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Abstract: A stacked ensemble is a machine learning method that involves training a second stage learner to find the 
optimal combination of a collection of based learners. This paper provides a methodology to create a 
stacked ensemble of classifiers to perform early detection of academically at-risk students and shows how to 
organize the data for training and testing at each stage of the stacked ensemble architecture. Experimental 
tests are carried out using college-wide data, to demonstrate how the stack can be used for prediction. 

1 INTRODUCTION 

In the last decade, a number of research projects and 
initiatives have flourished that tackle the issue of 
monitoring student academic performance (Pistilli 
and Arnold, 2010; Romero et al., 2008; Smith et al., 
2012). Generally, researchers use machine learning 
algorithms (e.g. linear models, Bayesian learners, 
maximum margin algorithms, and decision trees) to 
develop predictive models that try to identify 
academically at-risk students.  

Our own work has taken a similar path 
(Jayaprakash et al., 2014). The goal of our predictive 
modeling framework has been to detect, relatively 
early in the semester -three to six weeks into the 
semester, considering fifteen-week semesters-, those 
students who are experiencing academic difficulty 
during the course, using student data. This task is re-
expressed as a binary classification process with the 
purpose of discriminating between students in good 
standing and academically at-risk students. The 
predictive modeling framework derives its input data 
from student academic records, enriched with 
student demographic and aptitude data, and data 
collected from the learning management system 
(LMS). The LMS data consists of student interaction 
with the LMS, as well as all gradable events stored 
in the LMS gradebook tool, such as assignment 
grades.  

The outcomes at our institution and in several 
other colleges and universities where our predictive 
modeling framework was applied have been very 

promising (Lauría et al., 2016), but there is still 
considerable room for improvement. There are 
several strategies that we are actively pursuing to 
improve these performance metrics: a) develop 
better predictors from the current data, through 
feature engineering; b) include new predictors by 
considering additional data sources (e.g. extract 
student engagement metrics from social network 
sources); c) apply enhanced machine learning 
techniques that can provide more accurate and stable 
predictions. 

This paper tackles the latter strategy, introducing 
a stacked ensemble architecture to build early 
detection models. This machine learning method is 
mostly absent and minimally referenced in the 
learning analytics literature.  Hence, the paper makes 
two relevant contributions:  1) it provides a 
methodology for building a stacked ensemble 
architecture learnt from data; 2) it provides proof of 
concept of how stacked ensembles can be applied in 
the context of early detection of academically at-risk 
students. We first outline the development of 
stacked ensemble learning. Then we detail the 
methodology used to build a two-stage stack. We 
follow with a description of the experiment, 
including the data, methods, analyses and results of 
this study. The paper ends with a summary of our 
conclusions, limitations of the study and pointers to 
future work. 
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2 STACKED ENSEMBLE 
LEARNING 

Ensemble methods are not a new concept: in fact, 
the approach is embedded in most of the state of the 
art machine learning algorithms (e.g. bagged neural 
nets, random forests, gradient boosted trees), which 
use either bagging or boosting to combine results 
from a set of learners in order to increase accuracy 
and reduce the variability of the prediction. 
Ensemble systems (Polikar, 2006)  take the above 
approach one step further by combining multiple 
learners trained with different learning algorithms to 
make predictions, using some voting criterion by the 
constituent models (e.g. majority voting). Ensembles 
tend to thrive on diversity: they yield better results  
if their constituent  learning algorithms, and 
therefore the  learners trained with them are 
substantially different (Lam, 2000).   

