
Iterative Process for Generating ER Diagram from Unrestricted 
Requirements 

Muhammad Javed and Yuqing Lin  
School of Electrical Engineering and Computing, The University of Newcastle, Newcastle, NSW, Australia 

Keywords: Entity Relationship Diagram, General Requirements, User Stories, Use Case Specification, Natural Language 
Processing, Type Dependencies. 

Abstract: Requirements analysis for generating a conceptual model such as an Entity Relationship Diagram (ERD) is 
an essential task in software development life cycle.  In this paper, we are presenting a Natural Language 
Processing (NLP) based approach to generate the ERD from requirements in an unrestricted format such as 
general requirements, user stories or Use Case Specification (UCS). To assess the performance and 
correctness of the proposed technique, we compare our approach with existing automated techniques by 
processing the same requirements. The preliminary results show a significant improvement.

1 INTRODUCTION  

The major portion of the software industry is 
information systems that are being used by all types 
of organizations (Uduwela and Wijayarathna, 2015). 
Designing a database system from requirements is an 
important subsection of a software development life 
cycle (Omer and Wilson, 2015. Meziane and Vadera, 
2004. Btoush and Hammad, 2015), normally 
resulting in an Entity Relationship Diagram (ERD).  

Requirements related to the software are generally 
collected in Natural Language (NL) (Neill and 
Laplante, 2003). Analysis of requirements is a 
difficult task due to the drawbacks of NL (Elbendak 
et.al, 2011). Major drawbacks of NL include 
ambiguity, inconsistency, and redundancy (Lucassen 
et.al, 2017. Elbendak et.al, 2011). These drawbacks 
make the automated ERD extraction process lengthy 
and error prone (Btoush and Hammad, 2015). The 
accuracy and efficiency become the main challenges 
while transforming, as stated by Tjoa and Berger 
(1993) the transformation is indeed challenging. 

Another factor we have to deal with during the 
transformation is how the requirements are presented. 
Based on the development approaches being used, 
requirements may be written in different ways, for 
instance common methods of presenting 
requirements include but are not limited to, general 
requirements, UCS or User Stories etc. Furthermore, 
depending on the organizational practices and 

standards, different templates are being used, for 
instance, in IEEE830:1998 or in ISO/IEC/IEEE 
29148:2011. Even if we consider only the UCSs, the 
engineers are using different templates. The most 
unpredictable and unrestricted requirements are, from 
the inconsistent resources, such as User Stories, 
UCSs. This will require extra effort to detect the 
requirements format, sentence structure.  

In this paper, we are presenting an automated NLP 
based approach to generate ERDs from unrestricted 
requirements formats i.e. general requirements, UCSs, 
or User Stories. Our proposed approach is not 
restricted to a specific template of UCS. To achieve 
this goal, we considered the Type Dependencies (TDs) 
of each sentence. We have defined rules based on new 
and enhanced TDs to be used in our approach. 
Furthermore, our approach has multiple iterations.  In 
the first iteration, TD of the processed sentences are 
identified to generate entities and attributes, both in 
moving forward and reverse manner. In the second 
iteration, relationships and in the third iteration the 
cardinalities obtained.  

By analyzing the flow of data and interaction 
between entities, we try to refine the relationships 
between entities in the ERD if no relation exist. The 
accuracy and efficiency of this automated approach 
have been proved by comparing the results with the 
existing automated techniques. 

In the remainder of this paper, section 2 contains 
an overview of our proposed approach and a detailed 
explanation of TDs. In section 3, we presented case 

192
Javed, M. and Lin, Y.
Iterative Process for Generating ER Diagram from Unrestricted Requirements.
DOI: 10.5220/0006778701920204
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 192-204
ISBN: 978-989-758-300-1
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



studies. Section 4 presents a detailed literature review. 
Section 5, presents a preliminary evaluation of 
accuracy and efficiency of the proposed approach by 
comparing it with existing automated tools. At finally, 
a conclusion and future works are presented in section 
6.   

2 PROPOSED APPROACH 

In this section, we are presenting the framework and 
the main artifacts extraction procedure of our 
proposed approach. For evaluating the proposed 
approach, a tool has been developed in Visual C# 
based on Stanford CoreNLP 3.8 APIs to generate the 
ERD.  

Fig. 1 shows the overview and steps followed in 
order to generate an ERD from unrestricted 
requirement specifications using the NLP based 
technique.  

 

Figure 1: Conceptual Diagram of Proposed Approach. 

2.1 Sentence Sequencing  

UCSs contains functional requirements with a 
sequence of actions performed by the actors and the 
system (Thakur and Gupta, 2017). Commonly, a UCS 
contains sections such as name, description, pre-
condition, post-condition, actor and main flow. 
However, alternate flow and exceptions are often 
presented differently. Different formats for 
referencing sentences in alternate or extension 
sections can be used (Siqueira and Silva, 2011). For 
instance, the sentence in the main flow section could 

contain the references to flows in the extension 
sections or be referred to the extension or alternate 
sections. Our tool will scan the whole UCSs 
document to obtain a flow by combining the 
sentences in alternative or extension sections along 
with appropriate sentences in the main flow. As we 
are not restricting the UCS template, sequencing of 
sentences is an important task to find branching flows 
from the alternate or extension sections.  

Based on the studies of various sentence 
referencing formats in UCSs we designed the 
following algorithm for sequencing the sentences in 
alternative and extension sections with respect to the 
main flow in UC.   

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Foreach Main.Sentence in Main_Flow 
 Process_List.add(Main.Senetnce) 
 If  Main.Sentence.Contains (Reference) 
  If Refrence.Type = “Alternate” 
   Foreach Sentence in Alternate 
    If Sentence.Number = Reference.Number 
     Process_List.Add(Sentence) 
    End of if started at line# 6 
   End of foreach loop started at line # 5
  Else If Refrence.Type = “Extension” 
   Foreach Sentence in Extension 
    If Sentence.Number = Reference.Number 
      Process_List.Add(Sentence) 
    End of if started at line# 12 
   End of foreach loop started at line # 
11 
  End of if started at line# 4 
 End of if started at line# 3 
End of foreach loop started at line# 1 

Figure 2: Algorithm for sequencing the sentences in 
Alternative and Extension with Main flow. 

In the above sentences sequencing algorithm, the 
loop at line # 1 is to add main sentences in the 
processing list one-by-one. The conditional statement 
at line # 3 is to check whether the main sentence 
contains any reference to the alternative or extension 
sections, and if so, the sentence will be added for 
processing with the main sentence from line # 4 to 
line #16.       

2.2 Sentence Analysis  

2.2.1 Tokenizing, Lemmatizing and Part of 
Speech (POS) Tagging 

Sentence analysis is the basic and fundamental step 
of NLP. In this step, we process each sentence for 
tokenizing, lemmatizing (converting each word to its 
basic form e.g. from played to play) and POS-tagging 
using Stanford CoreNLP 3.8 APIs.  For accurate 
processing using Stanford APIs, each sentence should 
end a with full stop / period sign (.), and should not 

Iterative Process for Generating ER Diagram from Unrestricted Requirements

193



contain a period sign and hyphen (-) within the 
sentences e.g.  “A language tape has a title language and 
level.” 

