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Abstract: Activity Recognition (AR) aims at deriving high-level knowledge about human activities and the situation
in the human’s environment. Although being a well-established research field, several basic issues are still
insufficiently solved, including extensibility of an AR system at runtime, adaption of classification models
to a very specific behaviour of a user, or utilising of all information available, including other AR systems
within range. To overcome these limitations, the cooperation of AR systems including sporadic interaction
with humans and consideration of other information sources is proposed in this article as a basic new way to
lead to a new generation of “smart” AR systems. Cooperation of AR systems will take place at several stages
of an AR chain: at the level of recognised motion primitives (e.g. arm movement), at the level of detected
low-level activities (e.g. writing), and/or at the level of identified high-level activities (e.g. participating
in a meeting). This article outlines a possible architectural concept, describes the resulting challenges, and
proposes a research roadmap towards cooperative AR systems.

1 MOTIVATION

The well-established research field of activity and
context recognition (AR) aims at deriving high-level
knowledge about human activities and the situation
in the human’s environment from simple sensors
such as acceleration sensors, microphones, or gy-
roscopes (Lara and Labrador, 2013; Shoaib et al.,
2014). Often, mobile devices such as smartphones
or smart watches are used for this purpose (Shoaib
et al., 2015). Examples for application fields range
from monitoring maintenance tasks (Roy et al., 2013)
through traffic applications (Liao et al., 2006) or mon-
itoring sports activities (Ermes et al., 2008) to medical
applications (Maurer et al., 2006).

Today’s AR systems have a number of limitations,
including the following: a) they typically rely on a
fixed configuration of sensors that are available in a
given device, b) their pre-trained classification models
are often not customised to the specific user, and c)
the set of activities that have to be recognised in an
AR system is fixed at the design-time of this system.

Based on the observation that we face an ever-
increasing number of (smart) sensors and devices in
our daily environment (already able to host AR sys-
tems), we suggest to overcome these limitations by
means of a fundamentally different way of develop-
ing and deploying AR systems. We claim that a coop-

eration of AR systems including sporadic interaction
with humans and consideration of other information
sources whenever possible will lead to a new gener-
ation of ”smart” AR systems with: i) the capability
to self-adapt to the activities and contexts of a spe-
cific user at runtime (including semi-autonomous ex-
tension to new kinds of activities or contexts), and
ii) an increased recognition accuracy and reduced en-
ergy consumption.

In this article, we outline our vision of a cooper-
ative self-adapting AR System. Cooperation of AR
systems will take place at several levels of an AR
chain: at the level of recognised motion primitives
(e.g. arm movement), over the level of detected low-
level activities (e.g. writing), to the level of identified
high-level activities (e.g. participating in a meeting or
activities of daily living).

To illustrate, consider a managerial meeting as
use-case to highlight the possible benefits of such a
collaborative approach: An AR system running on a
smartphone recognises that its user is sitting. In its
vicinity are several other smartphones (also running
AR systems), a smart pen is activated and used, and
room-based sensors signal the utilisation of the room
(e.g. movement detectors are activated or a projector
is used). The recognition can be supported by consid-
ering even other information sources such as sitting
detectors in the chairs. Once a multitude of AR sys-
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tems recognise the sit down activity, they might share
this information and conclude cooperatively that the
meeting is going to start. Important energy savings
might be achieved, if the whole recognition cycle is
not required for all participants, but only for a few.
For all other participants, the activity can be con-
cluded purely by e.g. proximity. Another important
improvement, other than increasing the recognition
accuracy, will be the ability to include new, unfore-
seen activities such as sitting on a table instead of
a chair, and still having this meeting. As a conse-
quence of “meeting ongoing”, incoming calls may be
muted and the calendar shows “not available”. In the
course of the meeting, it can be cooperatively con-
cluded that the (high-level activity) meeting is still
ongoing – even though a participant might have left
already – based on (basic) arm movements, i.e., the
(low-level) activity of writing of several participants.

