
Integration between Agents and Remote Ontologies for the Use of

Content on the Semantic Web

Felipe Demarchi, Elder Rizzon Santos and Ricardo Azambuja Silveira
Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis, Brazil

Keywords: Intelligent Agents, Semantic Web, Jason Interpreter.

Abstract: The Semantic Web proposes a structure of significant content for Web pages that is used in knowledge

bases and developed from ontologies, that have recently come to coexist on the Web. There are studies to

allow agents to navigate through these knowledge bases in search of answers to queries. This work proposes

the adaptation of a well-known agent structure, named Jason, in order to allow the agent access to

ontologies available on the Web. In this context, efforts have been made to perform the integration of agents

with ontologies, most of which allow the knowledge of the agent to be based on a local ontology. However,

applying the ability to use semantic data available on the Web to a consolidated belief-desire-intention

(BDI) agent structure is a subject that still needs to be explored. Therefore, this work proposes changes in

the implementation of the Jason interpreter that would allow agents to access ontologies available on the

Web to perform the update of their belief base based on significant content. As validation, a case study of an

educational quiz is presented that uses this information to formulate the questions and validate the answers

obtained.

1 INTRODUCTION

The emergence of the Semantic Web has aroused

interest in research involving computational

intelligence.

According to Berners-Lee, Hendler and Lassila

(2001), the Semantic Web aims to bring a

meaningful content structure to Web pages, allowing

virtual agents to move between these pages

performing specific tasks for users. In order to do

this, it is necessary to use knowledge representation

from the various ontologies that are available on the

Web. The great power offered by the Semantic Web

will be accessible when agents can collect the

information available in the various bases of

knowledge representation, process this information

and share the results with other agents.

For the definition of agents, we consider the

notation presented by Wooldridge and Jennings

(1995), according to which an agent consists of a

system that is situated in some environment and is

capable of performing autonomous actions in this

environment to reach its objectives. It has the

properties of autonomy, social ability, reactivity and

proactivity.

BDI is based on a human behavior model

developed by philosophers, having its origin in the

theory of human practical reasoning, with a focus

mainly on intentions in the reasoning practice

developed by Bratman (1987). Wooldridge (2002)

explained that the BDI system consists of the

process of deciding, moment by moment, which

action to take to reach a certain goal. Therefore,

Bordini et al. (2007) defined that these computer

programs have a computation analogous to beliefs,

desires and intentions.

Another concept necessary for the context of the

Semantic Web refers to ontologies. Gruber (1995)

defined an ontology as an explicit specification of a

conceptualization, understood as a simplified and

abstract vision of the world that is meant to represent

it for some purpose. Antoniou and Van Harmelen

(2008) pointed out that an ontology consists of a

finite list of terms. Furthermore, the relationship

between these terms, which defines important

concepts, is formed by the classes and objects of the

domain.

Many approaches have been developed to allow

agents to use ontologies as a knowledge base.

Dikenelli et al. (2005), Moreira et al. (2006),

Klapiscak and Bordini (2009), Mascardi et al.

Demarchi, F., Santos, E. and Silveira, R.
Integration Between Agents and Remote Ontologies for the Use of Content on the Semantic Web.
DOI: 10.5220/0006718701250132
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 1, pages 125-132
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

125

(2011), Campos (2014) and Freitas et al. (2015) all

formed proposals that allow the integration between

agents and ontologies as a knowledge base.

However, these proposals seek to present the agent’s

integration with local ontologies, not exploring the

possibility of accessing remote ontologies available

on the Semantic Web.

In view of this, the current research presents the

integration of a consolidated BDI agent structure,

named Jason, with remote ontologies made available

from databases such as DBPedia. As validation, a

case study is presented that consists of an

educational quiz related to geography topics, which

will use the proposed agent model to define the

questions and answers from searches of these

knowledge bases available on the Web.

This paper is organized as follows. Related

studies are described in Section 2. Section 3 presents

the changes applied to the Jason interpreter. In

Section 4, a case study is described that validates the

proposed model. Finally, Section 5 presents the

conclusions and future work.

2 RELATED WORK

In this section, we present the notable studies that

perform an integration between agents and

ontologies, and focus on those that use ontologies as

the agents’ knowledge base.