 

Figure 3: Visual representation of POS –tags using Stanford 
CoreNLP web API. 

2.2.2 Type Dependency Generation  

Type dependency represents the syntactic 
relationships between words of a sentence (Marneffe 
and Manning, 2008). Each TD contains a pair of 
words based on the grammatical relation. For 
instance, the following are the TDs generated from 
the sentence used in our previous example. The first 
TD is root to represent the root of the sentence with a 
fake word “ROOT-0” and a verb “has”. Second TD 
det is a determiner relationship of a noun and its 
determiner. Number with each word in TDs 
represents the word’s sequence number in a sentence. 
Marneffe and Manning, (2008) explained TDs in 
detail. 
 
root(ROOT-0, has-4), det(tape-3, a-1), compound(tape-3, 
language-2), nsubj(has-4, tape-3), det(language-7, a-5), 
compound(language-7, title-6), dobj(has-4, language-7), 
cc(language-7, and-8), dobj(has-4, level-9), 
conj:and(language-7, level-9), punct(has-4, .-10) 

 

Figure 4: Visual representation of TDs using Stanford 
CoreNLP.  

2.3 Analysis of Type Dependencies 

2.3.1 Entities and Attributes Extraction  

In this subsection, we illustrate how to extract 
potential entities and attributes using the Type 
Dependency based Rules (TDRs). In these rules, 
PrevTD represents the Previous TD while nextTD is 
for next TD with respect to the current TD that is 
under consideration. Basic_Attrib represents the basic 
forms of attributes e.g. name, number, no, type, 
address, level, date, time (Omar et.al, 2004). During 
the process, we present a pair of words in TD with 
letters A and B as TD(A, B). We use (TDR#) to refer 
the TDR included in appendix of the paper. 

We define the TDRs by analyzing the TDs 
individually as well as in relation to the other TDs 
within the sentence.  This step is the first iteration of 
TDs processing. To make our rules easy to 

understand, we presented them in a similar format as 
used in (Thakur and Gupta, 2017) e.g. nsubj(A,B). 
TDRs used for extracting entities and attributes are 
illustrated in Appendix in algorithmic format.  

From the existing work, we conclude that 
researchers are agreed in that noun, especially 
common nouns (Thakur and Gupta, 2017. Chen, 
1976. Song et.al, 1995. Omar et.al, 2004) and Gerund 
(Chen, 1976. Omar et.al, 2004) are potential entities. 
Attributes appear as noun, adjective (Thakur and 
Gupta, 2017. Chen, 1976. Song et.al, 1995. Omar 
et.al, 2004), possessive apostrophe (Harmain and 
Gaizauskas, 2003. Omar et.al, 2004) or with 
indicators e.g. no, name, date etc. (Omar et.al, 2004). 
It is worth mentioning here that not all nouns are the 
candidate for entities or attributes. For example, the 
database, system, company, record etc. are not 
candidates when listed in the requirements document 
(Omar et.al, 2004).   

This is a multi-iterative process. In each iteration 
TDs are processed to generate the results. In this first 
iteration, we try to generate entities and attributes by 
applying TDRs. This is a two-way (forward and 
backward) iteration. Once the entities and attributes 
are extracted in the forward iteration, we then trace 
back to check if an attribute extracted in a sentence 
has sub-attributes in the following sentences. If sub-
attributes are found, then they will be inserted to 
entities and removed from the attributes list.        

Subject 
Nouns appearing in the subject part of the sentence 
are considered as the potential entity (Bajwa  et.al, 
2009. Omar et.al, 2004). (Lucassen et.al, 2017. 
Thakur and Gupta, 2017. Arora et.al, 2016. Sagar and 
Abirami, 2014. Ben et.al, 2016) tried to process nsubj 
TD to extract entity while (Thakur and Gupta, 2017) 
and (Ben et.al, 2016) also processed nsubjpass to 
extract entities.  

While processing sentences in different structures, 
we found that the subject of the sentence may also 
contain attributes. In TDs, the subject part of the 
sentence is represented by nsubj(verb, noun). We 
analyze the subject dependencies generated by 
Stanford CoreNLP 3.8 APIs based on the type of 
sentences, which will give us the nsubj: nominal 
subject, nsubjpass: passive nominal subject, xsubj: 
controlling subject, csubj: clausal subject, csubjpass: 
clausal passive subject (Marneffe and Manning, 
2008) of the sentence. It is known that nsubj and 
nsubjpass contain entities or attributes while csubj 
may have entities based on the clause of the sentence. 

 
 

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

194



Dependency: nsubj(A, B) & nsubjpass(A, B) 
If B part of these TDs is not the member of the basic 
attributes set, then it is a potential entity (as illustrated 
in TDR1 & TDR2).  
Example:  “Customer cancels the reservation.”  
From this example along with other TDs we derive 
nsub(cancels-2, Customer-1)  having “Customer” as 
an entity. 
Example:  “Offer is selected by the customer.”  
From nsubjpass(selected-3, offer-1) “Offer” 
extracted as entity.  
Example: “ID and password are the basic 
requirements to log in.”   
TD nsubj(requirements-t, ID-1) contains attribute 
“ID” 

Compound nouns are represented by 
compound(A, B) TD. If compound dependency 
appears just before the nsubj or nsubjpass then by 
combining both A and B parts of compound 
dependency, entity or attribute will be generated.   
Example: “Credit card has an expiry date.”   
From TDs compound(card-2, credit-1) and  
nsubj(has-3, card-1) “Credit Card” entity is 
generated. 
Example: “Expiry date of cash card entered by the 
customer”  
From TDs compound(date-2, expiry-1), 
nsubj(entered-6, date-2)  attribute “Expiry  Date” can 
be generated. 

Object 
Objects of the sentence contains entities (Lucassen 
et.al, 2017. Thakur and Gupta, 2017. Arora et.al, 
2016. Sagar and Abirami, 2014. Ben et.al, 2016). 
Normally it is denoted by the TD dobj(Verb, Noun). 
(Arora et.al, 2016. Sagar and Abirami, 2014. Ben 
et.al, 2016) considered dobj TDs to extract entities, 
while in  the authors considered dobj and pobj TDs.   
Dependencies: dobj (A, B), iobj(A, B) & pobj(A, B) 
In this approach, we consider dobj: direct object, iobj: 
indirect object and pobj: object of a preposition 
(Marneffe and Manning, 2008) TDs representing the 
object of a sentence. 

If neither the B part contains basic attributes, nor 
the action in part-A gives the sense of inputting 
information (e.g. enter, inputted, save, add, has), nor 
the previous TD is amod (adjectival modifier) then it 
will be an entity as the adjective modifier contains 
attributes.  If compound also appears before any of the 
TDs representing object then by combining nouns in 
the compound, the entity will be generated (TDR3).     
Example:  “Customer cancels the reservation.”  
From dobj(cancels-2, reservation-4) entity 
“Reservation” is generated. 

