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Abstract: UML standards lack systematic solutions that can handle concurrency and time constructs in a single unified 

notation. In this paper, we integrate concurrency as a part of Umple, a combined modelling and programming 

language. Our extensions can help ease component-based development of real-time, distributed, and 

embedded applications. The work, which is based on an extended implementation of active object, enables 

better validation of systems, and improves usability from the developer’s perspective. We describe the syntax 

and semantics of our Umple extensions, and also show how the constructs are transformed into C++. After 

that, we evaluate our work qualitatively, by comparing Umple with other specifications that focus on time as 

key; we show that Umple gives more flexibility than UML and MARTE. We also evaluate our work 

quantitatively using LOC and cyclomatic complexity metrics, showing that a developer would have to write 

many fewer lines of code when using Umple than when programming directly in C++. 

1 INTRODUCTION 

Many of the existing programming languages tend to 
be limited in how to handle concurrency easily, and 
hence require additional third-party libraries. Even 
though some languages such as C++, support 
concurrency, they tend to have challenges related to 
different compiler vendors, standards, and thread 
APIs for operating systems and embedded devices. 

Concurrency results in abstract patterns of 
interactions, which seem best handled by integrating 
it with model objects, and also with the syntax of 
programming languages. The most elemental such 
patterns are synchronous and asynchronous method 
invocation.  

Prior to the work reported in this paper, Umple 
(Orabi, Orabi, and Lethbridge, 2016) supported 
concurrency in three forms, basic active objects, do 
activities, and queued state machines (QSM) 
(Alghamdi, 2010). Active objects and do activities 
spawn threads, separate from their owning class's 
thread, to execute some action code. An active object 
is activated from its class constructor, while a do 
activity is activated while in a state machine state. A 
QSM has a separate threat to enqueue events from the 
thread that processes events. 

The prior version of Umple omitted asynchronous 
method invocation and time constructs such as delay, 
polling, and timeout.  

In this paper, we describe how we extend 
concurrency in Umple to support 1) data isolation, 2) 
thread communication through asynchronous 
messages, 3) processing each task one at a time to 
satisfy run-to-completion semantics, eliminating 
concurrency issues, and 4) a generic approach that 
covers operations, state machine events, and actions. 

We refer to our extensions as the active features, 
as they are derived from the active object pattern 
(Lavender and Schmidt, 1996), which enforces 
concurrency best practices.  

We distinguish between active and passive (Ober 
and Stan, 1999) in terms of their capabilities to 
execute in their own thread, and to initiate a control 
activity, such that each method is executed internally 
and sequentially. An active Umple class means that 
the class must have at least one active method. 

In Umple, development can be performed at 
different levels, model or action code. At the model 
level, the users write their model in Umple syntax, 
while in the action code, the users write the code in a 
selected target language. Languages that Umple 
supports include Java, C++, and PHP. In this paper, 
our target language is C++.  

We will highlight the possible levels at which 
active can be applied, such as methods and action 
code. After that, we will discuss the basic flow of 
active objects, which consists of several actors such 
as proxies, messages, and schedulers. 
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Our contributions related to concurrency can be 
summarized as follows: 

• The implementation of the features related to 

concurrency in Umple, including code 

generation for real-time applications. 

• Introducing an active object pattern that extends 

the one introduced by Lavender (Klein, Lu, and 

Netzer, 2003; Lavender and Schmidt, 1996). Our 

pattern aims to enhance communication among 

active objects as in the points below. 

• Simplifying active features at the action code 

level such as future (Cplusplus.com, 2016), and 

other time constructs, using simple Umple 

keywords.  

• Easy handling of complex time constraints 

related to asynchronous and synchronous method 

invocation, using simple Umple keywords.  