Dikenelli, Erdur and Gumus (2005) propose the

SEAGENT, a model that allows agents to have a

local ontology as internal knowledge, allowing the

communication between these agents. Since the

agents can have heterogeneous ontologies as a

knowledge base, it used ontology matching between

the ontologies of the two agents, allowing agents

with heterogeneous ontologies to communicate with

each other.

Moreira et al. (2006) presented a theoretical

model of a BDI agent-oriented programming

language called AgentSpeak-DL, an extension using

descriptive logic and ontologies of the AgentSpeak

language, which uses predicate logic. To do this, it

incorporated ontological knowledge with the agent,

presenting the necessary changes in language

semantics to allow execution based on these

ontologies.

Klapiscak and Bordini (2009) describe JASDL

(Jason AgentSpeak-DescriptionLogic). This study

used the Jason interpreter to implement the

theoretical proposal presented by Moreira et al.

(2006), demonstrating the changes made to allow

Jason to use ontological reasoning to update his

belief base and retrieve relevant plans.

Mascardi et al. (2011) presented CooL-

AgentSpeak, an extension of the AgentSpeak-DL

language that allows alignment between the local

heterogeneous ontologies present in different agents.

It makes use of an agent with the alignment

capability called Ontology Agent, which is consulted

whenever it is necessary to perform an alignment

between the ontologies of two agents.

Campos (2014) introduced PySA, a Phyton BDI

agent implementation that defines URIs (Uniform

Resource Identifiers) as agent beliefs that point to

online data available on the Semantic Web, more

specifically in DBPedia.

Freitas et al. (2015) proposed an approach that

allows the interaction of agents and ontologies using

a coded layer based on CArtAgO. In this approach,

any agent-oriented language with support for this

artifact can use this implementation to perform the

integration between agents and local ontologies. One

of the main contributions of this work is to allow an

agent to have access to more than one ontology as a

knowledge base.

In analysing the above-mentioned works, it is

clear that much effort is being applied to research

concerning the integration between agents and

ontologies, with the aim of contributing to the

research related to the Semantic Web. Although,

many research finding can support the use of

ontologies as the agents’ knowledge base, as well as,

in some cases, support the communication among

the agents working in multi-agent systems, among

the related works found, the work of Campos (2014)

is the only one that integrates the agents’ knowledge

base and a remotely available ontology. But this

model is presented through a proper ad hoc

implementation of the agent. That is, without

applying any consolidated or well-known framework

for BDI Agents.

3 MODIFICATION PROPOSED IN

THE AGENT MODEL

In order to apply the concepts of the Semantic Web
to a consolidated agent model, we chose to use the
architecture and the reasoning cycle of the Jason
interpreter.

According to Bornidi et al. (2007), this

interpreter uses ten steps for the execution of the

reasoning cycle of an agent. The first four

correspond to obtaining information for the belief

base, which can happen from communication with

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

126

other agents or based on the perception of the

environment.

The other steps work with the selection of events

and plans that allow them to reach the objectives of

the agent and initially consists of the selection of an

event. All relevant plans are retrieved for this event

and the applicable plans defined. Finally, one of

these plans is selected and one of its intentions is

obtained.

This work proposes changes in the

implementation of the Jason interpreter, in order to

allow him to use existing knowledge in the Semantic

Web to feed his belief base. However, no

modification was performed on the model structure,

as the execution of the reasoning cycles were

maintained exactly as proposed by Bordini et al.

(2007).

In the sequence, we present the modifications

made to the implementation of the Jason interpreter.

They consist of the class responsible for allowing

the execution of queries to remote ontologies and the

creation of three internal events that allow the agents

to make use of these queries.

In order to prepare a case study that involves

creating an educational quiz related to geography

topics, the definitions of some internal events are

directed towards this end. However, the Jason

Interpreter allows the creation of new internal

events, thus allowing other definitions to be

implemented.

3.1 Queries to Remote Knowledge
Bases

In order to allow the Jason interpreter to support

queries to remotely available knowledge bases

through the SPARQL query language (i.e.

DBPedia), a class called SparqlSearch was added to

the implementation, which is solely responsible for

performing these queries. To enable this support, the

Jena framework was used.