“Customer selected credit card for the payment.”   
compound(card-4, credit-3), nsubj(selected-2, card-
4) have entity “Credit Card”. 

If either the B part of object TD contains basic 
attribute or the action in part-A in the sense of 
inputting information or the previous TD is amod 
then it will be an attribute. If the previous TD is amod 
or compound then the attribute will be generated by 
combining the A and B parts of the Previous TDs (see 
TDR4 & TDR5 in Appendix A.1).  
Example: “Customer enters phone number”  
compound(phone-4, number-3), dobj(enters-2, 
number-4) gives “Phone Number” as an attribute. 
Example: “Customer enters first and last name and 
address”  
From amod(name-4, first-3), dobj(enters-2, name-4)  
amod(name-7, last-6), dobj(enters-2, name-7), 
dobj(enters-2, address-9) attributes “first name, last 
name and address”  extracted. 

Prepositions 
Prepositions are used to represent the relationships 
of a noun with other words within the sentences. 
Dependency: nmod:of(A,B) 
(Thakur and Gupta, 2017) mentioned that the A part 
is an attribute and the B part is an entity.  While we 
found that if the A and B parts of TD nmod:of do not 
belong to the set of basic attributes, then both will be 
entities. If any one of them is an attribute, then the 
other one will be an entity. If both belong to attributes 
then, by combining A and B, an attribute will be 
generated (TDR6 ).  
Example: “Visitor selected type of the event.”   
nmod:of(type-3, event-5) has attribute “Type”  and  
“Event” as an entity. 
“Card of the customer has expiry date”   
In nmod:of(card-1, customer-4) “Card” and 
“Customer “ both are entities. 
Example: “Visitor entered the date of birth.”   
nmod:of(date-3, birth-5) contains “Date of birth” as 
an attribute. 
Dependency: nmod:in(A,B) 
A is an attribute and B is an entity (TDR7). Thakur 
and Gupta (2017) presented the same concept. 
Example: “The system validates that customer has 
enough funds in the account.”   
In nmod:in(funds-8, account-11) “Fund” is an 
attribute and “Account” is the entity. 
Dependencies: nmod:to(A,B), nmod:for(A,B), 
nmod:from(A,B), nmod:as(A,B) 
In these TDs, B will be the potential entity (TDR8).                 
Example: “The system displays price to the 
customer.”   

Iterative Process for Generating ER Diagram from Unrestricted Requirements

195



From nmod:to(displays-3, customer-7)   “Customer” 
is the entity extracted. 
Example: “system starts displaying video feed for the 
coordinator.”   
From nmod:for(displaying-3, coordinator-7)  entity 
“Coordinator” is extracted. 
Example: “Information does not match received from 
the witness.”    
nmod:from(received-5, witness-7) has the entity 
“witness”. 
Example: “As a visitor, I can create a new account.”    
nmod:as(create-7, visitor-3)  contains  “Visitor” 
entity. 
Dependencies: nmod:by(A,B), nmod:agent(A,B), 
nmod:with(A,B) 
Agents, indicates someone or something that 
performs an action on the subject of the sentence 
(Kienzle et.al, 2010).  

If B part of the TDs does not belong to the set of 
the basic attributes, then it will be an entity, otherwise 
it will be an attribute (TDR9 ). 
Example: “A branch is uniquely identified by the 
branch_number.”    
nmod:agent(identified-5, branch_number-7) contains 
“branch_number” attribute. 
“Name and address are entered by the customer”   
nmod:by(entered-4, customer-7)  has entity 
“Customer”. 

Appositional Modifier 
The possessive form is to show the relationship 
between nouns. 
Dependency: nmod:poss(A,B)  
A is attribute and B is an entity if it is a noun. Thakur 
and Gupta (2017) considered possessive nouns TD 
w.r.t to apostrophe. In our approach along with 
possessive apostrophes, possessive determiners, and 
possessive pronouns are also considered (TDR10).    
Example: “Administrator enters customer’s address.”    
In nmod:poss(address-5, customer-3) “Customer” is 
an entity while “address” is an attribute. 
“Witness provided his name.”   
nmod:poss(name-4, his-7) contains  “name ” 
attribute. 

Adjectival Modifier  
An adjectival modifier is an adjective modifying the 
meaning of a noun/noun phrase (Marneffe and 
Manning, 2008). 
Dependencies: amod(A,B)   
If B is adjective and A is a noun, and A does not 
belong to the set of basic attributes, then A will be an 
entity. Otherwise, by combining A and B, an attribute 
will be generated (TDR11). While (Thakur and 

Gupta, 2017) considered A as an entity and B as an 
attribute in all cases. 
Example: “System assign the initial level of 
emergency.”  amod(level-5, initial-4) “initial level” is 
an attribute. 
“Coordinator determines that the witness is calling a 
fake crisis.”  amod(crisis-11, fake-10)  “Crisis” is an 
Entity. 

Compound Noun 
A compound noun is a noun in a noun phrase that 
modifies the main noun (Marneffe and Manning, 
2008).  
Dependency: compound(A,B)  
If this dependency does not appear before a subject or 
object TD, then it will be considered independently. 
If any of the A or B parts represent the basic attribute, 
then the other will be an entity. If neither is 
representing a basic attribute then by combining 
them, an entity will be generated (TDR12).    
Example:  “Coordinator provides information 
(witness ID, first name, last name, phone number, and 
address).”  
compound(ID-6, witness-5) contains  “Witness ID” 
attribute and “Witness” entity while 
compound(number-12, phone-11) contains “Phone 
Number” attribute. 
“Customer paid by credit card.”  
In compound(card-5, credit-4) has “credit card” 
entity. 

Conjunction  
A conjunction illustrates the relationship between two 
elements by “and” and “Or” (Marneffe and Manning, 
2008). 
Dependency: conj:and(A,B) , conj:or(A,B) 
If anyone or both of A & B are nouns and belong to 
the set of the basic attributes, then these are also 
attributes, otherwise they will considered entities 
(TDR13 ).  
Example: “Customer enters ID and password to 
login.” 
In Conj:and(ID-3, password-5) both are attributes. 

Gerund 
A noun converted from the verb by adding “-ing”. A 
Gerund appears as a noun in different TDs (Marneffe 
and Manning, 2008). Hence, while processing the 
TDs gerund will also be processed. 
Example: “System display the booking dates.”  
In compound (dates-5, booking-4) “Booking” is an 
entity. 
 
 

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

196



Pronoun 
A pronoun represents the most immediate actor/entity 
so, in case of the pronoun, it will be replaced with the 
previous external entity. 
Examples: “User selects login option. He enters ID 
and password.”  

In this example, the pronoun of the second 
sentence in nsubj(enters-2, He-1) is referring to the 
subject noun of first of sentence “user” in 
nsubj(selects-2, user-1). Hence, “He” will be replaced 
with “User”. 
Example: “As a visitor, I can create a new account.”  
In this sentence TD nmod:as(create-7, visitor-3) 
contains entity and TD nsubj(create-7, I-5) contains 
pronoun. So, pronoun “I” will be replaced with 
“visitor”. 