A different type of ensemble methods, called 
stacked ensemble learning (or more loosely, 
stacking or super learning), takes a different tack at 
making predictions, using the predicted values of a 
group of base learners to feed a second-stage learner, 
which finds the optimal hypothesis function from the 
combination of the base learners. Succinctly, 
deterministic voting is replaced by a statistical 
learning approach: the predictions of the first stage 
models become the inputs of the second stage 
model, which in turn delivers the final predictions of 
the stack.  The second-stage learner, in turn, can be 
implemented as a single classifier or as an ensemble. 
Stacked ensemble architectures, which are the focus 
of this paper, typically perform better than any 
specific trained models in the stack: the whole is 
more than the sum of its parts.  Stacked ensembles 
can have several stages, where the predictions of one 
stage act as input data for the next (this paper 
describes two-stage stacks). Stacked ensembles were 
initially introduced by Wolpert (Wolpert, 1992), but 
it wasn’t until 2007 that van der Lan et al (van der 
Laan et al., 2007) provided proof  that a  ‘super 
learner’ ensemble represents an asymptotically 
optimal system for learning. Stacked ensembles have 
gained considerable momentum lately, with these 
machine learning frameworks performing at the top 
of the Netflix Prize competition (Sill et al., 2009) as 
well as the Kaggle competitions (Kaggle Team, 
2017).   There are two basic approaches used to train 
stacked ensembles: (i) using cross-fold-validation 
(the out-of-fold is used to train the first stage -base- 
models, and their predictions on the test set is used 
to train the next layer); or (ii) using a holdout set. In 
this paper we propose a variation of the latter using 

three independent datasets, which prevents data 
leakage (the unforeseen addition of information in 
the training data, which leads to underestimating the 
models’ generalization error), as the first and second 
stage models use different training data. 

3 BUILDING A STACKED 
ENSEMBLE FOR EARLY 
DETECTION 

3.1 Methodology 

Three independent data sets A, B, and C, extracted 
through random partitioning from a single data set 
are used, each of them with a data schema [X, y] 
made up of a vector of predictors X and a response 
variable y. The response variable is binary, 
indicating whether a student is academically at risk. 
A is used for training the first stage, B is used for 
testing the first stage and training the second stage, 
C is used for testing the second stage (more details 
on the use of the data files follow).   
In stack learning (i.e. training and testing) mode:  
 Step(i) corresponds to Stage1: Training, where 

k base models 1 ... k  are trained using 

dataset [ ; ]X yΑ  and classification algorithms 

1 ... k  . The notation cv  indicates model 

tuning using cross-validation. 
 In Step(ii), corresponding to Stage 1: Testing, 

trained models 1 ... k   are applied on 

dataset [ ; ]X yB , and produce k prediction 

vectors  1..ˆ B
ky , and k probability vectors 

1..ˆ B
kp associated with the prediction (a measure 

of the confidence of the prediction). These 
values make up an  ( )2Bn k× ⋅  matrix 

1 1(ˆ ˆ ˆ ˆ ˆ ˆ( ; ) ... ; ... )B B B B
B B k kY P y y p p≡ , where Bn  is the 

number of observations in data set B, and 2 k⋅  
is the number of columns made up by 

predictions and probabilities 1 1(ˆ ˆ ˆ ˆ... ; ... )B B B B
k ky y p p .    

 In Step(iii), data set [ ; ]X yB  is augmented by 

adding to it matrix 1 1(ˆ ˆ ˆ ˆ ˆ ˆ( ; ) ... ; ... )B B B B
B B k kY P y y p p≡ , 

resulting in data set ( ) ˆ ˆ[ ; ; ; ]aug
B BX Y P yB . 

 Step(iv) corresponds to Stage 2: Training. In it, 

the augmented data set ( ) ˆ ˆ[ ; ; ; ]aug
B BX Y P yB is 

used to train a second stage model SS using a 
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chosen classification algorithm SS . As before, 

the notation cv
( ) ˆ ˆ[ ; ; ; ]  aug

B B SSX Y P yB    refers to 

the use of cross-validation to train and tune 
model SS using classification algorithm SS . 
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Figure 1: Training and testing a two-stage stack with k 
classifiers in the first stage, one classifier in the second 
stage, and 3 independent data sets A, B, C. 

It is common practice to train the second stage 
using only the prediction pairs, yielding 

cv
( ) ˆ ˆ[ ; ; ]  aug

B B SSY P yB   . The latter is the 

approach followed for the experiments in this 
paper (see section 4.2.3). 