This class consists of the definition of the

searchDbpedia method, which receives a

SparqlObject parameter and returns a list of objects.

SparqlObject was an object created only to represent

a triple, having the attributes called URI, Predicate

and Object. The return consists of a list of type

Object by the fact that the query can return resources

or literals.

There are two options for creating the SPARQL

query. The first one is based on a URI and a

predicate to find the corresponding objects, while

the second is based on the predicate and the object to

obtain the corresponding URI. Therefore, taking the

predicate and the URI, or the object, it is possible to

query DBPedia using this class. Figure 1 shows the

part of the code responsible for defining the

SPARQL query.

Figure 1: Code demonstrating the SPARQL query.

In the query variable definition, the PREFIXES

constant contains all the prefixes required to perform

a SPARQL query on DBPedia. The return of the

query brings a list of results, for which it would

check whether there are resources or literals to add

to the method’s return list.

3.2 Searchdbpedia Internal Event

To allow a Jason agent to check the validity of a

predicate and a URI or Object, an internal event

named searchdbpedia was added to the

implementation.

This event receives two terms as arguments to

check whether it is a valid query or not. This is

necessary because you can request a query based on

a URI or Object and a predicate that are not related,

or based on an incorrect URI, so this internal event

is necessary to perform this validation. With this, the

agent can define rules for which event or plan to

execute based on the return of the execution of this

internal event. As an example, the definition of

contexts using this internal event is presented below.

+!search : .searchdbpedia(

“<http://dbpedia.org/resource/Brazil>”,

“dbo:country”) <- ...

+!search : not .searchdbpedia(

“<http://dbpedia.org/resource/Brazil>”,

“dbo:country”) <- ...

In this example, if the internal searchdbpedia

event returns some SPARQL query result using the

Integration Between Agents and Remote Ontologies for the Use of Content on the Semantic Web

127

URI for Brazil next to the dbo:country predicate,

then the first event will be selected for execution,

otherwise it will be the second.

The implementation of the execute method of

this internal event gets the terms passed as

arguments, in this case the URI and the predicate.

They are converted to the type String and perform

the query using the class SparqlSearch. Figure 2

shows the part of the code referring to this step.

Figure 2: The code related to the internal searchdbpedia

event.

After validating that a URI and a predicate have

been defined for the query, a list of results is

obtained from the execution of the SPARQL query

to be performed using the SparqlSearch class. If any

result is obtained, it returns true, otherwise it returns

false.

3.3 Checkuri Internal Event

When performing SPARQL queries, it is necessary

to allow the agent to use the values obtained from

the query to feed its belief base. For this, the

checkuri internal event was defined, which aims to

verify if the query returned is a resource. If true, it

will allow the agent to add this resource to its belief

base.

For the implementation of this internal event, the

SPARQL query is performed as previously shown,

checking if the object obtained from the URI and the

predicate informed match a URI that points to

another DBPedia entity. Figure 3 demonstrates the

implementation responsible for this event.

Figure 3: The code related to the checkuri internal event.

This event receives three terms as arguments.

The first two refer to the URI and the predicate,

whereas the third consists of a term to be unified

with the URI received as a result of the query. In this

implementation, if the query returns more than one

URI as a result, only the first one will be unified

with the argument. Below is an example of using

this internal event from a Jason agent.

+!check : .checkuri(

“<http://dbpedia.org/resource/Florianóp

olis>”, “dbo:country”, X) <- ...

In this example, the internal event receives the

URI referring to the city of Florianópolis and the

dbo:country predicate for the SPARQL query. With

this, the result will be the URI referring to the entity

Brazil, which will be unified with the variable X.

3.4 Checkanswer Internal Event

The first two internal events presented,

searchdbpedia and checkuri, correspond to the

definition of an event pattern necessary for agent

integration with remote ontologies. The

checkanswer internal event was defined to fit the

context of the case study used by this work, which

consists of an educational quiz. However, it also

emphasized the fact that by inserting the

SparqlSearch class into the Jason interpreter, internal

events can be added to the Jason project in order to

address specific situations.

For the context of the case study, it is necessary

to verify if the response given by the student

matches the result obtained from the SPARQL

query. In this case, if the result is a literal, it is

converted to its respective data type and the

comparison is performed. If it is a resource, it will

be necessary to perform a new query to obtain the

name for this resource and for this, a query is

performed using the foaf:name predicate.