2.4 Relationships Extraction  

A verb, especially a transitive verb, represents the 
relationships between entities (Chen, 1976. Song 
et.al, 1995. Harmain and Gaizauskas, 2003. 
Ambriola, and Gervasi, 2006). Verbs followed by 
prepositions are relationships (Omar et.al, 2004). 

In the second iteration, TDs are reconsidered to 
find the relationship between entities. During this 
iteration, TDs that have extracted entities will be 
processed. The TDRs related to relationship 
extraction are mentioned in the appendix A.2. In these 
rules “E” represents the entities extracted in the 
previous stage. 

A dependency with an entity in one part and verb 
in the second part will be compared with other TDs 
having the same format. If any two dependencies 
have the same verb, the verb will be considered a 
relationship between the entities mentioned in the 
compared TDs (TDR14 & TDR15). 
Example: “Administrator manages branches.”  
From nsub(manages-2, Administrator-1) & 
dobj(manages-2, branches-3)  “Administrator 
(manages) Branches” generated. 

Entities with preposition “of” will be connected 
by the relationship “has” (TDR16 & TDR17). 
Example: “Card of the customer has expiry date” 
nmod:of(card-1, customer-4) gives “Customer (has) 
card” relationship. 

In case of the prepositions “to”, “in”, “for”, and 
“from”, these will be attached to verb representing the 
relationship between entities (TDR18 to TDR22 ). 
While in case of the comparative modifier “as”, only 
the verb will be used as a relationship (TDR23). 
Example: “Customer add Items to the cart.” 
From TDs nsubj(add-2, customer-1),  dobj(add-2, 
items-3) & nmod:to(add-2, cart-6) relationships 

“Customer (add) items”, “items (add to) cart” and 
“Customer (add to) cart” extracted. 

In UCS sometime no direct relationship exists 
between entities, i.e. relationships do not appear in 
one sentence or do not share common verb. In this 
case, we tried to find a relationship between entities 
by the flow of data. 
Example (sentences from a use case with TDs): 
1. “Customer selects the date.” 

root(ROOT-0, selects-2), nsubj(selects-2, customer-1), 
det(date-4, the-3), dobj(selects-2, date-4), punct(selects-2, .-
5) 

2. “System displays the available booking dates.” 
root(ROOT-0, displays-2), nsubj(displays-2, system-1), 
det(dates-6, the-3), amod(dates-6, available-4), 
compound(dates-6, booking-5), dobj(displays-2, dates-6), 
punct(displays-2, .-7). 

 
In the above example “Customer” and “booking” 

don’t have any direct relationship but considering the 
flow model “customer” is selecting a date in the first 
sentence that belongs to “booking” in next sentence 
so, by the flow of data we got “Customer (selects) 
booking” a multi-sentence relationship. 

2.5 Cardinalities Extraction  

Cardinality signifies how many instances of one 
entity can be associated with the instances of another 
entity.  Cardinality can be extracted from articles by 
tracking the special indicators. Special indicators 
include but are not limited to many, more, each, all, 
and every (Harmain and Gaizauskas, 2003. Omar 
et.al, 2004). In this iteration, our tool will extract the 
cardinality of entities. Rules related to cardinality 
extraction are listed in appendix.   

Adjective modifier (amod) dependencies having 
an entity represents the cardinality. If the adjective 
part of the dependency contains many; some; all; 
more; every; first; or last, then cardinality will be N 
(TDR24).  
Example: “A store has many branches.”  
amod(branches-5, many-4) contains the cardinality 
‘N’. 

Number modifier (nummod) dependencies 
represent the maximum or minimum cardinality 
number. If this number contains “at least” or 
“minimum” as a prefix then cardinality will be N. If 
this number contains the prefix “at most”, “limit”, 
“maximum” or “no more than” then this number will 
be the maximum cardinality (TDR25). 
Example: “Branch must be managed by at most 1 
manager.”  
nummod(manager-10, 1-9) represents the cardinality 
1. 

Iterative Process for Generating ER Diagram from Unrestricted Requirements

197



A determiner (det) also represents the cardinality 
of a subjective entity. If any special characters (i.e. 
many, some, each, more), all appear as a determiner 
with an entity then the cardinality will be N. If articles 
“a/an” appear with an entity, the cardinality will be 
one. In the case of the “the” entity in a singular form 
then the cardinality will be one, but if the entity is in 
plural form then the cardinality will be N (TDR26). 

Example: “Each product has an expiry date.”  
det (product-2, Each-1) illustrate cardinality “1.  

An entity marked by part of speech can also help 
to identify cardinality. For instance, if the entity is 
marked with NNS (Plural Noun), it may represent N 
cardinality while entities marked with NN and NP 
may represent “1” cardinality, in case of the absence 
of above cardinality marks. 

3 CASE STUDIES  

In this section, we present a walk-through of our 
proposed approach. The requirements, UCSs and user 
stories are taken from the published literature so that 
we could compare the results in later section.  

3.1 Case Study of Processing General 
Requirements  

(“Store Problem” from (Omer and Wilson, 2015. Al-
Safadi, 2009.)) 

A store has many branches. Each branch must be managed by at 
most 1 manager. A manager may manage at most 2 branches. The 
branch sells many products. Product is sold by many branches. 
Branch employs many workers. The labour may process at most 10 
sales. It can involve many products. Each Product includes product 
code, product name, size, unit_cost and shelf_no. A branch is 
uniquely identified by branch_number. Branch has name, address 
and phone_number. Sale includes sale_number, date, time and 
total_amount. Each labour has name, address and telephone. 
Worker is identified by id.” 

The input is in plain text format (i.e. a file with txt 
extension). In the process, tokenization and 
lemmatizing, POS and TDs of each sentence are 
processed using Stanford CoreNLP 3.8. TDRs (as 
mentioned in Appendix) are applied for extracting 
entities and attributes. Table 1 contains the entities 
extracted from the above requirements. The first 
column represents the entities while the second 
column contains the frequency of each entity. This 
frequency illustrates that how many times each entity 
appears in different TDs. 

 

 

Table 1: Entities Extracted from Above Requirements. 

Entities Frequency (w.r.t TDs) 
Store 1 

Branch 8 
Manager 2 
Product 6 
Worker 2 
Labour 5 

Sale 2 

Table 2 contains the attributes of respective 
entities extracted by applying TDs rules.  

Table 2: Entities with Attributes. 

Entities Attributes 
Product code , name , size , unit_cost , shelf_no 
Branch Branch_Number, name , address , Phone_number
Sale sale_number , date , time , total_amount 
Labour name , address , telephone 
Worker Id

After generating entities and attributes, in second 
iteration. TDRs (as listed in Appendix) applied to 
extract relationships. In this (third) iteration of TDs 
processing, TDRs listed in Appendix A.3 applied to 
generated cardinalities. Table 3 contains relationships 
between entities and cardinalities. Entity’s name 
which are in the format of (Entity> cardinality) and 
“*” represents the multiplicity. Fig. 5 is the ERD 
extracted by this approach. The process flow in this 
case is trivial, and thus omitted. 

