the discrete plant

and controller, are calculated by (16) and (17). The

plant matrices are given in (24), an the controller ma-

trices by (25)
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13800 —0.2077 67150 —5.6760 0 0
—0.5814 —61.0800 0 06750 0 127778 0 0 O
A._ |—303930 -7.0870 -381140 373530 165165 88480| 5 | 0 0 0 0
TC= | 0.0480 —7.0870 13430 —2.1040 0 25560 TC=]1 0 10 1 O
—4.0000 0 —4.0000 40000 0 0 -10 0 0 1
0 —4.0000 0 0 0 0
0 0 0 0
0 5679 5679 0 1.00 0 100 -1.00 0 0
.. _ |3146 11360 1136 -3.1460| = _ | O 1.00 0 0 0 0 29
TC=1 0 1136 1136 0 TC=]1 0 -1000 O 0 0 225 (22)
4.00 0 0 0 10.00 0 1000 —-1000 -5.25 -2.00
0 4.00 0 0
1.0013 —0.0002 00066 —0.0056 Q0001 Q000
—0.0006 09407 —0.0000 Q0007 —0.0000 0012
~ |—0.0299 —-0.0069 09625 00367 00162 0008
Ad=100000 -00069 00013 09979 00000 0002
—0.0039 00000 —0.0039 Q0039 10000 —0.000
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0.0001 0000 Q0000 —0.000
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g, | 00219 0007 Q0008 —0.0022
d= 0.0000 0007 Q0008 —0.0000
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Ca=1| 00040 -137290 0000 —0.004 QOO0 3094
139544 Q0040 13928 —13921 -—7.309 —2.784
0.0155 0000 —0.0000 —0.001
5. _ |~0.0000 0027 Q0028 00000 23)
d= 1 0.0000 9728 Q9724 —0.0000
—9.8554 —0.003 Q0000 Q9845
1.0014 —0.0002 00067 —0.0057 —0.0000 —0.000 0.0000 —0.000
—0.0006 09957 —0.0000 Q0007 Q0000 0 0.0040 Q0000
A _ | 00011 00043 09934 00059 0 0 5., | 00008 —0.0022
pd = | 0.0000 00043 00013 Q9979 —0.0000 —0.0000 pd = | 0.0008 —0.0000
—0.0040 00000 —0.0040 Q0040 10000 00000 —0.0000 00000
0.0000 —0.0040 00000 —0.0000 —0.0000 10000 —0.0000 —0.0000
5o —0 c . _[13940 00002 13914 -1.3907 Q0115 00044 (24)
pd = ¥2x2  “~pd = |_0.0004 13723 —0.0000 00005 —0.0000 00088
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