This internal event receives three terms as

arguments, where the first refers to the response sent

by the student and the last two refer to the URI and

the predicate needed to conduct the query. Figure 4

shows the code referring to the case where the result

obtained is a resource. In this way, a new query is

performed to obtain a literal referring to the name of

the resource in order to perform the validation of the

response.

Based on the result obtained in the second query,

it is observed if the answer matches the name

referring to this resource.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

128

Figure 4: The code related to the response case being a

resource in the checkanswer internal event.

If the result of the query is a literal, then the

second query is not required. Only the conversion of

the literal to its specific data type is required in order

to allow comparison with the response, as shown in

Figure 5.

Figure 5: The code related to the response case being a

resource in the checkanswer internal event.

In this case, it is initially necessary to convert the

literal to its specific data type and then perform the

comparison. As a return, it will be obtained true or

false, referencing whether the answer given by the

student is correct or not. The call to this event from a

Jason agent is shown below.

+!answer : .checkanswer(“Brazil”,

“<http://dbpedia.org/resource/Florianóp

olis>”, “dbo:country”) <- ...

+!answer : not .checkanswer(“Brazil”,

“<http://dbpedia.org/resource/Florianóp

olis>”, “dbo:country”) <- ...

The first case concerns the student providing the

correct answer, while the second concerns the

student’s misunderstanding.

4 CASE STUDY

To exemplify the execution of agents with the ability

to access data available in the Semantic Web, a case

study will be demonstrated consisting of a quiz

related to geography subjects.

To do so, it will be necessary to work with two

agents: (1) the question agent (QA) that is

responsible for formulating the questions and (2) the

answer agent (AA) that is responsible for receiving

the questions and sending the response.

The QA agent will begin its process with a belief

called uri, which corresponds to a list that will

initially contain only the resource of DBPedia about

the city of Florianópolis, and the number of

questions that will be responsible for managing the

questions to be asked based on each URI. In

addition, it will initially have the objective of

running the event called generatedQuestions, which

is responsible for formulating the questions. The

initial state of the agent is represented as follows:

uri([<”http://dbpedia.org/resource/Flor

ianópolis”>]) .

num_of_questions(0) .

!generateQuestions .

As predicates were used for the realization of the

questions, some relationships identified in the

entities were pre-established, which can be observed

in Figure 6. In this case, some predicates result in an

empty value, while others point to literals or other

resources. These will be analysed based on the

internal events added to the Jason interpreter.

The generateQuestions event that is executed

initially is responsible for initializing the generation

Integration Between Agents and Remote Ontologies for the Use of Content on the Semantic Web

129

of the questions. Several plans are defined that unify

with this event, having as a definition the number of

the question verified in the context to define which

of the plans will be applicable.

Figure 6: Properties related to the URI that reference

Florianópolis.

To exemplify the step for the generateQuestions

event, three of the possible plans for this event are as

follows:

+!generateQuestions : num_of_questions(

X) & X = 0 <- !question(“where”,

“dbo:country”, “located”); -

+num_of_questions(X+1).

+!generateQuestions : num_of_questions(

X) & X = 1 <- !question(“when”,

“dbo:founding”, “located”); -

+num_of_questions(X+1).

+!generateQuestions : num_of_questions(

X) & X = 2 <- !removeUri; -

+num_of_questions(0);!generateQuestions

.

The first two check whether the value

corresponding to the belief num_of_questions

corresponds to a predetermined value to then

execute the event called question, and increment the

value referring to the belief num_of_questions by 1.

The last event checks whether a question has been

reached for a given URI. When this occurs, the event

named removeUri, executes and sets the value

corresponding to the belief num_of_questions to

zero. The generateQuestions event is called again,

which will begin to formulate questions to a new

URI.

For the event called removeUri, the agent

separates the list of URIs that has as belief in Head

and Tail. This belief is redefined with the value

referring to Tail, that is, without the first element for

which they have already been performed questions.

The event called question validate if the relation

of a URI with the predicate informed as argument

corresponds to a SPARQL query valid to DBPedia.