Table 3: Entities Relationships. 

store>1 (has) branch>* 
branch>1 (managed) manager>1 

branch>1 (sells) product>* 
product>* (sold) branch>1 

branch>1 (employs) worker>* 
labour>1 (process) sale>* 

Store Branch

Manager

Product

Worker

LabourSale

Has

managed

sells

employs

process

code name 

size

unit_cost

shelf_no

Branch_
Number 

Name address

Phone_ 
Number

Sale_ 
Number 

date
time

total_ 
Amount 

Name 
address

Phone_ 
Number

ID

 

Figure 5: ERD generated from requirements in case study 
1.  

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

198



3.2 Case Studies of Processing Use 
Case Specification  

UCS of “Capture witness Report” from Car Crisis 
management system. Due to the limitation of space, 
we are not considering all section by (Kienzle et.al, 
2010). 
Main Success Scenario. 
1. Coordinator provides witness information (first name, last 
name, phone number, and address) to System as reported by the 
witness. 
2. Coordinator informs System of location and type of crisis as 
reported by the witness. 
2a.1 System contacts PhoneCompany to verify witness information. 
2a.2 PhoneCompany sends address and phone information to 
System. 
2a.3 System validates information received from the 
PhoneCompany. 
3. System provides Coordinator with a crisis-focused checklist. 
4. Coordinator provides crisis information (crisis details, time 
witnessed) to System as reported by the witness. 
5. System assigns an initial emergency level to the crisis and sets 
the crisis status to active. 
Use case ends in success. 
Alternate. 
1a. The call is disconnected. The base use case terminates. 
2a. The call is disconnected. The base use case terminates. 
3a.1 System request video feed from Surveillance System. 
3a.2 Surveillance System starts sending video feed to System. 
3a.3 System starts displaying video feed for Coordinator. 
4a The call is disconnected. 
4a.1 Use case continues at step 5 without crisis information. 
5a. PhoneCompany information does not match information 
received from Witness. 
5a.1 The base use case is terminated.” 
 

Firstly, sentences from the alternate section are 
aligned with the relevant sentences of the main flow 
section. For instance, the first sentence in the alternate 
flow (i.e. ‘1a’) will be joined with the sentence 
numbered 1 of the main section, so we are 
understanding all the branching processes. After the 
sequencing of sentences, POS-tagging, and TDRs 
(appendix A.1) are applied to extract entities with 
frequency (in Table 4) and attributes (in Table 5) in 
the first two-way iteration.  

Table 4: Entities. 

Entities Frequency 
(w.r.t TDs) 

Coordinator 6 
Witness 6 
Crisis 6 
Phonecompany 3 
Checklist 1 
Surveillance 1 
video feed 1 
Emergency 1 
camera vision 2 
Situation 1 

 

Table 5: Attributes. 

Entities Attributes 
witness first name , last name , phone number , address
Crisis location, type , crisis detail , time , crisis status
Phonecompany address
Emergency emergency level

After applying TDRs (appendices A.2 & A.3), the 
relationships and cardinalities generated in second 
and third iterations of TDs processing displayed in 
table 6. 

Table 6: Entities Relationships. 

COORDINATOR>1 (REPORTED) WITNESS>1 
coordinator>1 (has) crisis>1 

coordinator>1 (verify) phonecompany>1 
coordinator>1 (confirm) situation>1 
witness>1 (informs) coordinator>1 
witness>1 (provides) checklist>1 

phonecompany>1 (provides) coordinator>1
phonecompany>1 (sends) coordinator>1 

phonecompany>1 (received) coordinator>1
checklist>1 (reported) witness>1 
crisis>1 (assigns) coordinator>1 

witness>1 (received) coordinator>1 
coordinator>1 (confirm) witness>1 

witness>1 (describes) coordinator>1 
coordinator>1 (determines) witness>1 

witness>1 (calling) coordinator>1 

Using the generated results, a corresponding 
ERD is depicted in Figure 6. 

witness coordinator

Phonecompany

crisis

Check List

reported, 
inform, describe, 

dtermines, 
calling

has, confirm

provide,

first 
name

location

address

Surveillance

Video feed

emergency

camera vision

situation

last name

phone 
number

address type crisis 
detail

time

crisis 
status

emergency 
level

confirm, 
determinesverify, provides, 

send, receive

provides, 
reported

 
 

Figure 6: ERD generated from Use Case Specifications. 

4 RELATED WORK  

The ER model was presented by Chen in 1976, and 
included 11 rules for identifying entities, attributes 
and relationships (Chen, 1976). Song et.al, (1995) 
presented the extended ERD by introducing new 
concepts such as generalization and abstraction. 

Iterative Process for Generating ER Diagram from Unrestricted Requirements

199



Various automated and semi-automated efforts 
have been made to extract conceptual models from 
different formats of the requirements.  

Elbendak et.al, (2011) proposed a semi-automatic 
tool called Class-Gen for processing the use case 
description to generate object-oriented class models.  
The proposed rules are based on the basic concepts of 
ERD generation explained by (Chen, 1976) i.e. noun 
and gerund are potential entities and verbs are 
relationships. Rules to extract attributes are also 
based on the previous concepts in literature.  

Omer and Wilson (2015) tried to extract database 
schema form user requirements using a natural 
language processing tool, considering only subject 
and object of the sentences. 

Tjoa and Berger (1993) proposed a tool to extract 
information by applying rules. Unfortunately, no tool 
was developed. These rules are based on the 
assumption that syntactic structure of the language 
can converted into data models. 

Overmyer et.al, (2001) presented a methodology 
with prototype tool (Linguistic Assistant for Domain 
Analysis) for Text analyzing. After speech tagging, 
they tried to find multi-word phrases for extracting 
entities. 

Omar et.al, (2004) proposed a semi-automated 
heuristic tool called ER-Converter to extract entities, 
attributes and relationships. After pre-processing 
using a memory-based shallow parser, heuristic 
weights were assigned to potential entities. Human 
involvement is required to attach attributes to entities 
and to find a relationship between entities. 

Meziane and Vadera (2004) presented a semi-
automated approach to generate ER models. From the 
requirements, authors tried to generate logical forms 
by converting sentences into determiner (Base, 
Focus) format and then extract entities by processing 
POS.  In this approach relationship is generated using 
quantifiers e.g. ‘the’, ‘a’ etc.  

Harmain and Gaizauskas (2003) proposed a tool 
CM-Builder to generate object-oriented framework 
using NLP techniques. An initial static structure of 
conceptual model generated first and then refined 
manually. 

Btoush and Hammad (2015) authors presented a 
tool to extract ER diagram. After POS-tagging, words 
are connected as chunks and then apply rules (based 
on basic concepts e.g. nouns are potential entities) to 
extract entities, attributes and relationships. This tool 
can only process simple sentences. 

