
Algorithms for Computing Inequality Joins 

Brahma Dathan1 and Stefan Trausan Matu2 
1Information and Computer Sciences, Metropolitan State University, St. Paul, MN 55106, U.S.A. 

2Computer Science and Engineering, Bucharest Polytechnic University, Bucharest, Romania 

 

Keywords: Inequality Joins, Query Processing, Algorithms, Lower Bounds.  

Abstract: Although the problem of joins has been known ever since the concept of relational databases was introduced, 

much of the research in that area has addressed the question of equijoins. In this paper, we look at the problem 

of inequality joins, which compares attributes using operators other than equality. We develop an algorithm 

for computing inequality joins on two relations with comparisons on two pairs of attributes and then extend 

the work to queries involving more than two comparisons. Our work also derives a lower bound for inequality 

joins on two relations and show that the two-comparisons algorithm is optimal. 

1 INTRODUCTION 

Database joins is an old problem (Codd, 1970, 

Graefe, 1993, Mishra, 1992) with much of the 

research on the topic addressing the problem of 

equijoins. Inequality joins (again an old problem, 

(DeWitt, 1991, Klug, 1988)), where attributes are 

compared for inequality are less frequently used than 

equijoins in traditional database systems, but find 

utility in temporal databases and other applications 

such as database cleaning (Wang, 2013, Cao, 2012, 

Enderle, 2004, Khayyat, 2015), and sophisticated 

problems even in conventional applications.  

For example, consider a company that sells a large 

number of products. By one estimate, a well-known 

online retailer offers close to half a billion different 

products in the United States alone. Among the 

various factors that play a role in the profits of a 

company is the amount of storage space required by 

a product. Often, the size of a specific product is not 

directly proportional to the profit on that item. For 

example, jewelry items are often small, but they 

typically generate more profit per unit volume than 

some bulkier items such as plastic chairs. 

Assume that products that vary widely in their 

features are implemented as separate relations. 

(Jewelry and chairs might be two such products.) As 

an example, suppose C and D are two separate 

relations representing two categories of products. 

Among the numerous attributes, assume that the 

following are identically named in the two relations: 

key, the primary key of the relation; vol, the amount 

of space occupied by one unit of the product for 

storage; profit, the average profit for one unit of the 

product; and unitsSold, the number of units of the 

product sold per year. 

An example of relation C is given in Table 1. 

Table 2 is an instance of D.  

The company wants to minimize the cost of 

storage while maximizing profits. In connection with 

this, suppose it is considering increasing the 

inventory of some products in C relative to the 

inventory of some products in D. For this, it may wish 

to check for all pairs of tuples c in C and d in D 

whether d.vol is more than c.vol and c.profit is more 

than d.profit; if the condition is true, and if space is 

an issue, the company might decide to stock a larger 

quantity of c at the expense of storage for d. It is thus 

worthwhile to execute the following query (call it 

STORAGE). 
 

select c.key, d.key from C c, D d where 
d.vol > c.vol and c.profit > d.profit; 

Executing the query on the sample relations yields 

the following pairs of keys: (c1, d2), (c1, d5), (c1, 
d7), (c2, d1), (c2, d2), (c2, d6), (c2, d7), (c3, d1), 

(c3, d2), (c3, d3), (c3, d4), (c3, d5), (c3, d6), (c3, 
d7), (c4, d2), (c5, d2), (c7, d2). 

The company may want to do more analysis: it 

might decide that comparing the unitsSold field 

should also be a factor in making a decision. It may 

then decide to execute a query such as the following. 

select c.key, d.key from C c, D d where 
d.vol > c.vol and c.profit > d.profit 
and c.unitsSold > d.unitsSold 

Dathan, B. and Matu, S.
Algorithms for Computing Inequality Joins.
DOI: 10.5220/0006826803570364
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 357-364
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

357



 

The result of this query is (c1, d7), (c2, d7), (c3, 
d1), (c3, d3), (c3, d4), (c3, d7). 

Table 1: Relation C. 

key vol profit unitsSold 

c1 35 45 15 

c2 15 35 10 

c3 5 55 30 

c4 35 12 10 

c5 18 15 15 

c6 90 55 80 

c7 17 11 2 

Table 2: Relation D. 

key vol profit unitsSold 

d1 20 30 20 

d2 50 10 35 

d3 15 12 10 

d4 16 52 12 

d5 40 35 40 

d6 20 20 30 

d7 40 30 5 

d8 2 57 15 

Despite such applications, the problem of 

inequality joins remains an insufficiently researched 

area. A recent paper (Khayyat, 2017) makes quite a 

compelling case for more efficient inequality join 

algorithms. This inefficiency is not surprising 

because surprising because commercial database 

systems solve the problem using a nested loop 

that examines every pair of tuples.   