This should occur if the result of the query is not

empty. To do so, the searchdbpedia internal event is

used, and two question events are defined for the

agent. For one case the query is possible and for the

other case it is not, as presented in the following

codes:

+!question(Type, Predicate, Word) :

uri(L) & L = [H|T] & .searchdbpedia(H,

Predicate) <- .send(answerAgent,

achieve, question(H, Type, Predicate,

Word).

+!question(Type, Predicate, Word) :

uri(L) & L = [H|T] & not .searchdbpedia

(H, Predicate) & num_of_questions(X) <-

-+num_of_questions(X+1);

!generateQuestions .

In the first situation, where the return of the

search dbpedia internal event is true, you get the first

element of the uri belief list. Then sends this

information to the AnswerAgent agent, triggering

your event.

In the second case, if there is no query return for

the URI and the predicate in question, one is added

to the num_of_questions belief of the agent and the

generateQuestions event is executed again.

Agent AA has the event named question, which

in this example checks whether this event was

triggered from the QA agent. If so, the question is

presented and response is returned to the QA agent,

triggering the answer event. The response is sent

with the URI and the predicate in question, so the

QA agent can perform the query to validate the

response, as shown in the following code.

+!question(Uri, Type, Predicate, Word)

[source(questionAgent)] <- .print(Type,

“ is “, Uri, “ “, Word); .send(

questionAgent, achieve,

answer(“Brazil”, Uri, Predicate).

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

130

After this step, agent QA will execute the answer

event, which has two definitions - one in case the

answer is correct and another in case it is incorrect.

To perform the validation of the response, it uses the

internal event created called checkanswer, which

will return true or false.

+!answer(Answer, Uri, Predicate) :

.checkanswer(Answer, Uri, Predicate) <-

.print(“Congratulations”); !verifyUri(

Uri, Predicate, Answer);

!generateQuestions.

+!answer(Answer, Uri, Predicate) :

.checkanswer(Answer, Uri, Predicate) <-

.print(“Wrong answer!”);

!generateQuestions.

If the response is incorrect, only a message is

displayed and the process for generating a new

question is initiated. If correct, a congratulatory

message is displayed and the verifyUri event is

executed.

+!verifyUri(Uri, Predicate) :

.checkuri(Uri, Predicate, X) <-

!addUri(X) .

This event is responsible for verifying that the

result obtained from the combination of the URI and

the predicate corresponds to a URI that points to

another DBPedia entity. To do this, it uses the

internal event added to Jason called checkuri, which

performs this verification, and if it identifies that it

corresponds to a URI, it then unifies this value to

variable X. In the sequence, the event named addUri

is executed, which adds the URI obtained at the end

of the list of URIs that the agent has as belief for

later formulation of questions.

Thus, during the execution of a cycle of

formulating questions based on a given URI, new

URIs were obtained and added as agent beliefs,

which maintained a relation referring to the content

addressed by the initial URI.

5 CONCLUSIONS

This research addressed the use of the concept of

Semantic Web together with the implementation of

the Jason interpreter. The principles of a

consolidated BDI agent model were maintained,

enabling agents implemented from this tool to have

the ability to access data available in remote

ontologies for the production and updating of

beliefs.

In order to do so, the creation and modification

of internal events of the Jason interpreter were

proposed. The implementation of a class to be used

to intermediate the SPARQL queries to remote

bases, more specifically DBPedia, were also

proposed. Thus, from a URI that the agent has as a

belief, it is possible to expand its knowledge based

on the relations obtained from this URI and from

predicates, always maintaining content coherence.

In order to validate the proposed model, a case

study was presented for the creation of an

educational quiz about geography, in which the

agents exclusively use information available in

remote ontologies to determine the questions related

to the context. With this, it was possible to observe

that from an initial belief, the agent manages to

produce and expand the bank of questions based on

entities that relate to the initial belief, maintaining

the coherence of the content.

The main contribution of this study was to

provide modifications in a well-known BDI agent

model, in this case the Jason interpreter, allowing

agents to integrate with ontologies available on the

Web. It is important to point out that some of the

internal events presented in this work refer to the

context of a virtual learning environment, for the

production of an educational quiz. Following the

same context, and using the main class of the

proposal, called SearchDbpedia, it is possible to

define new internal events in order to meet other

contexts.

