
Towards an Agile Lifecycle in Operation Research Projects

Melina Vidoni, Maria Laura Cunico and Aldo Vecchietti
Institute of Design and Development, INGAR CONICET-UTN, Santa Fe, Argentina

Keywords: Operations Research, Decision Support Systems, Systems Engineering.

Abstract: Often, Operation Research (OR) interventions focus more on solving a specific problem than addressing the
project as a whole. Even more, developers do not acknowledge OR models as systems that are part of an
organisation. The lack of a methodology guiding the project complicates the introduction of changes in the
model due to alterations in the requirements. However, these issues have already been acknowledged, ad-
dressed and solved in the Software Engineering (SE) discipline. Thus, considering the current contributions
from SE to OR projects, and the solutions offered by the first, this article analyses more deeply the similari-
ties existing in the lifecycles of projects aiming to narrow the gap that exists in OR research, due to the lack
of project methodologies. A proposal is made regarding the flow of information refinement and lifecycle
phases predominant in OR projects; an initial theoretical adaptation of Feature Driven Development show-
cases their potential and possibilities. After this, current limitations and future works are discussed.

1 INTRODUCTION

The common practice of the developers of
optimisation programs -Operation Research (OR)
models- is to concentrate the efforts in understand-
ing the problem complexity from imprecise and
incomplete requirements, to pose model that can
return results that are at least feasible. Therefore,
interventions lose the integral vision of the project,
and focus only on the mathematical code, leading to
modellers not acknowledging models as systems in
themselves. Thus, the phases of the projects are not
explicitly identified, and the advantages of a me-
thodical and orderly development are abandoned.

This conception of the models in expert mode
(Franco and Montibeller, 2010) makes more difficult
to face and incorporate any type of changes, prone to
occur in the environments in which the organisations
develop their activities (Checkland and Poulter,
2010; Franco, 2013; Eden and Ackermann, 2004).

However, similar issues have already been
acknowledged and approached in Software Engi-
neering (SE), generating several widely accepted
solutions. Those are visible in the evolution of soft-
ware lifecycles, from Royce’s waterfall, going
through incremental, spiral, and towards agile and
leagile methods (Munassar and Govardhan, 2010).

In particular, agile methodologies (Coram and
Bohner, 2005) encourage accepting requirements at
any stage of the development process, by actively

involving customers (Chow and Cao, 2008).
Thus, considering that OR models must be treat-

ed as projects, able to adapt to change, and identify
and follow phases to obtain a methodical and or-
dered development method, the SE approach thought
agility to this issue becomes highly relevant.

Even more, authors in the OR field recognise the
importance of SE practices and its contributions.
They state it includes a rich set of techniques,
concepts, experiences and methodologies drawn
from its relationship with other disciplines (Mingers,
2001), and that it may bring significant and positive
development to OR processes (Mingers and White,
2010). Also, Marttunen et al. (2017) point out that
future research should consider a more comprehen-
sive view of the project. More practically, SE meth-
odologies have been fruitfully applied in different
interventions and projects (Ormerod, 2008). All this,
added to the correlation existing between systems
and models, suggests that OR projects and models
could benefit positively from including these prac-
tices and moving into a global project approach.

Therefore, this position proposes to use the expe-
rience obtained in SE regarding agility and project
management, and apply it to OR projects. Although
this is centred on the development of OR-models, it
can also be applied to projects that implement both
software and optimisation models at the same time,
by integrating the latter to the current software
lifecycle.

432
Vidoni, M., Cunico, M. and Vecchietti, A.
Towards an Agile Lifecycle in Operation Research Projects.
DOI: 10.5220/0006760504320440
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 432-440
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Therefore, it first identifies the phases of OR
lifecycles, and their information refinement flow, in
the attempt to reduce the current gap in this subject.
Feature Driven Development (FDD) is used as an
example of adapting these concepts into SE lifecy-
cles, as the first step towards a framework to adapt
any agile methodology for OR projects.

2 LIFECYCLE ANALYSIS

There are currently many agile methodologies (AM),
each one present benefits and drawbacks (Dybå and
Dingsøyr, 2008). Nonetheless, all of their lifecycles
share the same basic phases, regardless of their im-
plementation (Leau et al., 2012).