Assume that S and T are relations with both 

relations containing fields named k, A, and B. The 

inequality join query, which we denote by Q1, 

involving these two fields A and B is the following, 

where 𝜃1and 𝜃2 are relational operators (<, >, <=, and 

>=). 
 

select s.k, t.k from S s, T t where  

s.A  𝜃1  t.A AND s.B  𝜃2 t.B 
 

In this work, we present an algorithm to solve 

inequality join queries. Our paper makes the 

following contributions: 1) It first develops an 

algorithm to solve the inequality join problem 

involving two comparisons. 2) It provides an 

extension to the algorithm in (1) to an arbitrary 

number of comparisons. 3) It derives a lower bound 

for the problem of inequality joins of the form given 

in Q1. The result applies to algorithms that employ 

comparisons to determine which tuple pairs belong to 

the result. 4) It shows that the algorithm in (1) above 

is optimal.   

The rest of the paper is organized as follows. In 

the next section, we illustrate our algorithm with an 

example. For exposition purposes, we describe a good 

part of the algorithm using query STORAGE. In Sect. 

3, we formally describe the algorithm and extend it to 

multiple comparisons. In Sect. 4, we derive a lower 

bound for the problem for two comparisons. An 

examination of related work is done in Sect. 5. 

Section 6 concludes the paper. 

2 ALGORITHM CONCEPTS 

In this section, we introduce the algorithm using the 

query STORAGE. 

2.1 Page Setup 

We rename the smaller relation S and the larger 

relation T. If the two relations are equal in size, we 

may name either one of them S and the other T. The 

attributes are named k (for key), A (the attribute used 

in the first comparison), and B (the attribute in the 

second comparison). The where clause is 

then changed so that all inequality comparisons are 

of the form s.X <rel_op> t.X. 

For the rest of this section, we illustrate the 

algorithm using the query STORAGE. C is the 

smaller relation, so it is renamed S, and D becomes T. 

The attributes key, vol, and profit are renamed k, A, 

and B, respectively. For uniformity, we refer to the 

key values of S as s1, s2, etc. instead of c1, c2, and so 

on. Similarly, the key values of T are referred to as t1, 
t2, etc. The query becomes  
 

select s.k, t.k from S s, T t where 
s.A < t.A and s.B > t.B 
 

We will use the letter s to denote an arbitrary S 

tuple and t to denote an arbitrary T tuple. 

2.2 Regions 

We now introduce the concept of regions. Clearly, 

the query result depends on the relative order of the S 

and T tuples based on attribute A (as well as B), that 

is, which S tuples have an A attribute value less than 

the A attribute value of the T tuples. Consider sorting 

the union of S and T on attribute A in the ascending 

order. We get the sequence t8, s3, t3, s2, t4, s7, s5, 
t1, t6, s1, s4, t5, t7, t2, s6. 

Tuple s3 has an A attribute value less than the A 

attribute values of all tuples other than t8, so it could 

be paired with all T tuples except t8 as far as attribute 

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

358



 

A is concerned. It is this idea that we formalize into 

the notion of regions. 

Since no S tuple has an A value less than t8.A and 

no T tuple has an A value greater than s6.A, tuples t8 

and s6 cannot be part of the query result and are 

ignored. We can divide tuples other than t8 and s6 

into sub-sequences with a non-empty sequence of S 

tuples followed by a non-empty sequence of T tuples. 

The sub-sequences are (𝑠3, 𝑡3), (𝑠2, 𝑡4), 
 (𝑠7, 𝑠5, 𝑡1, 𝑡6),  and (𝑠1, 𝑠4, 𝑡5, 𝑡7, 𝑡2).  

Each of these four sub-sequences is called a 

region and are numbered 0 through 3. We call the 

numbers region numbers. Every tuple also has a 

region number, which is that of the region the tuple is 

in. For example, s3 and t3 have the A region number 

of 0. Similarly, s2 and t4 have the region number 1, 

s7, s5, t1, and t6 have the region number 2, and s1, 

s4, t5, t7, and t2 have the region number 3. 

For attribute B, the comparison is s.B > t.B, so we 

sort the union of S and T in the descending order on 

B. We get 5 sub-sequences and the tuples are assigned 

region numbers 0 through 4: (𝑠3, 𝑡4), 
(𝑠1, 𝑡5), (𝑠2, 𝑡7, 𝑡1, 𝑡6), (𝑠5, 𝑡3), and (𝑠4, 𝑠7, 𝑡2). 