 In Step(v), base models  1  ... k   are applied 

on dataset [ ; ]X yC to compute prediction vectors 

1..ˆC
ky  and probability vectors 1..ˆ C

kp , depicted as 

an ( )2Cn k× ⋅ matrix 1 1(ˆ ˆ ˆ ˆ ˆ ˆ( ; ) ... ; ... )C C C C
C C k kY P y y p p≡ , 

with Cn  observations in data set C, and 2 k⋅  

columns 1 1(ˆ ˆ ˆ ˆ... ; ... )C C C C
k ky y p p .  

 In Step(vi), data set [ ; ]X yC  is augmented by 

adding to it the ( )2Cn k× ⋅  matrix ˆ ˆ( ; )C CY P ,  

resulting in data set ( ) augC  with 

schema ( ) ˆ ˆ[ ; ; ; ]aug
C CX Y P yC . 

 In Step(vii), corresponding to Stage 2: Testing, 
trained second-stage model SS  is applied on 

( ) ˆ ˆ[ ; ; ; ]aug
C CX Y P yC  -or on ( ) ˆ ˆ[ ; ; ]aug

C CY P yC  if  

only ˆ ˆ( ; )C CY P were used to train the second 

stage- and produce  the stack predictions and 

probabilities (ˆ ˆ; )C C
SS SSy p , represented as an 

( )2Cn ×  matrix, where Cn  is the number of 

observations in data set C, and 2 is the number 

of columns, corresponding to ˆC
SSy and ˆ C

SSp . 

Stack predictions ˆC
SSy can be evaluated using 

the actual response variable y in data set C for 
comparison. 

After the stack is trained, tuned and tested, it can be 
used to make predictions on new data D.  Figure 2 
depicts the two-stage stack making predictions on 
incoming (and therefore unlabeled) data D. 
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Figure 2: Using the stack for prediction on new data.  
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 In Step(I), base models 1  ... k   are applied 

on data set [ ]XD   to compute matrix 

1 1(ˆ ˆ ˆ ˆ ˆ ˆ( ; ) ... ; ... )D D D D
D D k kY P y y p p≡ . 

 In Step(II), [ ]XD  is augmented to 
( ) ˆ ˆ [ ; ; ]aug

D DX Y PD . 

 Finally, in Step(III), the stack computes 

predictions and probabilities ˆ ˆ( , )SS SS
D Dy p  for each 

of Dn  records in ( ) augD .  

3.2 Considerations and Best Practices 

The use of three independent datasets (A, B, and C) 
in this methodology guarantees that models are 
tested using new and unseen data:  base models are 
trained using dataset A and tested using new and 
unseen dataset B, from where predictions are 
derived; dataset B, augmented with those 
predictions, is subsequently used to train the second 
stage model, which is then tested with new and 
unseen dataset C. This approach avoids data 
leakage, which can cause models to over-represent 
their generalization error and therefore overfit. The 
approach is feasible, provided there is enough data 
to produce three independent datasets, which is our 
case. 

Models are typically trained and tuned using a 
resampling method, such as cross-validation. This 
guarantees that the models’ hyperparameters are 
optimized for the data and task at hand before they 
are tested on new data. 

It is advisable to use learning algorithms that can 
produce probability values as well as predictions 
(e.g. trees, Bayesian learners, logistic regression). 
Probabilities reinforce predictions when acting as 
inputs of the downstream (e.g. second) stage. 

Learning algorithms used to train base models 
should be as different as possible so that the 
predictions made by them have relatively low 
correlations (< 0.75 - 0.80). If predictions are highly 
correlated, it indicates that the base models map very 
similar hypothesis functions, which defeats the 
purpose of using a stack. 

4 EXPERIMENTAL SETUP 

In the experiments we investigated the following: a) 
the use of a two-stage stack learnt from data, in the 
manner described in the previous section, to build an 
early detection tool of academically at-risk students 
structured as a binary classifier (two classes on a 

course by course basis): at-risk, and students in good 
academic standing; b) the (relative) performance of 
the two-stage stack when compared to stand-alone 
classifiers. 