The remainder of this article is organised as fol-
lows: Section 2 presents the research statement, Sec-
tion 3 briefly summarises relevant work from the state
of the art, Section 4 presents an architecture concept
for collaborative AR systems, and Section 5 describes
the resulting research roadmap. Finally, Section 6
concludes the article.

2 RESEARCH STATEMENT

To address the vision above, we have to develop
and investigate the foundations for a new genera-
tion of cooperating, self-improving AR systems based
on the confluence of ideas from two well estab-
lished research areas: 1) Human activity and context
recognition in pervasive/ubiquitous systems. 2) Or-
ganic Computing (OC) techniques for runtime self-
organisation and self-adaptation in technical systems.
From a scientific point of view, the above vision im-
plies several research directions including commu-
nication in ad-hoc networks, sensor self-description,
service discovery, robustness, security, and leveraging
new sources of information. In this article, we focus
on the latter as the other aspects are well covered by
current research.

The vision is briefly sketched in the motivation es-
sentially amounts to a cooperating and self-improving
AR system. In this context, “cooperating” refers to an
AR system that is able to perform purpose-oriented
interaction with other AR systems. As cooperation
partners for the AR system, we not only consider
other AR systems being available in its communi-
cation range, but also its human user who may pro-
vide answers - assuring that the user is only asked
very sporadically. Thus, we aim at transforming an

AR system from a (traditionally) static system into an
evolving system that adapts to the time-dependent and
changing behaviour of its user. In particular, cooper-
ation has to be established with the following objec-
tives:

Objective 1. Cooperation based recognition accu-
racy improvement of ongoing human activities
at several levels of abstraction (i.e., from motion
primitives such as arm movements to high-level
activities such as participating in a meeting).

Objective 2. Reduction of energy consumption in
mobile devices hosting an AR system without de-
terioration of the AR system’s accuracy by coop-
eration.

Objective 3. Customisation of pre-trained AR sys-
tems (i.e., the AR system will adapt to the unique
activities of a specific user) supported by cooper-
ation.

Objective 4. Detection of hitherto unknown kinds of
activities (i.e., “novel” activities a specific AR
system was not pre-trained for) and self-extension
of the activity repertoire by cooperation.

The objectives above are not only relevant for the
field of AR, but also for the area of OC (Tomforde
et al., 2017; Müller-Schloer and Tomforde, 2017). In
particular, OC focuses on enabling autonomous tech-
nical devices with capabilities to self-organise, con-
tinuously self-assess the success of their behaviour,
and consequently self-adapt and self-improve at run-
time. As a result, traditional design-time decisions
are transferred to runtime and into the responsibility
of the systems themselves. This transfer of design-
time decisions to runtime is necessary, since not all
required features of a system can be anticipated of-
fline, i.e., at design-time.

Consequently, we can summarise that the main
objectives under the common theme is to develop and
investigate novel techniques based on the principles
of OC to develop a new generation of “smart” AR
systems. In our approach, we focus on the specific
questions from the field of AR systems, but we as-
sume that the main insights will also be transferable
to many other application domains.

Within this article, we refer to the object that per-
forms the AR as “entity”. An entity might be a smart-
phone or another smart device. For AR the entity
accesses internal and external information sources.
Internal sources might be sensors that are available
within the entity, for instance, the built-in accelerom-
eter or gyroscope of the smartphone. External sources
are not part of the entity such as infrastructure sensors
or other entities. Further, the term “activity” sum-
marises activities at all level of abstraction, i.e. mo-
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tion primitives as well as low- and high-level activi-
ties.

3 STATE OF THE ART

The following paragraphs summarise contributions
from the state of the art that are closely related to this
article in several domains.