(Tuples t8 and s6 are omitted and in the case of a tie, 

we place the T tuple before the S tuple because the 

comparison is a less than.)  

Every S and T tuple thus has two region numbers, 

one for each of the two sorted sequences. We call 

them A region number and B region number. Note 

that s6 and t8 do not get region numbers and are no 

longer considered in further stages of the algorithm.  

Although the concepts of regions and region 

numbers were described using the two sorted 

sequences of 𝑆 ∪ 𝑇, for the sake of efficiency, we 

compute the region numbers using a different 

approach, which we describe next. 

2.2.1 Computing the Region Numbers 

To compute the A region numbers, we first sort S on 

attribute A to get the table SA as shown in Fig. 1. Each 

cell contains, or will contain, the key, the A attribute 

value, a flag, and the region number. We create a 

second list SUA with one entry for each unique value 

of attribute A. The entries in SUA point to entries in 

SA as shown in the figure.  

For each T tuple, we determine its insertion point 

in SUA. For example, t4.A is 16, so its insertion point 

is between s2 and s7 (because we have s2.A < t4.A 
< s7.A); we set the flag in SA to true to note that there 

is a T tuple t with t.A between s2.A and s7.A. Tuple 

t4 stores a reference to s2. Similarly, we find 

insertion points for all T tuples. Note that s7’s flag is 

false because there is no T tuple t such that s7.A < 

t.A < s5.A. Also, t8 does not have an insertion point 

because of its key value. There is no T tuple t with t.A 
> s6.A. Both s6 and t8 are therefore ignored. 

We next compute the A region number of the S 

tuples. The region number is incremented whenever 

we encounter an S tuple s with the flag set to true. The 

A region number of a T tuple is the A region number 

of the S tuple it points to. For example, t4 points to 

s2, so t4’s A region number is the same as s2’s A 

region number.  
 

s3 s2 s7 s5 s1 s4 s6 SA 
5 15 17 18 35 35 90 

true true false true false true false 

0 1 2 2 3 3  

 

 

      SUA 

 
t1 t2 t3 t4 t5 t6 t7 t8  

2 3 0 1 3 2 3 - T tuples 

20 50 15 16 40 20 40 2 

Figure 1: Region Number Computation. 

For attribute B, since the relational operator is > 

for the second comparison, we sort S in the 

descending order of the B attribute values. The A and 

B region numbers are given in the Fig. 2. 

2.2.2 Computing the Query Result 

If an attribute has exactly one region, that attribute 

need not be considered in computing the query result, 

so we assume the more general and non-trivial case 

where both attributes have at least two regions.  

Let 𝑠. 𝑟𝐴 denote the region number of tuple s of 

relation S. Similar notations apply for the B region 

numbers and T tuples. A pair (s, t) is in the query 

result if and only if 𝑠. 𝑟𝐴 ≤  𝑡. 𝑟𝐴 and 𝑠. 𝑟𝐵 ≤  𝑡. 𝑟𝐵. 

To compute the result, we need to access the 

tuples efficiently. We can access the S tuples in the 

region order using SA and SB, but the T tuples are a 

problem because they are not sorted. So we employ 

two separate collections called region ordered tables 

to access the T tuples in the region order, but not 

necessarily in the sorted order of A or B.  

 s1 s2 s3 s4 s5 s7 

A 3 1 0 3 2 2 

B 1 2 0 4 3 4 
 

 t1 t2 t3 t4 t5 t6 t7 

A 2 3 0 1 3 2 3 

B 2 4 3 0 1 2 2 

Figure 2: A and B region numbers. 

Algorithms for Computing Inequality Joins

359



 

The table is implemented as a balanced tree, with 

one leaf node per region. The leaves are stored in a 

linked list, and each leaf points to a linked list of T 

tuples that have the region number of that leaf node. 

The first step in computing the query result is to 

create an A region ordered table for the T tuples. This 

table shown in Fig. 3. The leaves hold region numbers 

and are shown as circles. We also create an empty 

region ordered table. This will contain the T tuples 

and will be ordered on the B region numbers.  

 

 

 

 

 

 

 

 

 

 

Figure 3: Data Structure Holding All the T tuples. 