Lilac (2009) presented an approach for designing a 
database from requirements. They applied syntactic 
analysis by using context-free grammar rules to 
collect a word from sentences and the semantic 

analysis to separate entities and attributes from the 
list.  

Sagar and Abirami (2014) presented a tool to 
create a conceptual model from functional 
requirements using TDs. They defined TDs based 
rules to extract entities, attributes, relationships and 
operations.  

Yue et.al, (2015) proposed an automated approach 
to extract analysis models from UCS using parse tree 
and POS tags generated by NL parser. In this 
approach, five basic sentence structures are used to 
extract class diagram. In their previous effort Yue 
et.al, (2010) used aToucan tool to extract activity 
diagram from UCS by tracing links between 
activities. 

Ambriola and Gervasi (2006) presented a software 
called CIRCE to convert natural language 
requirements to models. The authors tried to extract 
static models such as Entity-Relationship or UML 
class diagrams, and dynamic models such as finite 
state automata or event-condition-action rules. Parse 
trees obtained from requirements converted to tuples 
and then enhanced using extensional knowledge 
about the basic structure of software. 

Bajwa et.al, (2009) proposed a tool to generate 
UML class diagram with attributes and operations 
from natural language requirements. After POS 
tagging, words are separated based on tags. Class 
objects and attributes extracted from noun sets to 
generate the class diagram.  

Abdessalem et.al, (2016) presented an approach to 
generate a class diagram using pattern rules in the 
form of regular expressions. After pre-processing, 
sentences are matched to these patterns to obtain 
classes and attributes. Associations between classes 
are generated from dependencies. 

Thakur and Gupta (2017) presented an automated 
approach to extract class diagram from use cases. 
After generating dependencies of each sentence, they 
applied transformation rules on TD to extract entities, 
attributes and operations. 

Lucassen et.al, (2017) effort authors developed a 
tool, called Visual Narrator. This tool extracts the 
conceptual model from user stories. This tool only 
processes specifically formatted user stories. Each 
sentence in the user story is divided into three parts: 
role, means, and ends.  They used the GRIM method 
combining with NLP tool to process user stories. In 
this approach, for POS tagging dependency 
generating, SpaCy is used. While extracting classes, 
a weight is assigned to the potential candidate and 
final selection of the classes is based on the weight.  

Arora et.at (2016) proposed an automated method 
to extract domain model from unrestricted general 

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

200



requirements and represented in the form of classes. 
After preprocessing, nouns and verbs separated. TDs 
generated from the parse tree. Three rules applied to 
TDs to extract concepts, attributes and relationships.  

Table 7: Type Dependencies use by Authors to extract 
Entities and Attributes. 

Processed by Dependency  
Lucassen et.al, 
(2017) 

nsubj (A, B), dobj(A,B), 
pobj(A,B), nn(A,B), amod(A,B) 

Thakur and Gupta 
(2017) 

nsubj (A, B), nsubjpass(A,B), 
dobj(A,B), pobj(A,B), nn(A,B), 
amod(A,B), xcomp(A,B), 
prep(A,“in”), prep(A,“of”), 
poss(A, B), aux(A,B), 
num(A,B) 

Arora et.al, 
(2016) 

nsubj (A, B), dobj(A,B), 
amod(A,B), ref_to(A,B), 
rcmod(A,B), ccomp(A,B) , 
vmod(A,B). 

Abdessalem et.al 
(2016) 

nsubj (A, B), nsubjpass(A,B), 
dobj(A,B) 

Sagar and 
Abirami (2014) 

nsubj (A, B), dobj(A,B) 

Table 7 contains the TDs used by the authors to 
generate the artifacts of the conceptual models. They 
only used a subset of the TDs we have used in our 
approach. For example, we also consider the 
compound with nsubj or dobj.   

The approaches discussed above take input 
requirements in a restricted format. Arora et.at (2016) 
tried to process unrestricted general requirements. 
Our approach can handle requirements in both 
restricted and unrestricted format.  

Studies on the existing rules-based techniques for 
domain model extraction showed that the results are 
unsatisfactory (Echeverría et.al, 2017).  

5 PERFORMANCE 
EVALUATION  

To compare and validate the results of our ERD 
generation approach, we developed an application 
and tested it on various types of requirements 
specifications including general requirements, User 
Stories and UCSs that appeared in the literature.  For 
performance evaluation, we used the same 
performance metrics as used by the researchers, recall 
and precision and over-generation. Details are 
presented by (Echeverría et.al, 2017) and 
(Abdessalem et.al, 2016). 

Table 8 contains the comparison with the tool 
proposed by Lucassen et.al, (2017), considering the 
similar user stories (i.e. ArchivesSpace). 

Table 8: Comparison of Performance Metrics based on User 
Stories of Archivespace. 

 Entities Relationships
TP FP FN TP FP FN

Lucassen  
et.al, 
(2017)

89.5% 3.9% 6.5% 74.4% 10.9% 14.7%

Our 
approach

92.3% 3.7% 4% 76.6% 13 % 12% 

Listed below in Table 9 are the comparisons with 
the automated tool by Abdessalem et.al, (2016). We 
have used the same requirements document (i.e. 
Library system).  

Table 9: Comparison of Performance Metrics based on the 
Requirements of Library System. 

 

H
ar

m
ai

n 
an

d 
G

ai
za

us
ka

s,
  

20
03

 

L
av

oi
e 

 a
nd

 R
am

bo
w

,  
20

01
 

H
er

ch
i a

nd
 A

bd
es

sa
le

m
  ,

 
20

12
 

A
bd

es
sa

le
m

 e
t.a

l (
20

16
) 

B
aj

w
a 

et
.a

l, 
20

09
 

S
ag

ar
 a

nd
 A

bi
ra

m
i, 

20
14

 

O
m

er
  a

nd
 W

il
so

n,
 2

01
5 

O
u

r 
A

p
p

ro
ac

h 

Recall 73% 62% 52% 89% 56% 72% 75%  95%
Precision 66% 70% 75% 92.3% 65% 65% 60%  93%
Over 
Genration

62% 70% 75% 26% 75% 68%  50%  9 %

We compared the results of use cases with the 
closely related techniques proposed by (Thakur and 
Gupta 2017) and (Yue et.al, 2016) and found 
improved results with our proposed technique. For 
instance, by considering the ATM withdrawal use 
case specification (common case study of both 
techniques), the correctness of (Thakur and Gupta 
2017) and (Yue et.al, 2016) is 65% and 95% 
respectively. While the accuracy of our technique for 
the use case is 96%.  

6 CONCLUSION AND FUTURE 
WORK  

In this paper, we proposed an automated iterative 
approach to extract the components of ERD from 
unrestricted requirements. We have developed a tool 
using Stanford CoreNLP 3.8 APIs for the pre-

Iterative Process for Generating ER Diagram from Unrestricted Requirements

201



processing of requirements documents. Furthermore, 
we defined new TDs base rules to generate the 
required conceptual model. The key advantages of the 
proposed technique are; 
 Processing of unrestricted formats of 

requirement documents, including general 
requirements, UCSs and User Stories. 