About the related works described above, it is

possible to observe that the sequence of research

presented by Moreira et al. (2011), Klapiscak and

Bordini (2009), Mascardi et al. (2011) and Freitas et

al. (2015) propose changes in consolidated BDI

architectures in order to allow access to ontologies,

however, do not define the possibility of access to

remote ontologies and, in some cases, they use

ontology matching algorithms to allow the

communication between agents. By proposing a

model in which the agents have the capability to

update their beliefs based on remote ontologies, we

claim that is possible that the group of agents has a

common-sense knowledge base. In this case, the

case study uses DBPedia, which eliminates the need

for ontology matching algorithms.

The research work proposed by Campos (2014),

presents an agent model that supports beliefs

revision according to the knowledge obtained from

remote ontologies. This model uses an ad hoc

implementation to perform the validation of the

Integration Between Agents and Remote Ontologies for the Use of Content on the Semantic Web

131

proposed schema. Therefore the model not

completely matches the basic principles of a BDI

architecture. Based on this, we have chosen to use

the Jason interpreter, which is a consolidated BDI

agent model, without changing its reasoning cycle,

but just working with internal events that allow

agents access to remote ontologies. Thus our model

implementation can be used for purposes other than

the case study used to validate the proposal.

For future work, we proposed allowing an agent

to perform SPARQL queries on more than one web-

based knowledge base, such as Wikidata and

GeoNames. In addition, better standardization of

internal events that adapt to more generic situations

can be established.

REFERENCES

Antoniou, G. and Van Harmelen, F. (2008). A Semantic

Web Primer. (2nd ed.). London: The MIT Press.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001). The

Semantic Web. Scientific American, May 2001.

Available from:

https://pdfs.semanticscholar.org/566c/1c6bd366b4c9e

07fc37eb372771690d5ba31.pdf [Accessed 15/10/17].

Bordini, R. H., Hübner, J. F. and Wooldrige, M (2007).

Programming Multi-Agent Systems in AgentSpeak

using Jason. England: Wiley.

Bratman, M. (1897). Intention, plans, and Practical

Reason. Cambridge, Mass, Harvard University Press.

Campos, D. (2014). Representação de Dados Semânticos

em Agentes BDI. Dissertation (Msc.), Federal

University of Santa Catarina.

Dikenelli, O., Erdur, R. C. and Gumus O. (2005).

SEAGENT: A Platform for Developing Semantic Web

Based Multi Agent Systems. In: Proceedings of the

Fourth International Joint Conference on Antonomous

agent and Multiagent Systems. Utrecht: ACM, pp.

1271-1272.

Freitas, A., Panisson, A. R., Hilgert, L., Meneguzzi, F.,

Vieira, R. and Bordini, R. H. (2015). Integrating

Ontologies with Multi-Agent Systems through

CArtAgO Artifacts. In: IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent

Technology. Singapore: IEEE, pp. 143-150.

Gruber, T. R. (1995). Toward principles for the design of

ontologies used for knowledge sharing? International

Journal of Human-Computer Studies. 43(5-6), pp.

907-928.

Klapiscak, T. and Bordini, R. H. (2008). JASDL: A

Practical Programming Approach Combining Agent

and Semantic Web Technologies. In: 6th International

Workshop on Declarative Agent Languages and

Technologies. Estoril: Springer, pp. 91-110.

Mascardi, V., Ancona, D., Bordini, R. H. and Ricci, A.

(2011). CooL-AgentSpeak: Enhancing AgentSpeak-

DL Agents with Plan Exchange and Ontology

Services. In: IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent

Technology. Lyon: IEEE, pp. 109-116.

Moreira, A. F., Vieira, R., Bordini, R. H. and Hübner, J. F.

(2005). Agent-Oriented Programming with Underlying

Ontological Reasoning. In: Third International

Workshop on Declarative Agent Languages and

Technologies. Utrecht: Springer, pp. 155-170.

Wooldrige, M. (2002). Intelligent Agents: The Key

Concept. In: Multi-Agent Systems and Aplications II.

Berlin: Springer, pp. 3-43.

Wooldrige, M. and Jennings, N. R. (1995). Intelligent

agents: theory and practice. The Knowledge

Engeneering Review. 10(2), pp. 115-152.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

132