We then enter a loop starting with the highest 

numbered A region and work our way down to 0. For 

each region number i, we add to the B region ordered 

table those T tuples with 𝑡. 𝑟𝐴 = 𝑖.  
The highest A region is 3. We pick from the A 

region ordered table all the T tuples with A region 

number of 3. These are t5, t2, and t7. They are stored 

in the B region ordered table. The result is shown in 

Fig. 4. The S tuples with A region equal to 3 are s1 

and s4. Since 𝑠1. 𝑟𝐵 = 1  and t5, t7, and t2 all have 

𝑟𝐵 ≥ 1, they are all paired with s1. Since 𝑠4. 𝑟𝐵 = 4, 

s4 is paired with only t2 because 𝑡2. 𝑟𝐵 = 4. 

We proceed to A region 2. T tuples t1 and t6 have 

2 for their A region number and are added to the table. 

The S tuples with 𝑠. 𝑟𝐴 = 2 are s5 and s7. 𝑠5. 𝑟𝐵 = 3, 
so s5 is paired with t2. 𝑠7. 𝑟𝐵 = 4, so s7 is also paired 

with t2. 

 

 

 

 

 

 

Figure 4: Table After Adding T Tuples with t. rA= 3. 

Moving down to A region 1, we add t4 to the 

table. We pair s2 (𝑠2. 𝑟𝐴 = 1) with t1, t6, t7, and t2 

because they all have a B region number that is greater 

than or equal to 𝑠2. 𝑟𝐵 . Finally, for A region 0, we add 

t3. Since 𝑠3. 𝑟𝐵 = 0, s3 is paired with every tuple in 

the table. 

3 FORMAL DESCRIPTIONS 

In this section, we state the region computation and 

the final query result computation algorithms more 

formally and describe our extension to multiple 

comparisons. 

3.1 The Two-Comparisons Algorithm 

The algorithm for computing the A region numbers is 

shown in Fig. 5. The B region numbers are computed 

similarly. The complexities for the steps are indicated 

as we progress through the steps.  

Lines 1-4 sort S on attribute A in the ascending or 

descending order (complexity: 𝑂(𝑚 log 𝑚)) and 

lines 5-6 initialize the flag (complexity: 𝑂(𝑚)). Steps 

9-14 create the table SUA (complexity: 𝑂(𝑚)). 

Lines 15-41 compute the insertion points for the 

T tuples. The loop 23-37 is the standard binary search 

algorithm augmented to determine the insertion point. 

With the loop starting in line 19, the complexity of 

lines 15-41 is 𝑂(𝑛 log 𝑚). 
 

1)  if rel_op is < or rel_op is <= 
2)    SA = S sorted ascending on S.A 
3)  else 

4)    SA = S sorted descending on S.A 
5)  for s in SA 
6)    s.fA = false 
7)  SUA = new array of indices to SA 
8)  uniques = 0 
9)  for 0 <= i < m - 1 
10)   if SA[i].A != SA[i + 1].A 
11)     SUA[uniques].index = i 
12)     uniques = uniques + 1 
13) SUA[uniques] = SA[m -- 1] 
14) uniques = uniques + 1 
15) if rel_op is <  or  rel_op is > 
16)   offset = -1 
17) else  
18)   offset = 0 
19) for t in T 
20)   low = 0 
21)   high = uniques - 1 
22)   found = false 
23)   while low <= high and not found 

24)     mid = (low + high)/2  
25)     if SA[SUA[mid]].A == t.A 
26)       found = true 
27)     else if rel_op is <  or <= 
28)       if SA[SUA[mid]].A < value 
29)         low = mid + 1 

Figure 5: Region Computation. 

0
0 

0 0
0 

0
0 

0
0 

1

 

2 3 

t3

T1

1 

t4

T1

1 

t1

T1

1 
t6

T1

1 
t7

T1

1 

t5

T1

1 
t2

T1

1 

Internal nodes 

0
0 

0
0 

0
0 

1

 

2 4 

t5

T1

1 

t7

T1

1 

t2

T1

1 

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

360



 

30)       else 
31)         high = mid - 1 
32)     else  
33)       if SA[SUA[mid]].A > value 
33)         low = mid + 1 
34)       else 
35)         high = mid - 1 
36)     if found  
37)        ins_pt = mid - offset 
36)     else  
37)        ins_pt = high 
37)   if ins_pt == -1 
38)     remove t from T 
39)   else 
40)     SA[SUA[ins_pt]].fA = true 
41)     t.spos = SUA[ins_pt] 
42) r = 0 
43) for s in sorted order SA 
44)   s.rA = r 
45)   if s.fA 

46)     r++ 
47) for t in T  
48)   t.rA = t.spos.rA 

Figure 5: Region Computation (Cont.). 

The region numbers are computed in lines 42-48. 