AR aims at deriving knowledge about human ac-
tivities and the situation in the human’s environment.
In the recognition process, commonly, sensor data
are processed and matched to activities. That means,
the continuously incoming data stream is segmented,
for instance by applying a Sliding Window or Slid-
ing Window And Bottom-up (SWAB) method (Keogh
et al., 2001). For each segment application-specific
characteristics, i.e. features, are extracted. Common
features are time domain based features such as mean
or variance. These features are often used as they
are easy to calculate and simultaneously provide com-
paratively well insights into the data characteristics.
Further, frequency domain based features have been
investigated, which can extract unseen patterns and
trends in the data (Chaovalit et al., 2011). For exam-
ple, a Fourier transform can be used to uncover data
characteristics that support the recognition of a user’s
fall (Delahoz and Labrador, 2014). The extracted fea-
ture values are passed to a machine learning algo-
rithm which generates an AR model. A variety of ma-
chine learning algorithms are available such as clus-
tering algorithms, Support Vector Machines (SVMs),
or Bayesian classifiers. The generated model iden-
tifies a user’s activity based on the incoming feature
values. To improve the AR performance, a well in-
vestigated approach is the integration of additional
information sources, often referred to as sensor fu-
sion. Commonly, a combination of sensor sources
is done in terms of raw sensor data. The data are
provided by additional (internal and external) sen-
sors. A multitude of sensors have been combined
such as accelerometer and gyroscope (Shoaib et al.,
2014), accelerometer and pressure sensor and micro-
phone (Khan et al., 2014), as well as accelerome-
ter and various combinations of infrastructure sensors
such as radio-frequency readers, object tags, or video
cameras (Roy et al., 2013).

Along integrating additional sensors, a (pas-
sive) collaborative approach was investigated. The
project ”Collaborative Context Recognition” (Co-
CoRec) considers other entities and information at
different abstraction levels, i.e. raw data, low-level
contexts, and high-level contexts, were data are ex-
clusive at these levels. The researchers investigate the

activity monitoring (Kampis and Lukowicz, 2014), or
the efficient information distribution (Kampis et al.,
2015). Though, the project results are mainly in in-
formation monitoring and distribution. In this arti-
cle, we assume the monitoring and distribution of data
as being solved and focus on cooperative knowledge
gathering and processing in AR. We investigate co-
operative entities that dynamically send and receive
data needed for AR at multiple levels of abstraction,
and consider these in the corresponding stages of the
AR process. In comparison to our vision, active and
purpose-oriented cooperation with other sensors and
human users is not considered in AR systems today.

Organic Computing (OC) is a recent paradigm
of designing and developing self-adapting and self-
organising technical systems acting in the real world.
OC systems are designed to process so-called self-
x properties that allow them to be self-adaptive and
self-organising at runtime. In this article, we aim
at cooperative and self-adaptive AR systems, which
require a system design allowing for internal adap-
tation. OC and related initiatives (such as Auto-
nomic Computing (Kephart and Chess, 2003)) have
proposed a variety of architectural blueprints. Ex-
amples include the generalised observer/controller
(O/C) framework (Tomforde et al., 2011) and
the Monitor-Analyse-Plan-Execute(-Knowledge) cy-
cle, called MAPE(-k) (Kephart and Chess, 2003). For
both concepts (i.e., O/C and MAPE-k), multi-layered
extensions have been proposed as well as system-of-
systems concepts.

The utilisation of machine learning techniques is
a key factor for self-organised and self-adaptive tech-
nical systems. These systems have to adapt them-
selves in response to the ever-changing environmen-
tal conditions and at the same time have to guaran-
tee the compliance to restrictions preventing faulty
behaviour (Prothmann et al., 2009). Especially Au-
tonomous Learning is considered to be a key feature
in OC systems: At design-time, only incomplete in-
formation is available as basis for learning processes
(e.g., for training purposes).