4.1 Datasets 

Undergraduate student data from ten semesters (Fall 
2012 - Spring 2017) were extracted, cleaned, 
transformed and aggregated into a complete dataset 
(no missing data), with each record -the unit of 
analysis- corresponding to a course taken by a 
student in a given semester, using the record format 
depicted in Table 1. Four sources of data were used 
to compile the dataset: a) student demographic and 
aptitude data; b) course grades and course related 
data; c) student activity data of the first six weeks of 
each semester, collected by the learning 
management system (LMS) tools; d) a composite 
score adding up the partial contributions to the 
student’s final grade in the first six weeks of the 
semester, collected by the LMS’s gradebook tool 
(i.e. student grades on specific gradable events, such 
as assignments and exams).    

Table 1: Features in input data sets. 

Predictors Data type 
Gender Categorical 
Age Numeric 
Class (Freshman, Sophomore, Jr, Sr.) Categorical 
Aptitude Score (e.g. SAT) Numeric 
Cumulative GPA Numeric 
Course size Numeric 
Discipline (SCI, LA, CSM, BUS, SBS, 
CA) 

Categorical 

LMS Total Activity (weeks 1-6 + sum) Numeric x 7 
Login  (weeks 1-6  + sum) Numeric x 7 
Content Read (weeks 1-6 + sum) Numeric x 7 
Gradebook Composite Score (wks 1-6) Numeric 
Target feature: Academic_Risk (Yes=at risk; No=good 
standing) 

LMS student activity data was recorded as 
weekly frequency ratios, normalized with the 
average and standard deviation of each course. 
Three LMS student activity metrics were considered 
(number of weekly logins, number of weekly 
accesses to content, weekly overall activity). 
Summations of all 6 weeks x 3 metrics were also 
added as features, for a total of 21 LMS student 
activity metrics. 

Each record included the final grade of the 
student in the course as the target feature of the unit 
of analysis, recoded into a binary variable to classify 
students in two categories (good standing and 
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academically at-risk), using a threshold grade of 
acceptable academic performance: undergraduate 
students with less than a letter grade C are 
considered at risk. 

The full dataset was randomly sampled and a 
total of 31029 records of students taking courses was 
extracted (a 35% sample of the total data over 10 
semesters).  

4.2 Methods 

We performed eight batches of experiments, using 
two different configurations of classification 
algorithms for the first-stage (base) models; two 
different sets of predictors to train the base models; 
and two different algorithms for the second-stage 
model. Each batch was repeated 10 times with 
varying random generator seeds to account for 
variation in predictive performance due to the data; 
in each run the data was randomly partitioned into 
datasets A, B and C with 10343 records each.  This 
amounted to a total of 80 runs in the experiment (2 x 
2 x 2 x 10). The data proved to be highly imbalanced 
(only 4.1% of the records had at-risk students). 
Instead of balancing the training data, the probability 
thresholds (aka probability cutoffs) that determine 
the prediction were adjusted to account for the 
imbalance in the target feature. 

4.2.1 First-stage Classifiers 

Four classification algorithms, organized in two 
configurations of three base classifiers each, were 
used in the experiment.  
 XB: XGBtree (Chen and Guestrin, 2016), a 

recent implementation of the gradient boosted 
tree algorithm 

 NN: A feed-forward neural network (multilayer 
perceptron) with one hidden layer and varying 
number of units. 

 RF: The Random Forests algorithm (Breiman, 
2001), a variation of bagging applied  to 
decision trees. 

 NB: The naïve Bayes algorithm with kernel 
estimation, to estimate the densities of numeric 
predictors (John and Langley, 1995).  