Since this work aims to propose a project meth-
odology to the development and implementation of
an OR model, the first step is to adapt AMs to dis-
cover, define and establish the phases that are part of
any process, and their information. This is an issue
not yet covered, even when even it is recognised as a
crucial aspect (von Winterfeldt and Fasolo, 2009).

2.1 Information Refinement

Every OR project implies a transformation of infor-
mation (Ormerod, 2008): it starts with an idea and
aims to obtain specifics answers -an optimisation
model, an integrated DSS, and so on- (von Winter-
feldt and Fasolo, 2009). For this, there must be a
refinement and evolution of information, with inter-
mediate states. This becomes the goal of a given
phase during the development, contributing to the
validation and verification of the obtained model.

Figure 1 summarises the flow affecting this pro-
posed refinement of OR information. In this figure
are detailed the relationships upon which the valida-
tion and verification are performed. The states are:

• Ideas: A proposal for the project from the cli-
ents’ standpoint, generally written by them with
their vocabulary and format. Often, they do not
accurately reflect what clients truly need.
• Requirements: Refines the ‘Ideas’ to establish
definitions that act as a common ground between
the stakeholders of the project. It should contain

a glossary of terms, the project goals, estimated
costs and time frames, a list of people involved,
descriptions of involved processes, expected re-
sults, details on how the model will fit in the
organisation, and so on. This information re-
quires an agreement with all stakeholders.
• Formal Specification: Elaborated over the ‘Re-
quirements’ to explicitly detail them in a struc-
tured manner that provides specific information
to model the target aspect of the addressed situa-
tion. First, this requires splitting the working
structure into areas or sectors, consisting of their
particular goals, inputs and outputs -tangible and
intangible-, procedures, and requisites; it should
include relevant information for each of them.
Second, a compilation of required and generated
data, involving the one used as input in the mod-
el and provided by the organisation, and a list of
expected results, their presentation and format.
Third, a prioritisation of the requirements and the
links and dependencies between them, as well as
the qualities expected for the model.
• Mathematical Design: Equivalent to Software
Architecture (SA), it is the main step before cod-
ing the model. It consists of diagrams and
documentation that allow organising the model
and establishing the design decisions adopted,
working upon the obtained ‘Formal Specifica-
tion’. It is aimed to modellers. This design
should work with the SA concept of points-of-
view: the artefacts should be targeted to different
stakeholders, they should see the same model
from dissimilar perspectives with complementary
specifications.
• Mathematical Model: The programming code
for the model, written in a specific language and
following the design established in the previous
refinement. It should be verified against the
‘Mathematical Design’ to ensure that what is
built is the correct product.
• Answers: Obtained from the ‘Mathematical
Model’, and additional reports that clarify and
organise the information to be presented to the
client. It should answer what is established in the
‘Requirements’.

Figure 1: Refinement of information during an OR project.

Towards an Agile Lifecycle in Operation Research Projects

433

It is worth noting that this refinement is not se-
quential, but a progressive elaboration as defined in
Project Management: continuously improving and
detailing it, as more specific and accurate infor-
mation becomes available as the project progresses
(Project Management Institute, 2017).

Thus, while it is possible to go back several
states to add more detail, it is not allowed to ‘skip’
more refined states when moving forward. For ex-
ample, it is possible to go back from ‘Mathematical
Model’ to ‘Formal Specification’, but after the
changes are done, the progression must improve the
‘Mathematical Design’ before addressing ‘Mathe-
matical Model’ once again.

2.1.1 Information Representation

As in SE, each state of information refinement is
materialised as artefacts: tangible by-products pro-
duced during the lifecycle that describe a given
aspect of the system, which can be represented using
different notations (IEEE Computer Society, 2014).
This aspect is significant since documents the pro-
cess and its results, both final and intermediate while
acting as a measurement of the project state.

This article proposes the adaptation of existing
SE documentation techniques because they are
widely accepted and known among practitioners,

and their benefits thoroughly analysed (Chaudron,
Heijstek and Nugroho, 2012; Nugroho and
Chaudron, 2008). Consequently, reusing and adapt-
ing them to OR projects allow establishing a com-
mon ground for communication between stakehold-
ers, ensuring best practices by working with ap-
proaches already proved and accepted.