The complexity is 𝑂(𝑛).The final result is computed 

by the algorithm in Fig. 6. Since there are at most m 

regions, TA can be created in time 𝑂(𝑛 log 𝑚).The 

iterator can be constructed in 𝑂(log 𝑚) time. The 

complexity of lines 5-14 is 𝑂(𝑛 log 𝑚 + 𝑒), where e 

is the number of tuples in the result. Clearly, we have  

Theorem 1. The algorithm complexity is 

𝑂(𝑛 log 𝑚 + 𝑒). 
 

Theorem 2. The algorithm computes the inequality 

join correctly. 

Proof. Omitted due to lack of space. 
 

1  𝑇𝐴: region ordered table 

2   𝑇𝐵: region ordered table 
3 for each t in T 

4          𝑇𝐴.add(r, t) 

5 for r from 𝑁𝐴 down to 0 
6   itA = 𝑇𝐴.iterator(r) 

7   while itA.hasNext() 

8     t = itA.next() 

9     𝑇𝐵.add(t.𝑟𝐵, t) 

10  for each s with s.𝑟𝐴 == r 

11    itB = 𝑇𝐵.iterator(s. 𝑟𝐴) 

12    while itB.hasNext() 

13      t = itB.next() 

14      output the pair (s, t) 

Figure 6: Computing the Final Result. 

3.2 Multiple Comparisons Algorithm 

We start off as in the two-comparisons algorithm by 

renaming the relations and fields in the obvious 

manner. Suppose there are 𝑝 comparisons. Let us 

denote the attributes involved in these comparisons 

by 𝐹1, 𝐹2, … , 𝐹𝑝. The algorithm maintains 𝑝 copies of 

the 𝑆 table, 𝑆1, 𝑆2, … , 𝑆𝑝, with 𝑆𝑖  sorted on field 

𝐹𝑖 , 1 ≤ 𝑖 ≤ 𝑝. It computes the region numbers for 

the 𝑝 regions, one for each field 𝐹𝑖 , 1 ≤ 𝑖 ≤ 𝑝.  It 

constructs 𝑝 region ordered tables each storing all the 

tuples of the 𝑇 table. Let us denote these by 

𝑇𝐼1 , 𝑇𝐼2, … , 𝑇𝐼𝑝 . 𝑇𝐼𝑖  is ordered on region 𝑖, 1 ≤ 𝑖 ≤ 𝑝. 

It constructs 𝑝 region ordered tables, each initially 

empty. Let us denote these by 𝑇𝑂1 , 𝑇𝑂2, … , 𝑇𝑂𝑝. 𝑇𝑂𝑖  

is ordered on region 𝑖, 1 ≤ 𝑖 ≤ 𝑝. 
The algorithm in Fig. 5 in its entirety and lines 1-

4 of the algorithm in Fig. 6 are employed to 

implement all of the above functionalities. The 

difference between this extension and the two-

comparisons algorithm is in the way the final query 

result is computed. The extension employs a greedy 

approach. For this, we make the observation that in 

the two-comparisons algorithm, we perform far fewer 

comparisons at the beginning when we deal with the 

higher region numbers. With a uniform distribution 

of the tuples over all regions, we would expect the 

number of T tuples in region 𝐹𝑖 to be 𝑛/𝑁𝐹𝑖
 and the 

number of S tuples to be 𝑚/𝑁𝐹𝑖
, where 𝑁𝐹𝑖

 is the 

number of regions for field 𝐹𝑖. Therefore, the number 

of pairs of S and T tuples we need to consider for the 

highest region number for 𝐹𝑖  is at most (𝑚𝑛)/
(𝑁𝐹𝑖

𝑁𝐹𝑖
).  

 

tuplesLeft = m, the number of S tuples  

while tuplesLeft > 0 

    select A, a field (see discussion) 

    r = largest-numbered unprocessed 

            region number in A; 

    execute processField(A, r)          

Figure 7: Handling Multiple Fields. 

processField(A, r): 

𝑇𝐼𝐴: region ordered table for field X 

𝑇𝑂𝐴: region ordered table for field X 

for each t in 𝑇𝐼𝐴 

  𝑇𝑂𝐴.add(r, t) 
B = any field ≠ A with 𝑁𝐴 > 1 
itA = 𝑇𝐼𝐴.iterator(r) 

while itA.hasNext() 

t = itA.next() 

   𝑇𝑂𝐵.add(t.𝑟𝐵, t) 

for each s with s.𝑟𝐴 == r and  

   s.processed == false 

   itB = 𝑇𝐵.iterator(s. 𝑟𝐵) 

   while itB.hasNext() 

     t = itB.next() 

     for every field g ≠ A or B 
  if 𝑠. 𝑟𝑔 >  𝑡. 𝑟𝑔 

    exit the outer for loop 

output (s, t); 

   s.processed = true 

   tuplesLeft-- 

Figure 8: Computing the Final Result. 