The chosen classifiers are either state-of-the-art 
(e.g. XB) or well-proven classification algorithms 
when dealing with training data of mixed types 
(numeric and categorical). They are also 
substantially different in their theoretical 
underpinnings, and should therefore yield non-
identical prediction errors (section 4.3 elaborates on 
the base classifiers’ predictions and probabilities, 

and their correlation). The classifiers were organized 
in two configurations of base models: XB+NN+RF 
and XB+NN+NB.  

4.2.2 Second-stage Classifiers 

The second-stage model was trained using: 
 LOG: regularized logistic regression using the 

the LibLinear library (Fan et al., 2008). 
 LMT: Logistic model trees (Landwehr et al., 

2005) 
Logistic regression is an effective classifier, 

widely used when dealing with numeric and binary 
data (which is the case of the second-stage training 
data). Regularization helps overcome overfitting. 
Logistic model trees are a variation of the model 
trees suggested by (Džeroski and Ženko, 2004) as 
best practice when training second-stage models. 

4.2.3 Predictors 

The base models were trained using two distinct 
predictor configurations: 
 ALL: All the predictors (as described in Table 

1) for all 3 classifiers.  
 NoCS: All the predictors for all 3 classifiers, 

except the LMS Gradebook composite score 
(there are instructors that do not use the 
Gradebook, and therefore the model cannot be 
trained using partial contributions to the final 
grade as predictors).  

The second stage was trained using first-stage 
predictions and probabilities (the first-stage 
predictors were not used as predictors in the second 
stage). We opted for this approach to isolate the 
effectiveness of the stack without the contribution of 
the first-stage predictors in the second stage. 

4.2.4 Computational Details 

The stacked ensemble system was coded  in R, using 
the caret package (Kuhn, 2008) to orchestrate the 
training and tuning of both the three base models 
and the second stage model, and perform 
predictions. R implementations (packages) of the 
chosen algorithms were used to train the models: 
xgboost for gradient boosted trees; nnet for feed 
forward neural nets; randomForest; naivebayes; 
Rweka for logistic model trees; LibLinear for 
regularized logistic regression.  (Note: There are a 
handful of turnkey implementations of stacked 
ensembles, mostly written in R, Python and Java -
e.g. H2O.ai-, but we decided to code our own 
implementation to have a better control over the 
execution process). The experiments were run on an 
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Intel Xeon server, 2.90GHz, 8 processors, 64GB 
RAM. Parallel processing was coded into the system 
to make use of all 8 cores during training and tuning. 
Each test run of the stack, including training and 
tuning of the first and second stage models took, on 
average, 3 to 4 min. to complete. 

4.2.5 Evaluating and Comparing 
Algorithms 

First-stage and second-stage models were trained 
and tuned using 5-fold cross-validation and a grid 
search to tune the models’ hyperparameters. 
Features were pre-processed (centered and scaled) as 
part of the training and tuning process. Table 2 
depicts the classification algorithms and their 
hyperparameters, used to tune the models. Tuning 
was performed using the area under the curve of the 
ROC curve (AUC), a widely-used metric to 
summarize classification performance, especially 
when dealing with a high imbalance in the data. The 
area under the curve of the ROC curve (AUC) was 
averaged over the ten runs of each of the eight 
experiment batches, computing a mean value and a 
standard error.  Single tailed, paired t-tests were 
performed for each batch, comparing the mean AUC 
of the stack relative to the mean AUC of the best 
performing first-stage model. Sensitivity (1-Type II 
error) and Specificity (1-Type I error) were also 
reported for the stack, using the values computed at 
the minimum distance between the ROC curve and 
the top right corner of the ROC chart box. 
 

Table 2: Tuning and model hyperparameters. 