The selected artefacts and a brief description of
its use can be seen in Table 1, along with the defini-
tion of each state of information refinement. This is
not an exhaustive list, as other artefacts can be
developed for a given project; thus, there is no obli-
gation to generate all of them either.

2.1.2 Additional Considerations

Though the current academic literature provides
some contributions to the documentation on OR
projects, they are mostly suited to the initial states
such as ‘Requirements’, as they focus on discover-
ing the stakeholders’ requisites (Franco and
Montibeller, 2010; Marttunen, Lienert and Belton,
2017; Checkland and Poulter, 2010). Therefore, they
can also be used in this state.

It is worth noting that there are no artefacts on
‘Ideas’, as the client mostly provides them; i.e. it can
be informal notes from a meeting, formal docu-
ments, a Request for Proposal, and many more.

Table 1: Proposed artefacts for each information refinement state.

Refinement Artifacts

Requirements

User Stories: informal, natural language description of one or more features of a system, written from the
perspective of a user (da Silva et al., 2011).
System Context Diagram: external factors, events, elements their requests/responses, and their interac-
tion with the target model, in a given environment (Kossiakoff et al., 2016).
BPMN Diagram: graphical notation for specifying processes, based on flowcharts, and readable to tech-
nical and business users (Object Management Group, 2011).

Formal
Specification

Data Template: a tabular organisation of data, describing for each data set (input or output) its meaning,
units of measures, type (integer, real number), ranges and precedence, and other relevant details.
Areas Template: all areas should be described in the same terms, such as individual goals, required in-
puts and generated outputs -stating if, e.g., a given area does not require any input-. For ease of compari-
son, it is recommended a tabular format.
Features Lists: they are valuable functions that have business value in the model, defined for all domain
areas and grouped in features sets (Anwer et al., 2017). They allow discerning precedencies and depend-
encies between features, to establish a development priority.

Mathematical
Design

UML Diagrams: Package Diagrams, show dependencies between directories that group and organise the
model elements. State Diagrams are directed graphs showing existing transitions and conditions so that
an element can change its state. Activity Diagrams are behaviour diagrams which shoes flow of control
or objects with emphasis on its sequence and conditions (Object Management Group, 2015).
Included Files: a colour-coded table, detailing for each package which files are deleted, included or
modified at each iteration of the process.

Mathematical
Model

Mathematical model and code files: the project directory including the files with the model coded in the
selected mathematical programming language.

Answers
Raw Results: obtained from the model in a given file type, with a particular structure.
Results Report: including charts derived from the raw results, related analysis, and others.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

434

Thus, it is essential to define which stakeholders
participate in the project. This includes the develop-
ers -both for software and model, if applicable-, and
those coming from the client side. For the latter, it is
vital to determine their interest and influence for the
project (Ackermann & Eden, 2011), if they are man-
agers or technical staff. This is important to know to
negotiate about the project scope, dates and finan-
cials, or with whom to validate the documents or
asking for feedback and details of the process.

Regarding the process of transformations as a
whole, very often modellers and developers work
only with the ‘Ideas’ and attempt to directly
transform them into ‘Mathematical Models’, skip-
ping the intermediate states. As in SE, most
modellers prefer a rapid solution in the present in-
stead of a better approach that can take longer but
improve the final results (Allman, 2012). However,
this leads to each stakeholder working on their vi-
sion or perspective of the project, without forming a
consensus with the client. As a result, the ‘Mathe-
matical Model’ requires a numerous amount of re-
work to answer the client needs.

However, it is important to highlight the fact that
the detail of each refinement should enhance the
understanding of the project and contribute to its
validation and verification. Thus, it is imperative not
to incur in unnecessary details that can hinder or
unnecessarily delay the production of mathematical
code. On the contrary, that refinement should assist
in the development, providing clarity and a solid
base to work upon.

Finally, there is a parallelism between the
‘Mathematical Design’ and the concept of Software
Architecture (SA). The latter is defined as “[…]
fundamental concepts or properties of a system in its
environment embodied in its elements, relation-
ships, and in the principles of its design and evolu-
tion […]” (ISO/IEC/IEEE, 2011). This standardised
definition of SE also defines the goal proposed for
the ‘Mathematical Design’: provide a solid base to
code, materialising design decisions, choices, tech-
niques, and requirements to be addressed, before
moving into the actual development.