Collaborative Learning (CL) is a topic related to
this article as we aim to enable individual AR sys-
tems to interact with each other to further improve
their recognition process. Distributed intelligent sys-
tems that work in a collaborative manner recently
became an active research issue (Panait and Luke,
2005). In the majority of these approaches, informa-
tion is locally acquired and pre-processed by the in-
telligent systems and then sent to special processing
units (which can be either centralised or distributed).
Less common, but closer related to our approach,
is work dealing with collaborating agents that learn
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from each other by exchanging locally inferred rules
such as in (Jakob et al., 2008). In (Tan, 1993), the
authors investigate the exchange of different kinds
of knowledge (i.e., observations, observation-action-
reward vectors, and learned state transitions) between
agents that are equipped with reinforcement learning
techniques. Furthermore, agents equipped with SVM
exchange newly learned support vectors in (Jändel,
2009). Correctly classified samples yield a reward
which is used by the agents to adapt their SVM to
changes in the environment. A periodic exchange
of knowledge between agents with different learn-
ing paradigms (i.e., table based Q-learning and neural
networks trained with backpropagation) is presented
in (Gifford and Agah, 2009). This approach, how-
ever, is based on an application- and learner-specific
intermediate knowledge representation that must be
defined in advance. Additionally, the choice of rep-
resentation greatly influences the performance of the
overall agent system.

Active Learning (AL) provides powerful ap-
proaches to create flexible systems which are able
to adapt themselves to a changing environment (Set-
tles, 2009). These methods interact with their target
system to investigate which information might opti-
mise their model, and they actively acquire this in-
formation. In classification (also in regression) prob-
lems, AL algorithms actively request the target value
of an instance (feature vector) (Aggarwal et al., 2014).
Three basic AL approaches exist: 1) query synthesis
(the query instance is generated), 2) pool-based AL
(the query is an instance from a pool of unlabelled in-
stances), and 3) stream-based AL (instances succes-
sively appear and the AL algorithm decides if the la-
bel should be acquired) (Aggarwal et al., 2014). One
of the main challenges is to balance the exploration
of new regions in the feature space and the exploita-
tion of the existing knowledge to refine the trained
model (Settles, 2009). The most popular method is
uncertainty sampling, although it solely exploits the
model by acquiring labels from instances near the
classifier’s decision boundary (Settles, 2009). More
sophisticated methods extend this approach by adding
exploratory components, density information, or class
priors (Reitmaier and Sick, 2013).

As a conclusion from this discussion of the state
of the art, we can state that traditional research in AR
does not consider cooperation sufficiently. Thus, pos-
sibly available knowledge to improve the efficiency
and quality of solutions is not taken into account. To
address this issue, especially techniques and insights
from the domains of OC, CL, and AL are promising
and have to be extended accordingly.

In this article, we claim that the state of the art

needs to be improved by a new approach for AR
which is taking advantage of cooperation by enabling
AR systems to be flexible to environmental changes
by means of cooperation. This specifically includes:
• the flexibility to consider the knowledge of other

AR systems about recognised activities at various
stages of a recognition chain,

• the capability to adapt to the behavioural patterns
and activities of a specific user at runtime (includ-
ing semi-autonomous extension to new kinds of
activities), and

• improving activity recognition in terms of its key
performance indicators such as accuracy and re-
duced energy consumption.

4 AN ARCHITECTURAL
CONCEPT FOR COOPERATIVE
SELF-ADAPTING AR SYSTEMS

We present an architectural blueprint for cooperat-
ing AR systems that is based on design concepts
from OC (Tomforde et al., 2011). For the de-
sign of self-organising and self-adapting systems, the
OC community has proposed a generalised design
concept that distinguishes between a ”System un-
der Observation and Control” (SuOC) and an ”Ob-
server/Controller” (O/C) tandem that is responsible
for adapting the behaviour of the SuOC to changing
conditions (Tomforde et al., 2011). The O/C tandem
may be realised in hierarchies of layers with increas-
ing abstraction (Tomforde and Müller-Schloer, 2014).