Algorithm Hyperparameter(s) 
XB # boosting iterations, min_child_weight, 

max_depth, col_sample_bytree, shrinkage
NN size, decay 
RF mtry (# sampled vars) 
NB Laplace correction, usekernel(T/F), 

Adjust 
LOG cost, loss function, tolerance 
LMT # iterations 

4.3 Results and Discussion 

Table 3 displays the assessment of mean predictive 
performance of the stacked ensemble for the eight 
experiments described in section 4.2. The stack 
exhibited very good predictive performance when 
trained with all first stage predictors, outperforming 
all three base classifiers for both configurations of 
first base classifiers (XB+NN+RF and 
XB+NN+NB). For the XB+NN+RF/LMT stack, the 
mean AUC value was 0.935; for the 
XB+NN+RF/LOG stack, the mean AUC value was 
0.939. The naïve Bayes (NB) algorithm was 
considerably less performant than the random forests 
algorithm -compare mean AUC(NB)=0.858 with 
mean AUC(RF)=0.920-, but all three classification 
algorithms in the XB+NN+NB configuration are 
considerably different from each other, as exhibited 
by the correlations between predicted probabilities 
generated by the first-stage models in the 
XB+NN+NB configuration (see Table 4). This 
probably gave way to high mean AUC values of the 
stack (mean AUC = 0.933 for both LMT and  LOG,. 

Table 3: Stack Predictive Performance Results. 

Stage 1 Stage 1 Stage 2 Mean (AUC) 
Stack 
AUC 

paired 
t-test 

p-
value 

(*) 

Sensitiv. Specif. 

Classifiers Predictors Classif. XB NN RF NB Mean SE 

XB+NN+RF ALL LMT 0.928 0.920 0.925 0.934 0.003 0.020 0.865 0.873 

XB+NN+RF ALL LOG 0.928 0.920 0.925 0.936 0.002 0.000 0.867 0.875 

XB+NN+RF NoSC LMT 0.846 0.833 0.834 0.855 0.001 0.001 0.792 0.767 

XB+NN+RF NoSC LOG 0.846 0.833 0.834 0.855 0.001 0.000 0.792 0.770 

XB+NN+NB ALL LMT 0.928 0.920 0.858 0.933 0.002 0.057 0.869 0.865 

XB+NN+NB ALL LOG 0.928 0.920 0.858 0.933 0.002 0.026 0.870 0.865 

XB+NN+NB NoSC LMT 0.846 0.833 0.775 0.851 0.002 0.115 0.794 0.757 

XB+NN+NB NoSC LOG 0.846 0.833 0.775 0.852 0.001 0.021 0.791 0.761 

(*) p-values of upper-tailed paired t-tests over 10 runs (n=10) of AUC means of the stack (second-stage classifier) and   
     the best performing first-stage classifier, for each experiment. 
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slightly smaller than those of the XB+NN+RF 
configuration). Predictive performance improvement 
was moderate but consistent, and particularly 
relevant considering the high AUC values displayed 
by all base classifiers, and the limited scope of the 
experiment setup (e.g. number of classifiers put in 
place).  The one-sided paired t-tests were significant 
(α =0.05) in almost all cases where all the first-stage 
predictors were present (the XB+NN+NB/LOG 
configuration was the only exception). This indicates 
a significant difference in the mean predictive 
performance -measured by the AUC- between the 
stacked ensemble and its first-stage models. The 
stack seemed to extract additional predictive 
performance from its component classifiers. The 
sensitivity and specificity values were also high, 
(min. 0.865 and max. 0.870 for sensitivity; and min. 
0.865 and max. 0.873 for specificity), which implies 
rather low Type I and Type II errors: on the average, 
only 13.2% of academically at-risk students went 
undetected; and the stack produced 13.1% of false 
alarms. The latter number is much higher, 
considering the high imbalance in the data, strongly 
skewed towards students in good standing), but less 
important in the overall context: we seek classifiers 
with a low Type I error to minimize the number of 
false negatives while ensuring that not too many 
false positives are generated 

The absence of Gradebook data (partial 
contributions to the final grade) had an expected 
negative impact on the predictive performance of the 
stack, reducing its average AUC to 0.855 for the 
XB+NN+RF configuration, and to values of 0.851 
and 0.852 for the XB+NN+NB configuration.   The 
stack’s predictive performance remained superior on 
average, and significant differences between mean 
AUC values of the stack and its component 
classifiers were present in all but one configurations 
(XB+NN+NB/LMT). Still, it is noteworthy how 
well the stack performed despite the relatively 
weaker performance of the naïve Bayes classifier -
AUC(NB) = 0.775-. This reveals another advantage 
of the stacked ensemble architecture: it cushions 
weaker performances of its components, promoting 
more stable predictions when faced with varying 
characteristics of the data. 