The similarity between ‘Mathematical Design’
and SA and the inclusion of different stakeholders in
the project reinforces the need of having documenta-
tion that can be understood by all of them. Thus, the
‘Mathematical Design’ should also be presented
with viewpoints, as defined in SA: different artefacts
that express the design -or a part of it- from the per-
spective of a given group of stakeholders
(ISO/IEC/IEEE, 2011). Viewpoints are complemen-
tary, as they show diverse aspects of the same model
from different standpoints, contributing to achieve
consensus and obtain a solid foundation.

2.2 Phases

The information refinement is organized in phases
that define different periods of the lifecycle; each
one has a defined goal concerning the flow of infor-
mation to be used, and the refinement it produces.
The output of each phase generates the artefacts
used as input for the next one: the information
evolves with the project.

As a result, phases are related to short-term goals
of the project per se, and not to the situation it aims
to solve. Figure 2 presents the proposed phases, and
they are individually described in the following
subsections. This proposal uses names established in
SE standards, to simplify the adaptation of existing
methodologies while using a nomenclature that is
known to both practitioners and academics.

It is worth highlighting that, to define specific
practices and technical recommendations, the first
step implies identifying and establishing the process
of an OR project as a whole, and define its interme-
diate goals and the type of information used. Thus,
this is the main objective of this position paper.

2.2.1 Analysis

‘Analysis’ is defined as “[…] the process of
analysing requirements to: (1) detect and resolve
conflicts between requirements, (2) discover the
bounds of the system and how it must interact with
its organizational and operational environment, and

Figure 2: Phases and Information Refinement characterizing OR projects lifecycles.

Towards an Agile Lifecycle in Operation Research Projects

435

(3) elaborate system requirements […]” (BKCASE
Editorial Board, 2017).

Therefore, it focuses on defining who is part of
the project (both clients and developers/ modellers),
what the project is about, and what the clients truly
need. For this, it is essential to understand the value
of the project as a whole, integrate the participants’
knowledge and favour the synergy of collective
work. Since the current Soft OR methodologies are
mostly focused in understanding requirements and
integrating stakeholders in the process, they can be
applied during this phase (Checkland and Poulter,
2010; Eden and Ackermann, 2004; Franco and
Montibeller, 2010).

The knowledge obtained in this stage should
give a basic understanding of project milestones,
allowing the team to have an estimation of the time
required to perform the ‘Design’ phase.

2.2.2 Design

The IEEE defines it as "[...] the period in the soft-
ware lifecycle during which definitions for architec-
ture, software components, interfaces and data are
created, documented and verified to satisfy require-
ments [...]" (ISO/IEC/IEEE, 2010).Thus, ‘Design’
aims to structure the requisites as a formal modelling
that does not require mathematical code. This is used
not only as documentation, composed of the ‘Formal
Specification’ and the ‘Mathematical Design’, but
also as a base upon which to prioritise requisites,
define who will be in charge of each step, and how
the requisites will translate to the model.

While the ‘Analysis’ is characterized by a rela-
tionship between clients and modellers/developers,
the ‘Design’ requires that the second group translate
the obtained information into refinements that will
provide a structure to model the targeted situation,
without applying the mathematical code. As a result,
any misunderstandings, lack of detail and missing
agreements dragged on from the ‘Analysis’ phase
will negatively affect the ‘Design’, and cause defec-
tive refinements of information.

SE has long agreed that due to the increasing
complexity of building systems (Shaw and Clem-
ents, 2006) the Software Architecture is essential to
obtain a solid and successful design and subsequent
development (Frakes and Kang, 2005). Therefore,
the parallelism between the ‘Mathematical Design’
and SA makes this phase as highly relevant to any
OR project; hence, it should be granted more im-
portance. However, and within the authors'
knowledge, the proposals to formalise this phase are
scarce. Although there are applicable artefacts of

great practicality, their poor consideration and use in
OR generates a gap in research and interventions.