 Refined TDs for entity relationship model 
extraction. 

 Correlation of pronouns with nouns to extract 
entity. 

 Extending the basic relationship extraction that 
is typically restricted in a single sentence, we 
also extracted entity relationships by examining 
the data flow in multiple consecutive sentences. 

 Cardinalities extraction with and without 
specific indicators.    

In future, our aim is to enhance the technique by 
applying domain knowledge. Domain knowledge not 
only helps to differentiate between True and false 
artifacts of ERD but also helps in generalization and 
aggregation of artifacts. 

REFERENCES 

Al-Safadi, L.A., 2009. Natural Language Processing for 
Conceptual Modeling. JDCTA, 3(3), pp.47-59. 

Ambriola, V. and Gervasi, V., 2006. On the systematic 
analysis of natural language requirements with c irce. 
Automated Software Engineering, 13(1), pp.107-167. 

Arora, C., Sabetzadeh, M., Briand, L. and Zimmer, F., 
2016, October. Extracting domain models from natural-
language requirements: approach and industrial 
evaluation. In Proceedings of the ACM/IEEE 19th 
International Conference on Model Driven 
Engineering Languages and Systems (pp. 250-260). 
ACM. 

Bajwa, I.S., Samad, A. and Mumtaz, S., 2009. Object 
oriented software modeling using NLP based 
knowledge extraction. European Journal of Scientific 
Research, 35(01), pp.22-33. 

Btoush, E.S. and Hammad, M.M., 2015. Generating ER 
diagrams from requirement specifications based on 
natural language processing. International Journal of 
Database Theory and Application, 8(2), pp.61-70. 

Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh, A., 
Dey, N., S Ashour, A. and Ben Ghazala, H., 2016. 
Automatic builder of class diagram (ABCD): an 
application of UML generation from functional 
requirements. Software: Practice and Experience, 
46(11), pp.1443-1458. 

Chen, P.P.S., 1976. The entity-relationship model—toward 
a unified view of data. ACM Transactions on Database 
Systems (TODS), 1(1), pp.9-36. 

De Marneffe, M.C. and Manning, C.D., 2008. Stanford 
typed dependencies manual (pp. 338-345). Technical 
report, Stanford University. 

Elbendak, M., Vickers, P. and Rossiter, N., 2011. Parsed 
use case descriptions as a basis for object-oriented class 
model generation. Journal of Systems and Software, 
84(7), pp.1209-1223. 

Echeverría, J., Pérez, F., Pastor, Ó. and Cetina, C., 2017. 
Assessing the Performance of Automated Model 
Extraction Rules. 26th International conference on 
Information Systems Development. 

Harmain, H.M. and Gaizauskas, R., 2003. Cm-builder: A 
natural language-based case tool for object-oriented 
analysis. Automated Software Engineering, 10(2), 
pp.157-181. 

Hogenboom, F., Frasincar, F. and Kaymak, U., 2010. An 
overview of approaches to extract information from 
natural language corpora. Information Foraging Lab, 
p.69. 

Herchi, H. and Abdessalem, W.B.,July, 2012. From user 
requirements to UML class diagram. International 
Conference on Computer Related Knowledge (ICCRK’ 
2012), Sousse, Tunisia. 

Kienzle, J., Guelfi, N. and Mustafiz, S., 2010. Crisis 
management systems: a case study for aspect-oriented 
modeling. Transactions on aspect-oriented software 
development VII, pp.1-22. 

Lavoie, S.P. and Rambow, B., 2001. Conceptual modeling 
through linguistic analysis using LIDA. In Proceedings 
of the 23rd International Conference on Software 
Engineering, ICSE 2001. 

Larman, C. and Applying, U.M.L., 2004. Patterns: An 
Introduction to Object-Oriented Analysis and Design 
and Iterative Development. 

Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E. 
and Brinkkemper, S., 2017. Extracting conceptual 
models from user stories with Visual Narrator. 
Requirements Engineering, pp.1-20. 

Meziane, F. and Vadera, S., 2004. Obtaining ER diagrams 
semi-automatically from natural language 
specifications. 

Neill, C.J. and Laplante, P.A., 2003. Requirements 
engineering: the state of the practice. IEEE software, 
20(6), pp.40-45. 

Omar, N., Hanna, J.R.P. and McKevitt, P., 2004. Heuristic-
based entity-relationship modelling through natural 
language processing. In Artificial Intelligence and 
Cognitive Science Conference (AICS) (pp. 302-313). 
Artificial Intelligence Association of Ireland (AIAI). 

Omer, M. and Wilson, D., 2015. Implementing a Database 
from a Requirement Specification. World Academy of 
Science, Engineering and Technology, International 
Journal of Computer, Electrical, Automation, Control 
and Information Engineering, 9(1), pp.33-41. 

Song, I.Y., Evans, M. and Park, E.K., 1995. A comparative 
analysis of entity-relationship diagrams. Journal of 
Computer and Software Engineering, 3(4), pp.427-459. 

Siqueira, F.L. and Silva, P.S.M., 2011, April. An Essential 
Textual Use Case Meta-model Based on an Analysis of 
Existing Proposals. In WER. 

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

202



Sagar, V.B.R.V. and Abirami, S., 2014. Conceptual 
modeling of natural language functional requirements. 
Journal of Systems and Software, 88, pp.25-41. 

Schneider, K., 2009. Experience and knowledge 
management in software engineering. Springer Science 
& Business Media. 

Tjoa, A.M. and Berger, L., 1993, December. 
Transformation of requirement specifications 
expressed in natural language into an EER model. In 
International Conference on Conceptual Modeling (pp. 
206-217). Springer, Berlin, Heidelberg. 

Thakur, J.S. and Gupta, A., 2017. Automatic generation of 
analysis class diagrams from use case specifications. 
arXiv preprint arXiv:1708.01796. 

Uduwela, W.C. and Wijayarathna, G., 2015. An Approach 
To Automate The Relational Database Design Process, 
Int. J. Database Manag. Syst. ( IJDMS ), vol. 7, no. 6, 
pp. 49–56 

Yue, T., Briand, L.C. and Labiche, Y., 2010, June. An 
Automated Approach to Transform Use Cases into 
Activity Diagrams. In ECMFA (pp. 337-353). 

Yue, T., Briand, L.C. and Labiche, Y., 2015. aToucan: an 
automated framework to derive UML analysis models 
from use case models. ACM Transactions on Software 
Engineering and Methodology (TOSEM), 24(3), p.13. 