Table 4 displays correlations between predicted 
probabilities generated by the first-stage models.  
For the XB+NN+RF configuration, values were 
above 0.75, meaning that classifiers, although 
accurate, represent similar hypothesis functions and 
therefore make similar errors. Instead, when 
replacing RF with NB in the XB+NN+NB 
configuration, the NB classifier predictions 

exhibited low correlations with those of the NN and 
XB classifiers. The NB classifier is less accurate, but 
does not span the same hypotheses space, and 
therefore produces different errors. This provides an 
explanation for the good predictive performance of 
the stack, in spite of the varying predictive 
performance of the first-stage models. The stack is 
tuned by carefully considering the number and type 
of classifiers, and the correlations between 
predictions produced by base classifiers 

Table 4: Correlations of Predicted Probabilities. 

Mean Std Dev Min Max 

XB-NN 0.77 0.11 0.44 0.92 

NN-RF 0.76 0.11 0.49 0.89 

RF-XB 0.85 0.07 0.70 0.96 

XB+NN+RF configuration 

Mean Std Dev Min Max 

XB-NN 0.77 0.11 0.44 0.92 

NN-NB 0.22 0.06 0.09 0.33 

NB-XB 0.34 0.06 0.24 0.45 

XB+NN+NB configuration 

5 LIMITATIONS AND FUTURE 
WORK 

The current research has several limitations. First, 
the study imposed a stacked ensemble architecture 
limited to two stages, three base classifiers and one 
single second-stage classifier. This was done to 
restrict the amount of time required for the execution 
of each training process as the experiment was 
repeated multiple times.  The purpose of the study at 
this preliminary stage is not to identify an optimal 
architecture but rather to empirically test the 
effectiveness and stability of the proposed stack 
ensemble architecture. Likewise, the choice of 
classifying algorithms was discretionary: the study 
used well-known classifiers with dissimilar 
characteristics and a proven record of predictive 
performance, some being ensembles themselves, to 
train the base classifiers, with the purpose of 
attaining good classification metrics while covering 
as much as possible of the hypotheses space, within 
the constraints of the computational resources 
available. Other classification algorithms could have 
been considered, but we settled for six classification 
algorithms using the rationale described above. 
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Nonetheless, the study provides first-time insight 
of the use of a stacked ensemble architecture in the 
domain of learning analytics and early detection of 
academically at-risk students. We recognize that 
much more could be written about each of these 
topics.  However, we will provide more complete 
coverage of these topics at the conference. 

6 SUMMARY AND CONCLUDING 
COMMENTS 

Stacked ensembles are powerful and flexible 
machine learning frameworks with the potential of 
delivering better and more stable predictions. This 
paper demonstrates how to create a stacked 
ensemble and perform predictions of academically 
at-risk students. The impetus of this research stems 
from the need of introducing novel approaches that 
can be used in practical settings to predict academic 
performance and carry out early detection of 
students at risk. The methodology presented in this 
paper is the subject of intensive research and 
exploration at our institution, inclusive of the 
analysis of different configurations of classifiers, 
model tuning criteria, arrangements of predictors, 
and its impact on the stack’s predictive performance.  
A pilot on a group of course sections has been run at 
the College during Fall 2017 and will continue 
through Spring 2018 using the stacked ensemble 
methodology described in this paper. The model 
output will be visualized through the LMS using a 
graphical user interface –a dashboard- augmented 
with statistics generated from the prediction. 
Hopefully, this paper will provide the motivation for 
other researchers and practitioners to begin 
exploring the use of stacked ensembles for 
predictive modeling in the learning analytics 
domain. 
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