Finally, the information refinements artefacts of
this phase assist in the integration of the obtained
models to the organisation processes and decisions,
as well as to the existing DSS. By applying the SA
concept of viewpoints, its use becomes natural for
other groups in the organisation -e.g. software de-
velopment, project management, decision makers-
favouring the integration of the model.

Also, strong and well-formed documentation
provides the base for reusing code in future projects,
reducing costs, and ensuring the use of improved
solutions; code and design reuse are essential for SE
(Frakes and Kang, 2005). It contributes to the agility
of projects: instead of creating a new solution,
adopting a new one may be more efficiently
(Dingsøyr et al., 2012). However, this is only possi-
ble if said solutions are correctly documented.

2.2.3 Development

This phase is defined as "[...] the specification, con-
struction, testing and delivery of a new application
or of a discrete addition to an existing application.
[...] (ISO/IEC/IEEE, 2010). As such, the goal of the
‘Development’ is to code the model in a given math-
ematical language, following the specification creat-
ed during the ‘Design’ phase: it is the most tradi-
tional and core activity of any OR project. It also
includes the generation of answers, its testing re-
garding the inputs, and its validation to what is
specified in the ‘Requirements’ and goals of the
project.

It is important to highlight that most OR projects
focus excessively on the ‘Development’, often ig-
noring or reducing the other phases even though the
‘Mathematical Code’ is a result of the previous re-
finements. Though some interventions using Soft OR
perform the ‘Analysis’, the majority ignores ‘De-
sign’. This causes several issues during the coding,
leading towards models that are not adaptable, well-
documented or based upon a thought-out structure
that simplifies testing and allows reuse.

3 EXAMPLE: ADAPTING AN
AGILE LIFECYCLE

This section uses an existing agile methodology to
exemplify how the presented concepts can be used
to adapt and adopt a SE lifecycle to OR projects.

In particular, this example is done with Feature
Driven Development (FDD). This is a model-driven

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

436

short-iteration process that consists of five activities.
Those are: a high-level walk-through of the scope of
the system and its context (Overall Model), a
decomposition of the domain into subject areas
containing business activities (Feature List), the
planning of the project based on said features (Plan
by Feature), the design package of the selected
features per iteration (Design by Feature) and the
development and testing of the programming code
based on the previous design (Build by Feature)
(Anwer et al., 2017).

This AM is selected due to being one of the most
currently used and accepted, which is adaptable to a
wide range of projects and teams sizes (Dybå and
Dingsøyr, 2008). Also, FDD does not require exten-
sive knowledge about the method itself, unlike other
methodologies such as Scrum. Therefore, this versa-
tility allows adapting FDD to many types of OR
problems, from reduced and concrete cases to wide,
all-encompassing optimisations.

As with most AM, FDD iterates over the phases
of ‘Design’ and ‘Development’, producing incre-
mental releases of the system under development,
which are valuable for the client, contributing to an
early return of the investment (Chow and Cao,
2008).

FDD can be adapted to OR projects by using the
phases, information refinement and artefacts previ-
ously proposed. The goal of this is exposing the
possibility of extending SE methodologies and con-
cepts into OR projects; however, it is only a recom-
mendation, and this adaptation can also be achieved
in different ways, and with different AMs.

Figure 3 showcases the original process and its
activities (top) compared to the proposed adaptation
(bottom).Since the three phases (‘Analysis’, ‘De-
sign’ and ‘Development’) are organised with the
same goals of SE lifecycles, the parallelism between

original and adapted FDD is direct.
However, it is worth noting that the ‘Planning

Project’ phase can be performed upon different
artefacts, depending on the selected AM: a) small,
low-risk projects and teams will be prone to use
‘Requirements’ -e.g. Extreme Programming or
Crystal Clear-, while b) mid/large projects with
complications such as mid/high risk or geographic
distribution, would prefer to use a more elaborated
documentation like ‘Formal Specification’ -e.g.
FDD or Scrum. Though practical testing centred in
OR is required for validation, existing SE projects
validate that cases a) produce less documentation,
while case b) focuses more on the design (Dingsøyr
et al., 2012), changing what the AM needs to estab-
lish the project’s iterations, content and milestones.