Fig. 1 shows a customised variant of the generic
O/C architecture for cooperating, self-adaptive AR
systems. Here, the concept of the SuOC is instan-
tiated by the human user (or several humans) in a
sensor enhanced environment. The architecture con-
sists of two layers: The Reaction Layer is responsi-
ble for reactions to observed behaviour, i.e., it realises
the tasks of augmenting a traditional AR system with
mechanisms for cooperative reaction according to the
Objectives 1 and 2. The Adaptation Layer is respon-
sible for long-term improvements by adapting the Re-
action Layer at runtime, i.e., the upper layer monitors
and modifies the behaviour of the bottom layer ac-
cording to Objectives 3 and 4.

The Reaction Layer is organised in three main
components: an observer component containing a
four-stage recognition chain, a controller component
triggering actuators, and a component for cooperative
reaction.

The four stages of the recognition chain in the ob-
server component are:
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Figure 1: Architectural blueprint of a cooperative and self-
adapting AR system based on the Observer/Controller ap-
proach (Tomforde et al., 2011) from the OC domain.

Stage 1. Pre-processing and feature extraction: Raw
data directly obtained from sensors (e.g., acceler-
ation values gathered from an accelerometer) are
pre-processed (e.g., filtered and segmented). Fea-
tures are extracted that characterise certain activi-
ties.

Stage 2. Recognition of motion primitives: Features
are used to identify (classify) motion primitives
such as lifting the arm. At this stage, we rely on
SVM, but may use k-Nearest-Neighbour (kNN)
classifiers as alternative. Recognised motion
primitives can be either used as an independent
factum or are passed to the low-level AR stage.

Stage 3. Recognition of low-level activities: This
stage focuses on the identification of low-level
activities as a set of temporally and coher-
ently related arm movements, i.e. motion prim-
itives. Low-level activities are modelled as
(probabilistic) sequences of motion primitives.
Thus, models such as left-right Hidden-Markov-
Models (HMM) are used.

Stage 4. Recognition of high-level activities: Based
on results of the lower stages, the goal is to recog-
nise related high-level activities, e.g. to identify
activities such as meeting, dish washing, dinner,
or tram ride. High-level AR uses knowledge about
motion primitives, low-level activities, and, pos-
sibly, other external information sources. High-
level activities are seen as temporal sequences and
modelled with HMM, too.

While the O/C tandem at the Reaction Layer
is given, the component for cooperative reaction –
which addresses Objectives 1 and 2 – has to be devel-
oped and investigated. It collects activity information
from other AR systems and/or information sources
which is then fed into the recognition chain or fused
with results of stages of the recognition chain. The
component for cooperative reaction is in charge of ac-
tively collecting beneficial information.

The Adaptation Layer – which addresses Objec-
tives 3 and 4 – has to be developed and investigated
but contains the O/C tandem as well. The observer
component is responsible for evaluating the behaviour
of the Reaction Layer. In particular, this means to as-
sess the classification success of the AR system and
the appropriateness of consecutive actions. As a re-
sult, the AR system becomes self-aware concerning
its own performance. The controller component im-
proves the behaviour of the Reaction Layer over time
by combining the two modules learning and adap-
tation. Conceptually, this establishes a control loop
on-top of the control loop of the Reaction Layer that
increases the ability of the system to positively re-
act to new situations arising at runtime and to adapt
the AR system to a specific user or a new kind of
activity. Similar to the Reaction Layer, the Adapta-
tion Layer contains a module for cooperative adapta-
tion that (passively or actively) collects activity infor-
mation from other AR systems or additional sources
(e.g., external sensors) and humans who can occa-
sionally be asked to provide information about a cur-
rent situation or an event that occurred shortly before.

In order to finally establish a cooperative AR sys-
tem based on the presented blueprint, we have to ad-
dress several research challenges in the first place.
These are briefly outlined in the following section.

5 RESEARCH ROADMAP

The vision of cooperative, self-adaptive AR systems
leads to the following research roadmap.