Algorithms for Computing Inequality Joins

361



 

The above observation is exploited in the 

algorithm shown in Fig. 7. We select a field 𝐴 for 

which we judge the number of comparisons to be the 

smallest. For each field 𝐹𝑖, assume the following: the 

largest unprocessed region number is 𝑟𝑖 ; the number 

of S tuples in region 𝑟𝑖   is 𝑈𝑆𝑖; the number of tuples in 

the region ordered table 𝑇𝑂𝑖 is 𝑉𝑖; and the number of 

T tuples in region 𝑟𝑖 is 𝑈𝑇𝑖 . Then we select field 𝐴 for 

which the expression 
𝑈𝑆𝑖

𝑉𝑖+𝑈𝑇𝑖
 is the smallest.  

The tuple pairs are computed by the algorithm in 

Fig. 8. After we retrieve a T tuple t from the region 

ordered table 𝑇𝑂𝐴 that matches an S tuple s for region 

number based on 𝐵, we check if 𝑡. 𝑟𝑔 ≥ 𝑠. 𝑟𝑔 for all 

other fields g as well. As the region numbers 

decrease, more and more T tuples enter the region 

ordered tables, but we also flag more S tuples at 

higher numbered regions when we encounter fewer T 

tuples. This way, the total number of pairs to be 

considered does not increase sharply.  

4 A LOWER BOUND  

In this section, we derive a lower bound for the 

number of operations needed to enumerate all pairs of 

tuples that satisfy an inequality join query of the form 

given in Q1 (Sect. 1). We consider only algorithms 

that employ comparisons to determine the query 

result. We will assume that the number of tuples in 𝑆 

and 𝑇 are 𝑚 and 𝑛, respectively, and that 𝑚 ≤ 𝑛. For 

simplicity, the two relations 𝑆 and 𝑇 are assumed to 

have identically named attributes.  

Any deterministic algorithm to compute the query 

result needs to determine the tuple pairs in the result 

and enumerate them. If there are e tuple pairs in the 

result, any algorithm must take 𝑂(𝑒) steps to 

enumerate them.  

Consider two relations S and T such that for any 

pair of tuples 𝑜1and 𝑜2 in 𝑆 ∪ 𝑇, either 

𝑜1𝜃1𝑜2 𝑎𝑛𝑑 𝑜1𝜃2𝑜2 is true or 𝑜2𝜃1𝑜1 𝑎𝑛𝑑 𝑜2𝜃2𝑜1 is 

true; that is, all pairs of tuples are totally ordered on 

the pair of comparisons. Clearly, this is a weaker 

problem than the one we addressed in Sec. 2 and 3.  

With a total order, to determine the query result, we 

need to determine which of the possible total orders 

of the S and T tuples is present in the input with one 

restriction: the relative order of the S tuples 

themselves or the relative order of the T tuples 

themselves do not play a role in the output.   

 

 

 

4.1 Number of Input Sequences 

The tuples of S could be distributed into k non-empty 

sets, where 1 ≤ 𝑘 ≤ 𝑚; these subsets are denoted by 

𝑆1, … , 𝑆𝑘 . The number of ways in which a set of m 

elements can be divided into k non-empty subsets is 

given by Stirling number of the second kind (Graham, 

1988) and is denoted by 𝑆(𝑚, 𝑘). The n tuples of T 

could be distributed in-between (and/or before and 

after) these sets in four different ways.  

 

1. Distribute the n tuples between the pairs of S 

tuples. There are 𝑘 − 1 such locations. The m tuples 

of S are distributed in 𝑆(𝑚, 𝑘) ways. Although their 

relative order within a set should not be counted, the 

relative order of each subset 𝑆𝑖  with respect to the 

subsets of T that occupy the 𝑘 − 1slots is important 

and should be counted. Thus, there are 𝑆(𝑚, 𝑘)𝑘! 
possible sequences of the 𝑚 tuples. The T tuples 

can be distributed in 𝑆(𝑛, 𝑘 − 1) ways into the 𝑘 −
1 slots and the permutation of these 𝑘 − 1 subsets 

must also be counted. This gives us 𝑆(𝑛, 𝑘 − 1)(𝑘 −
1)! sequences. Thus, the total number of sequences 

is 𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘 − 1)(𝑘 − 1)!.  
 