Regarding specific considerations for the
adapted FDD, the ‘Overall Model’ is originally
started by the artefacts of ‘Requirements’. Then,
after ‘Build Feature List’, it can be complemented
with, for example, a Package Diagram from the
‘Mathematical Design’. As a consequence, the latter
is then refined by iteration, and its artefacts are fed
to the ‘Overall Model’, incrementing and completing
it. For instance, the artefact files table can use a
colour code to denote added, modified or deleted
files -e.g. green, blue and red-, showcasing at each
iteration how each package progresses. This is
similar behaviour to what happens between package
and class diagrams in SE (Chaudron, Heijstek and
Nugroho, 2012).

After that, on ‘Build Feature List’, the features
of the ‘Formal Specification’ can be grouped by
areas, and additional artefacts can be produced high-
lighting the relationship between data and features,
to establish similarities that can assist in the
prioritisation and assignment of features.

Figure 3: Original FDD (top) vs. adapted FDD (bottom).

Towards an Agile Lifecycle in Operation Research Projects

437

Since FDD iterates over ‘Design’ and ‘Devel-
opment’, the artefacts of this phase are incrementally
built upon the previous release, adding functionali-
ties from the ‘Feature List’ and following the order
established in ‘Plan by Features’. As a consequence,
the use of project management tools such as base-
lines and version control is critical to managing the
artefacts (Project Management Institute, 2017).

Thus, any new requisite (‘Idea’) happening dur-
ing the project, should be translated into the ‘Formal
Specification’. From there, the project needs to
reorganise its iterations to include the new features,
if it corresponds, and update ‘Mathematical Design’,
‘Mathematical Model’ and ‘Answers’.

Finally, it is not the goal of this position paper to
adapt each FDD-exclusive artefact to OR-projects
but to establish that, from a theoretical standpoint,
the proposed phases, information refinements and
artefacts exploit similarities with SE while tailoring
to OR-specific needs, allowing porting agile lifecy-
cles. As there are many AMs, this example case
demonstrates that this is possible, enabling several
avenues for future works.

4 DISCUSSION

The goal of the proposed phases, information re-
finements and artefacts is to provide the conceptual
base to understand the process from a project man-
agement approach. Therefore, their real potential is
allowing generating a framework to adapt existing
AMs into OR projects, to fully apply agile concepts
in interventions of this discipline, enhancing and
exploiting its relationship with SE. It opens the pos-
sibility of using a wide range of methodologies al-
ready available, accepted and tested, without the
creating new and exclusive approaches. The FDD
example is an initial test, backing these concepts.
Still, as this is a position, this remains the main ave-
nue for future works and new developments.

However, the proposed extension of the SE con-
tributions in OR implies a change of paradigm and
working practices; this implies exploiting the ad-
vantages of generating and using methodological
practices that address a project as a whole, instead of
only addressing the mathematical modelling and
code. As such, any change is faced with the re-
sistance to alter current practices and move towards
something new, affecting the perception of the pro-
posed phases and information refinement.

In particular, this proposal targets the concept of
quality of the intervention as a whole, as part of a
system or organisation, instead of focusing on the

isolated development of models. Being OR an area
focused on the extension/transfer of knowledge is
essential that specialists can efficiently identify and
coordinate the different stages of the process. As a
consequence, this implies that the modellers are
required to have project management skills.

Creating a ‘Formal Specification’ or a ‘Mathe-
matical Design’ previous to coding is not a current
widespread practice. It is possible that many
modellers would prefer skipping the ‘Design’ to
move faster towards ‘Development’, even though a
better approach that can take longer but improve the
final results (Allman, 2012). Thus, the proposed
documentation does not invalidate existing methods
and artefacts used in elicitation: it reinforces them
by locating them in a comprehensive lifecycle. This
favours the balance between phases, improving
communication, and creating documentation that
enables the reuse of code.