Challenge 1 – Assessment and Selection of Infor-
mation Available Via Cooperation at the Reaction
Layer.
The first step towards cooperation at the Reaction
Layer is to assess the knowledge of other entities in
order to identify the most beneficial information for
AR. Therefore, all information arriving via broadcast-
ing needs to be managed, organised, and structured.
To identify information that are beneficial for AR a
promising approach is to estimate the ”recognisabil-
ity”. As the information are possibly available at dif-
ferent abstraction levels, the ”recognisability” estima-
tion algorithm needs to be able to respect the different
informational content of the received data. Further,
information are provided from dynamically changing
information sources. Techniques are necessary that
flexibly manage the (un-/)available sources of infor-
mation.
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Challenge 2 – Improving the Classification Accu-
racy Through Cooperation.
To improve the AR classification accuracy, the infor-
mation beneficial for AR needs to be integrated into
the AR process. As it is possible that previously un-
known information sources appear, these sources are
analysed and introduced into the AR system. Depen-
dent on the level of abstraction the information are
considered at the corresponding recognition stages of
the recognition chain, i.e. pre-processing, motion-
primitives, low-level, or high-level activities (see Sec-
tion 4). The motion-primitives might be recognised
by applying feature extraction and machine learn-
ing algorithms such as kNN and SVM. At the fur-
ther stages, an HMM might be applied to process
the higher-level information. The applied classifiers
need to be extended to be able to handle dynamically
changing information sources.

Challenge 3 – Energy Efficiency.
As an important advantage of cooperation, single de-
vices may (partly) switch off their AR systems to
save energy. This is possible whenever information
obtained from other, ”similar” entities can be trans-
ferred to maintain their own functionality without lo-
cal AR. Thus, ”similar” entities have to be identified.
To quantify the similarity between entities, the align-
ment algorithm might be applied (Sigg et al., 2010).
As the alignment algorithm calculates the similarity
for one information abstraction level, techniques are
needed that are able to handle all levels. Based on
these results, ”footprints” of each entity might be used
to identify ”similar” entities. Once a similarity is
agreed, only one entity processes the AR. The AR is
conducted as discussed in Challenge 2 and, hence, in-
cludes all stages. The results are provided to all other
entities.

Challenge 4 – Short-term Adaptation of the Reac-
tion Layer.
As shown in various publications, the classification
success largely depends on the selected window size
(when using the sliding window method). Thus, the
AR accuracy might be improved when the window
sizes are dynamically adapted to the current situation
at runtime. To ”spot” activity changes in the contin-
uous sensor data, a promising approach is analysing
the low- and high-frequency components of the ac-
celeration data. The components can be derived by
applying a Butterworth low-pass filter (Suarez et al.,
2015). Secondly, activity changes might be seen
by monitoring the activity frequency characteristics
within the sensor data. Applying Dual-Tree Com-

plex Wavelet Transformation to emphasise areas of
frequency changes in sensor data as suggested in (We-
ickert et al., 2009) might give insights into the activity
frequency characteristics to adjust the window size.

Challenge 5 – Runtime Customisation of the AR
System at the Reaction Layer.
An AR system continuously analyses sensor data to
estimate the current user activities. Once deployed,
the detection mechanism runs continuously and pro-
vides a classification. However, the correctness of
this classification depends highly on the pre-training
at design-time by means of example data. Assum-
ing that all detectable activities have been part of
the training data, we still face the problem that pre-
training is not necessarily done with the particular
user, and classifications based on sensor data will oc-
casionally be wrong (depending on variances in the
user’s behaviour). A framework of measures based
on (Fisch et al., 2016) and techniques, e.g., for trans-
ductive learning will allow for an adaptation of the
classification system to changing conditions and a
customisation to the specific user.