2. In addition to using up all 𝑘 − 1 locations 

between the S tuples, we could attach an additional 

non-empty set of T tuples before 𝑆1, (which is the first 

subset of S). This gives rise to k non-empty sets of T 

tuples. The number of sequences is 

𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘)𝑘!. 
 

3. This is similar to item 2 above. We could have k 

non-empty sets of T tuples by putting a non-empty set 

of T tuples after 𝑆𝑘. The number of sequences is again 

𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘)𝑘!. 
 

4. This case applies only if there are enough T 

tuples to go around. That happens if 𝑛 > 𝑚 or 𝑘 <
 𝑚. We form 𝑘 + 1 subsets by putting a non-empty 

set of T tuples before 𝑆1 and after 𝑆𝑘. The number of 

sequences is 𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘 + 1)(𝑘 + 1)!. 
   

Therefore, unless 𝑘 = 𝑚 = 𝑛, the number of 

sequences with k non-empty subsets of S tuples is 

obtained by adding up the four terms given above to 

get the following expression. 

 

𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘 − 1)(𝑘 − 1)!
+  2𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘)𝑘!
+ 𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘 + 1)(𝑘 + 1)! 

  

 If 𝑘 = 𝑚 = 𝑛, the number of sequences is 

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

362



 

𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘 − 1)(𝑘 − 1)!
+  2𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘)𝑘 

 

To get a lower bound we can simply use the fact 

that 

  

∑ 𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘)𝑘! ≥  ∑ 𝑆(𝑚, 𝑘)𝑘! 𝑆(𝑛, 𝑘)𝑚
𝑘=1

𝑚
𝑘=1    

  

But 𝑆(𝑚, 𝑘) ≥ (
𝑚
𝑘

) because we can divide the m 

tuples into k subsets by having 𝑚 − 𝑘 tuples in one 

subset and putting the remaining k tuples into 𝑘 − 1 

non-empty subsets, giving at least (𝑚
𝑘

) distributions. 

The number of input sequences is thus no less than 

∑ (𝑚
𝑘

)𝑘! 𝑆(𝑛, 𝑘)𝑚
𝑘=1   =  𝑚𝑛(Griffith, 2010). 

The algorithm must pick the correct input 

sequence from the 𝑚𝑛 possible inputs. We can easily 

employ an oracle argument as in the case of the 

derivation for the lower bound for sorting and see that 

in the worst case, a comparison may reduce the 

number of possible sequences by half. Therefore, the 

number of comparisons needed is at least 𝑂(𝑛 log 𝑚). 

In addition, if the result contains e tuple pairs, the 

algorithm must spend 𝑂(𝑒) time to enumerate 

them. This gives us the following result. 

 

Theorem 3. Let 𝒜 be any inequality join query 

processing algorithm that uses comparisons to 

determine the tuple pairs in the result and enumerate 

them. The minimum number of steps for 𝒜 to 

complete its execution when processing a query on 

two relations 𝑆 and 𝑇 with cardinalities m and n 

respectively, where 𝑚 ≤ 𝑛, is 𝑂(𝑛 log 𝑚 + 𝑒), 
where e is the number of tuple pairs in the result. 

 

From Theorem 2 and Theorem 3, we have  

 

Theorem 4. The two-comparisons algorithm is 

optimal.  

5 RELATED WORK 

Classes of joins other than equijoins that have 

received less attention but have their own applications 

include inequality joins (Klug, 1988, Chandra, 1977, 

DeWitt, 1991) and similarity joins (Silva, 2012). The 

MapReduce framework has been used to compute 

joins. A work using this framework to compute 

inequality joins is by Okcan (Okcan, 2011). There are 

other important implementations of equijoins and 

similarity joins using the MapReduce framework 

including works by Blanas et al, (Blanas, 2010) Silva 

and Reed (Silva, 2012), Vernica, et al (Vernica, 

2010), and Afrati and Ullman (Afrati, 2010).  

A significant work by Khayyat et al (Khayyat, 

2017) essentially addresses the same problem we took 

up here. Their resort to sorting both 𝑆 and 𝑇, whereas 

we sort only the smaller relation. A difference 

between the works is that their algorithm takes 

𝑂(𝑚𝑛 + 𝑒) time, while our approach takes 

𝑂(𝑛 log 𝑚 + 𝑒) time. Our algorithm is optimal for a 

pair of relations on two pairs of fields.  

Inequality joins have found applications in areas 

such as XML query processing to perform 

containment joins (Wang 2003). A containment join 

between a set of ancestor nodes (denoted as A) and a 

set of descendant nodes (denoted as D) is to find all 

pairs of (𝑎, 𝑑), 𝑎 ∈ 𝐴, 𝑑 ∈ 𝐷, such that a is an 

ancestor of d. A solution to inequality joins can be 

applied to help process these queries.  