Several limitations and future works arise:
• As in SE, projects need to balance the genera-
tion of design with the implementation of code is
key (Ruparelia, 2010). As stated by AMs (Dybå
and Dingsøyr, 2008), this does not imply the lack
of documentation; on the contrary, good docu-
mentation practices can save time in the future,
revaluing a strategy almost neglected in OR as it
is code reuse.
• Because this is a position paper, it lacks an ef-
fective application of this new perspective: a
practical case study. It is important to generate a
base of interventions that feel precedents in the
area and contribute to evaluating the success of
the proposal. As Ormerod (2008) stated: “[…]
However, success in one intervention is
insufficient to validate a perspective such as the
TCP. Validation requires living with the perspec-
tive over many interventions […]”.
• Though the adaptation of FDD to OR is theo-
retically grounded and consistent with existing
SE practices and application reports, a more
practical study case is required.

5 CONCLUSIONS

In Operations Research (OR) practice, it is common
to find a limited vision of interventions. In these
cases, practitioners do not consider the project as a
whole, causing a conceptual void regarding any
systematisation, and losing the advantages of a pro-
gressive and ordered process. As Systems Engineer-
ing (SE) already recognised and assessed similar
issues, along with the similarities existing between

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

438

both disciplines, this position paper aims to make an
initial contribution towards adapting the concepts of
agility and project management, successfully tested
and accepted in SE.

For this purpose, it explicitly defines the phases
grouping the information evolution through an OR
project, and the artefacts that materialise them. Fea-
ture Driven Development is used as an example of
adopting an agile methodology from SE to OR.

However, the overall goal is to establish the con-
ceptual ground required to contributing new and
better practices for the management and execution of
more efficient and orderly interventions.

REFERENCES

Allman, E. (2012) 'Managing Technical Debt', Communi-
cations of the ACM, vol. 5, no. 5, pp. 50-55, Available:
ISSN:1557-7317.

Anwer, F., Aftab, S., Waheed, U. and Muhammad, S.S.
(2017) 'Agile Software Development Models TDD,
FDD, DSDM, and Crystal Methods: A Survey', Inter-
national Journal of Multidisciplinary Sciences and
Engineering, vol. 8, no. 2, pp. 1-10, Available: ISSN:
2045-7057.

BKCASE Editorial Board (2017) The Guide to the Sys-
tems Engineering Body of Knowledge (SEBoK), 18th
edition, Stevens Institute of Technology Systems En-
gineering Research Center, International Council on
Systems Engineering, Institute of Electrical and Elec-
tronics Engineers Computer Society.

Chaudron, M. R. V., Heijstek, W. and Nugroho, A. (2012)
'How effective is UML modeling ?', Software & Sys-
tems Modeling, vol. 11, no. 4, pp. 571–580, Available:
ISSN: 1619-1374.

Checkland, P. and Poulter, J. (2010) 'Soft Systems Meth-
odology', in Reynolds, M. and Holwell, S. (ed.) Sys-
tems Approaches to Managing Change: A Practical
Guide, London, UK: Springer London.

Chow, T. and Cao, D.-B. (2008) 'A Survey Study of Criti-
cal Success Factors in Agile Software Projects', Jour-
nal of Systems and Software, vol. 81, no. 6, pp. 961-
971, Available: ISSN: 0164-1212.

Coram, M. and Bohner, S. (2005) 'The Impact of Agile
Methods on Software Project Management', 12th IEEE
International Conference and Workshops on the Engi-
neering of Computer-Based Systems (ECBS), Green-
belt, USA, 363-370.

da Silva, T. G., Martin, A., Maurer, F. and Silveira, M.
(2011) 'User-Centered Design and Agile Methods: A
Systematic Review', Agile Conference (AGILE), Salt
Lake City, USA, 77-86.

Dingsøyr, T., Nerur, S., Balijepally, V. and Moe, N.B.
(2012) 'A decade of agile methodologies: Towards ex-
plaining agile software development', Journal of Sys-
tems and Software, vol. 85, no. 6, pp. 1213-1221,
Available: ISSN: 0164-1212.

Dybå, T. and Dingsøyr, T. (2008) 'Empirical Studies of
Agile Software Development: A Systematic Review',
Information and Software Technology, vol. 50, no. 9-
10, pp. 833-859, Available: ISSN: 0950-5849.

Eden, C. and Ackermann, F. (2004) 'Use of "soft OR"
models by clients - what do they want from them?', in
Pidd, M. (ed.) Systems Modeling - Theory and Prac-
tice, 1st edition, Chichester, England: John Wiley &
Sons, Ltd.