Challenge 6 – Runtime Self-extension at the Reac-
tion Layer for Detection of Novel Kinds of Activi-
ties.
The knowledge of the Reaction Layer comprises all
activities that have been part of the training process.
However, this seldom covers all distinct activities the
respective user will experience when using the AR
system: Novel activities may appear and others may
become obsolete due to changes of the user’s be-
haviour. Consequently, techniques are needed that
foster the set of known activities that are considered
by the Reaction Layer at all stages of the recognition
system. A promising approach may be found in the
combination of two aspects: (i) determine if the con-
sidered classes of known activities are sufficient, e.g.,
by means of developing techniques for anomaly de-
tection, and (ii) introduce appropriate novel classes
of behaviour and update the recognition system ac-
cordingly (e.g., based on exchanging class informa-
tion among systems).

Challenge 7 – Cooperation with Human Users for
Long-term Improvement.
The human user is the instance in the entire system
with the best knowledge about activities that supports
long-term improvement of the AR system. The chal-
lenge is to actively collaborate with the user by con-
sidering efficiency, acceptability, and comfort issues.
Therefore, the status and the preferences of a user

PEC 2018 - International Conference on Pervasive and Embedded Computing

82



have to be analysed and assessed continuously. As an
approach to solve this challenge, techniques for up-
dating the user model that are based on the ideas of
“Active Learning” (Settles, 2009) have to be devel-
oped. Active Learning allows for covering the task
of efficiently acquiring knowledge from the user and
improving the underlying knowledge models accord-
ingly.

Challenge 8 – Cooperation with Other AR Systems
for Long-term Improvement.
Due to mobility, the user’s smartphone running the
AR system is surrounded by other users that may also
carry AR systems or other “smart” devices – which
may have experienced different user behaviour and
varying sequences of activities. This existing knowl-
edge may be beneficial for the AR system under con-
sideration: as basis for evaluating the success of its
Reaction Layer, for identifying novel classes of activi-
ties, or as additional source to improve the certainty of
a classification decision. The challenge in this context
maps the previous human-related challenge to find ef-
ficient and beneficial ways to query and incorporate
user knowledge to technical devices. An approach to
solve this challenge will be based on techniques for
modelling the knowledge, the expertness, and the mu-
tual experiences made with other technical devices.

Challenge 9 – Estimating the Success of Coopera-
tion.
The vision postulated in this article is that such a co-
operative AR system is more efficient, more robust,
and more successful than traditional approaches. The
final challenge is to proof these assumptions.

Therefore, scenarios are necessary that cover the
different aspects of the previous challenges. In or-
der to determine the success of the system two se-
tups need to be compared: 1) No cooperation al-
lowed: This represents the recognition performance
achievable already today and, thus, provides the initial
benchmark; 2) Assuming a perfect cooperation: This
evaluates whether applying cooperation improves the
recognition performance. It is guaranteed that all
knowledge is immediately accessible to all entities.
The (cooperatively) achieved recognition results are
quantified by appropriate evaluation metrics and the
calculation of statistically relevant results. To gain
deeper insights, the time span of adaptation (for long-
term success analysis) might be monitored.

6 CONCLUSION

In this article, we claimed that the next promising step
in activity recognition (AR) research is to focus on
cooperative solutions. Therefore, we outlined an ar-
chitectural concept and the resulting challenges, fol-
lowed by deriving a research roadmap towards coop-
erative and self-adapting AR systems. Cooperative
self-adapting AR is a basic new way to lead to a new
generation of ”smart” AR systems that address several
basic issues that are still insufficiently solved in the
research field of AR, including extensibility of an AR
system at runtime, adaption of classification models
to a very specific behaviour of a user, or utilisation of
all information available, including other AR systems
within communication range. Cooperation of AR sys-
tems will take place at all stages of the AR chain: at
the level of recognised motion primitives (e.g. arm
movement), the level of detected low-level activities
(e.g. writing), and/or at the level of identified high-
level activities (e.g. participating in a meeting).
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