Inequality joins can be applied to address 

questions in temporal databases (Cao, 2012, Enderle, 

2004) and have a role in database cleaning 

(Chaudhuri, 2006, Khayyat, 2015).  

6 CONCLUSIONS 

In this paper, we looked at the problem of inequality 

joins, an important class of joins that has received less 

attention than equijoins. We derived a lower bound 

for the problem of inequality joins of two relations 

and came up with an optimal algorithm that solved 

the problem for two comparisons. We showed how to 

extend the approach to more than two comparisons.  

We plan to investigate how the multiple 

comparisons algorithm could be parallelized. The 

approach seems to support a high degree of 

concurrency because it processes tuples by region.  

REFERENCES 

Afrati, F.N., Ullman, J.D., 2010. Optimizing Joins in a 

Map-reduce Environment, 13th International 

Conference on Extending Database Technology.  

Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., 

Tian, Y., 2010. A Comparison of Join Algorithms for 

Log Processing in MapReduce, ACM SIGMOD 

International Conference on Management of Data.  

Cao, Y., Zhou, Y., Chan, C., Tan, K., 2012.  On Optimizing 

Relational Self-joins, 15th International Conference on 

Extending Database Technology. 

Chandra, A.K., Merlin, P.M., 1977. Optimal 

Implementation of Conjunctive Queries in Relational 

Data Bases, Proceedings of the Ninth Annual ACM 

Symposium on Theory of Computing STOC '77. 

Algorithms for Computing Inequality Joins

363



 

Chaudhuri, S., Ganti, V., Kaushik, R., 2006. A Primitive 

Operator for Similarity Joins in Data Cleaning, 

Proceedings of the Seventh International Conference 

on Data Engineering.  

Codd, E. F., 1970. A Relational Model of Data for Large 

Shared Data Banks, CACM, Vol. 13, No. 6, pp 377-387.  

DeWitt, D.J., Naughton, J.F., Schneider, D.A., 1991. An 

Evaluation of Non-Equijoin Algorithms, 17th 

International Conference on Very Large Data Bases. 

Enderle, J., Hampel, M., Seidl, T., 2004. Joining Interval 

Data in Relational Databases, ACM SIGMOD 

International Conference on Management of Data.  

Graefe, G., 1993, Query Evaluation Techniques for Large 

Databases, ACM Comput. Surv.,  Vol. 25, No. 2.  

Graham, R.L., Knuth, D., Patashnik, O., 1988. Computer 

Mathematics, Addison-Wesley.  

Griffith, M., Mezo, I., 2010. A Generalization of Stirling 

Numbers of the Second Kind via a Special Multiset, 

Journal of Integer Sequences, Vol. 13. 

Khayyat, Z., Ilyas, I.F., Jindal, A., Madden, S., Ouzzani, 

M., Papotti, P., Quiane-Ruiz, J., Tang, N., Yin, S., 2015. 

BigDansing: A System for Big Data Cleansing, ACM 

SIGMOD International Conference on Management of 

Data.  

Khayyat, Z., Lucia, W., Singh, M., Ouzzani, M., Papotti, 

Paolo, Quiane-Ruiz, J., Tang, N., Kalnis, P., 2017. Fast 

and Scalable Inequality Joins, The VLDB Journal.  

Klug, A., 1988. On Conjunctive Queries Containing 

Inequalities, J. ACM, Vol. 35, No. 1.  

Mishra, P., Eich, M. H., 1992.  Join Processing in 

Relational Databases, ACM Comput. Surv, Vol. 24, No. 

1.  

Okcan, A., Riedewald, M., 2011. Processing Theta-joins 

Using MapReduce, ACM SIGMOD International 

Conference on Management of Data.  

Silva, Y.N., Reed, J.M., 2012. Exploiting MapReduce-

based Similarity Joins, ACM SIGMOD International 

Conference on Management of Data.  

Vernica, R., Carey, M.J., Li, C., 2010. Efficient Parallel 

Set-similarity Joins Using MapReduce, ACM SIGMOD 

International Conference on Management of Data.  

Wang, Y., Metwally, A., Parthasarathy, S, 2013. Scalable 

All-pairs Similarity Search in Metric Spaces, 19th ACM 

SIGKDD International Conference on Knowledge 

Discovery and Data Mining.  

Wang, W., Jiang, H., Lu, H., Yu, J., 2003. Containment Join 

Size Estimation: Models and Methods, ACM SIGMOD 

International Conference on Management of Data. 

 

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

364