Frakes, W. B. and Kang, K. (2005) 'Software Reuse Re-
search: Status and Future', IEEE Transactions on
Software Engineering, vol. 31, no. 7, pp. 529-536,
Available: ISSN: 1939-3520.

Franco, L. A. (2013) 'Rethinking Soft OR Interventions:
Models as Boundary Objects', European Journal of
Operational Research, vol. 231, no. 3, pp. 720-733,
Available: ISSN: 0377-2217.

Franco, L. A. and Montibeller, G. (2010) 'Facilitated
modelling in operational research', European Journal
of Operational Research, vol. 205, no. 3, pp. 489-500,
Available: ISSN: 0377-2217.

IEEE Computer Society (2014) Guide to the Software
Engineering Body of Knowledge, 3rd edition.

ISO/IEC/IEEE (2010) 24765:2010 Systems and software
engineering - Vocabulary, 1st edition, Switzerland: In-
ternational Standardization Organization.

ISO/IEC/IEEE (2011) 42010:2011 - Systems and software
engineering — Architecture description, 1st edition,
Switzerland: International Organization for Standardi-
zation.

Kossiakoff, A., Sweet, W. N., Seymour, S.J. and Biemer,
S.M. (2016) Systems Engineering Principles and
Practice, 2nd edition, New Jersey, USA: John Wiley &
Sons Inc.

Leau, Y. B., Loo, Y. K., Tham, W. T. and Tan, S. F.
(2012) 'Software Development Life Cycle Agile vs
Traditional Approaches', International Conference on
Information and Network Technology (ICINT), Sin-
gapore, 162-167.

Marttunen, M., Lienert, J. and Belton, V. (2017) 'Structur-
ing problems for Multi-Criteria Decision Analysis in
practice: A literature review of method combinations',
European Journal of Operational Research, vol. 263,
no. 1, pp. 1–17, Available: ISSN: 0377-2217.

Mingers, J. (2001) 'Combining IS Research Methods:
Towards a Pluralist Methodology', Information System
Research, vol. 240, no. 3, pp. 240–259, Available:
eISSN: 1526-5536.

Mingers, J. and White, L. (2010) 'A review of the recent
contribution of systems thinking to operational re-
search and management science', European Journal of
Operational Research, vol. 207, no. 3, pp. 1147-1161,
Available: ISSN: 0377-2217.

Munassar, N. M. A. and Govardhan, A. (2010) 'A Com-
parison Between Five Models Of Software Engineer-
ing', International Journal of Computer Science Is-
sues, vol. 7, no. 5, pp. 94-101, Available: ISSN: 1694-
0814.

Nugroho, A. and Chaudron, M. R. V. (2008) 'A Survey
into the Rigor of UML Use and its Perceived Impact

Towards an Agile Lifecycle in Operation Research Projects

439

on Quality and Productivity', 2nd ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering
and Measurement (ESEM), Kaiserslautern, Germany,
90-99.

Object Management Group (2011) Business Process
Model and Notation (BPMN), 2nd edition, USA: Ob-
ject Management Group.

Object Management Group (2015) Unified Modeling
Language TM (OMG UML), 25th edition, USA: Object
Management Group.

Ormerod, R. J. (2008) 'The transformation competence
perspective', Journal of the Operational Research So-
ciety, vol. 59, no. 11, pp. 1435–1448, Available: ISSN:
1476-9360.

Project Management Institute (2017) A Guide to the Pro-
ject Management Body of Knowledge, 6th edition,
Pennsylvania, USA: Independent Publishers Group.

Ruparelia, N.B. (2010) 'Software Development Lifecycle
Models', Software Engineering Notes, vol. 35, no. 3,
pp. 8-13, Available: ISSN: 0163-5948.

Shaw, M. and Clements, P. (2006) 'The Golden Age of
Software Architecture', IEEE Software, vol. 23, no. 2,
pp. 31-39, Available: ISSN: 0740-7459.

von Winterfeldt, D. and Fasolo, B. (2009) 'Structuring
decision problems: A case study and reflections for
practitioners', European Journal of Operational Re-
search, vol. 199, no. 3, pp. 857-866, Available: ISSN:
0377-2217.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

440