APPENDIX  

Type Dependencies based Rules (TDRs) to extract 
entities, attributes relationships and cardinalities. 
TDR1.   
if Dependency= nsubj(A, B)  OR nsubjpass(A, 
B) 
 if A=VB|VBN and B=Noun and B≠Basic_Attrib 
then  
  If prevTD = “compound” then 
     Entity.add(compound(B) + Compound(A)) 
  else  Entity.add(nsubj(B)) 
TDR2.  
if Dependency= (nsubj(A, B)  OR nsubjpass(A, 
B)) 
  if A=VB|VBN and B=Noun and B = 
Basic_Attrib then  
    if prevTD = “compound” then 
        Attributes.add(compound(B) + 
Compound(A)) 
    else  Attributes.add(nsubj(B)) 
TDR3.  
if Dependencies=dobj(A,B), iobj(A,B) OR 
pobj(A,B) 
if A=VB and B=Noun and B≠Basic_Attrib and  

prevTD≠”amod” and prevTD≠”advmod” and VB≠ 
”entered” | “inputted” | “saved” |”added” 
| “has” then  

   if prevTD = “compound” then 
 Entity.add(compound(B) + Compound(A)) 
    else  Entity.add(dobj(B)) 
TDR4.   
if Dependencies=dobj(A,B), iobj(A,B) OR 
pobj(A,B) 

  if A=VB and B=Noun and (B = Basic_Attrib 
OR VB =”entered” | “inputted” | “saved” 
|”added” | “has”) then  

  if prevTD = “compound” then 
     Attributes.add(compound(B) + 
Compound(A)) 
  else  Attributes.add(dobj(B)) 
 
 
TDR5. 
if Dependencies= (dobj (A,B) OR iobj(A,B) OR 
pobj(A,B)) 
if A=VB and B=Noun and (B = Basic_Attrib OR 

VB =”entered” | “inputted” | “saved” 
|”added” | “has”) then  

   if (prevTD = “amod” || prevTD = “advmod”) 
and prev(B)=”JJ” then 

     Attributes.add(amod(B) + amod(A)) 
   else  Attributes.add(dobj(B)) 
TDR6.  
if Dependency = nmod:of(A,B) 
 if A=noun and B=Noun and A = Basic_Attrib 

and B≠Basic_Attrib then  
    Entity.add(B) 
    Attributes.add(A) 
 if A=noun and B=Noun and  A≠Basic_Attrib 

and  B≠Basic_Attrib then  
 Entity.add(A) 

Entity.add(A) 
 if A=noun and B=Noun and  A=Basic_Attrib 

and  B=Basic_Attrib then  
 Attributes.add(A + “of” + B) 
TDR7. 
if Dependency= nmod:in(A,B) 
  if A=Noun and B=Noun then  
 Entity.add(B) 

Attributes.add(A) 
TDR8:  
if Dependency= nmod:to(A,B), nmod:for(A,B),  

nmod:from(A,B) OR nmod:as(A,B) 
   if  B=Noun then  
 Entity.add(B) 
 TDR9. 
if Dependencies=nmod:by(A,B), 
nmod:agent(A,B) OR nmod:with(A,B) 

  if B=Noun and B = Basic_Attrib then  
              Attributes.add(B) 
  else if B=Noun and B ≠ Basic_Attrib then 
              Entity.add(B) 
TDR10. 
if Dependencies= nmod:poss(A,B) 
    if A=Noun and B = Noun then  
        Entity.add(B) 
        Attributes.add(A) 
   else if A=Noun and B= PREP ≠ Basic_Attrib 
then 
        Attributes.add(B) 
 
TDR11. 
if Dependencies = amod(A,B) 
 if A=Noun and B = JJ and A=basic_Attrib 
then  
              Attributes.add(B + A) 
 else if A=Noun and B=JJ and A≠Basic_Attrib  
then 
             Entity.add(A) 
 
 
 

Iterative Process for Generating ER Diagram from Unrestricted Requirements

203



TDR12. 
 if Dependencies=compound(A,B)and 

nextTD≠nsubj and nextTD≠dobj 
  if A=Noun and B = Noun and A=Basic_Attrib 

and B≠ Basic_Attrib then  
     Attributes.add(B + A) 
     Entity.add(B) 
  else if  A=Noun and B = Noun and 

A≠Basic_Attrib and B= Basic_Attrib then 
      Attributes.add(A + B ) 
      Entity.add(A) 
  else if  A=Noun and B = Noun and 

A=Basic_Attrib and B= Basic_Attrib then 
 Attributes.add(B+A) 
  else if  A=Noun and B = Noun and 

A≠Basic_Attrib and B≠ Basic_Attrib then 
 Entity.add(B+A) 
     EndIf 
TDR13. 
if Dependencies = nmod:and(A,B) OR 
nmod:or(A,B) 
   if A=Noun and B = Noun and A=Basic_Attrib 

and B= Basic_Attrib then 
  Attributes.add(A) 
 Attributes.add(B) 
   else if A=Noun and B = Noun and 

A≠Basic_Attrib and B≠ Basic_Attrib 
then 

          Entity.add(A) 
          Entity.add(B) 

 
TDR14. 
if nsubj(Verb, E1) & dobj(Verb, E2)    
   relationship.add( E1 (Verb) E2) 
TDR15. 
if nsubjpass(VBN, E1) and (nmod:agent (VBN, 

E2) OR nmod:by (VBN, E2))   
   relationship.add ( E1 (VBN) E2) 
TDR16.  
if nmod:of (E1, E2)  
     relationship.add(E1 (has) E2 ) 
TDR17.  
if nsubj(Verb, E1) and dobj(VBN, E2) and 

nmod:of (E2, E3)  
      relationship.add (E1 (VB) E2 ) 
      relationship.add ( E2 (“has”) E3 ) 
TDR18.  
if nsubj(VB, E1) and dobj(VB,E2)and 
nmod:to(VB,E3)  
   relationship.add (E1 (VB) E2)  
   relationship.add (E2 (VB+ “to”) E3 ) 
   relationship.add(E1 (VB+ “to”) E3) 
TDR19.  
if nsubjpass(VBN, E1) and nmod:to (VBN, E2)  
      relationship.add ( E1 (VBN + “to”) E2) 
TDR20.  
if nsubj(Verb, E1) and nsubjpass(VBN, E2) and 

nmod:to (VBN, E3)  
         relationship.add (E1 (VB) E2 ) 
         relationship.add,(E1 (VBN + “to”) E3 
)  
         relationship.add ( E2 (VBN + “to”) 
E3) 
TDR21.  
if nsubj(VB, E1) and nmod:in (VB, E2)  
      relationship.add ( E1 (VB +”in”) E2) 
TDR22.  
if nsubj(VB, E1) and nmod:for (VB, E2)  
   relationship.add (E1 (VB + “for”) E2) 

TDR23.  
if nmod:as(VB, E1) and dobj (VB, E2)  
      relationship.add (E1 (VB) E2) 
 
TDR24.  
if dependency = amod( E1, JJ)  
  cardinalities.add (E1 “>”JJ )  
TDR25.  
if dependency = nummod( E1, CD)  
  cardinalities.add (E1 “>” CD ) 
TDR26.  
if dependency = det( E1, DT)    
   if (DT=”Each” OR ”All” OR ”some” OR ”Any” 

OR “Many” OR “Every” OR “multiple”) 
       cardinalities.add (E1 “>” N ) 
   if (DT= “a” OR “an”  )  
       cardinalities.add (E1 “>” 1) 
 
 

 

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

204