• Introducing a new pattern, call/resolve/then to 

ease invocation strategies, callbacks, data 

resolution, and error handling. 
There is an extensive literature about Umple 

(Badreddin, Forward, and Lethbridge, 2014; 
Badreddin, Lethbridge, and Forward, 2014; 
Lethbridge, Abdelzad, Husseini Orabi, Husseini 
Orabi, and Adesina, 2016; Orabi et al., 2016), but for 
readers not familiar with it, the following is a very 
brief summary: It is toolkit comprising a) A textual 
syntax based on UML that can be incorporated into 
target language code or vice-versa; b) a compiler that 
generates code for modelling constructs; c) a 
diagram-generator for UML and other diagrams; and 
d) a model analysis engine. It can be run in Eclipse, 
on the command line and on the web. 

2 ACTIVE FEATURES IN UMPLE 

We implement active features at three levels, the 
Umple construct, the concurrency model, and the 
code generated in the target language. An Umple 
construct is a semantic and syntactic extension of 
Umple that refers to behavior, introduces new 
keywords, and specifies how they can be used. We 
discuss each construct by way of scenarios with 
excerpts from the code generated in C++. 

A concurrency model refers to the model used to 
handle concurrency among operations in terms of 
communication and synchronization. Concurrency 
models can be contrasted based on their behavior 
patterns and mechanisms applied for inter-process 
communication such as shared-state or message 
passing. Examples of concurrency models include 
actor model (AM) (Sutter and Larus, 2005) and active 
object (AO). The differences between both models 
are indicated in (Rouvinez and Sobe, 2014). 

We base our work on the active object model as it 
1) decouples method execution from invocation, 2) 
enables invocation using a function call interface or 
delegate (Microsoft.com, 2015), 3) assures data 
isolation between the caller and receiver, and 4) 
employs various message-passing mechanisms.  

The classic active object pattern typically 
involves the following elements, 1) interface: defines 
accessible methods; commonly known as active 
methods or public interface methods, 2) client: 
implements the interface, 3) proxy: another simple 
object internal to the client that the client invokes to 
access other methods of the system in a thread-safe 
manner, 4) request: invoked by a client to a proxy, 5) 
scheduler: organizes how requests execute, 6) 
response: has different forms such as callbacks, 
variables, and future objects. 

Typically, the active object pattern employs a 
simple FIFO queue with serial execution of the 
pending requests in the queue. This means that 
complicated scenarios such as prioritized queues or 
quasi-concurrency models are not considered. We 
will show in this paper how we have managed to 
overcome such limitations. Our work hence extends 
the classic active object pattern in that a) there is a 
more sophisticated internal scheduler mechanism; b) 
there is a more sophisticated form of internal 
concurrency; c) there is a prioritized FIFO queue; and 
d) time constraints are allowed to permit deferred or 
periodic calls. 

3 STRUCTURE 

The active keyword is used to declare active methods 
(Snippet 1 - Line 2). An active method has the same 
constraints as regular methods such as having a 
unique name, return type, and signature. Once a class 
has at least one active method, it will be considered 
as an active class.  

The main components of our active object pattern 
include active object, public interface, message, 
scheduler, multicast delegate, and future object. 

We use template meta-programming (TMP) and 
the curiously recurring template pattern (CRTP) to 
enable reusability through traits and mixins 
(Smaragdakis and Batory, 2000). This approach 
allows to generically define active features, determine 
the traits needed, and attach traits to a method 
callback (delegate) within a class object. A delegate 
or alternatively a function pointer is a variable used 
to invoke a callback method (Rahman, 2013). It can 
be either unicast or multicast, based on the number of 
callbacks to be dispatched. 

We use variadic template, a template with 
variable arguments, to make asynchronous function 
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call parameters matching the exact number of original 
delegate method parameters. Therefore, it will be in 
sense similar to invoking the original method, but it 
will instead defer the execution to the active object.  

An active method is invoked in a similar manner 
to regular methods (Snippet 3 - Line 8). 

In terms of code generation, we rely on the Active 
API (Table 1 and Table 2), which we implemented as 
a part of this paper. An Active instance receives two 
parameters, the class to which an active object belongs 
and the return type of that active object, in addition to 
the types of the parameters defined in the active 
method (Snippet 1 – Lines 2 and 3). The additional 
parameters are String and Integer in this case. 

1 

2 

3 

4 

5 

6 

7 

class ActiveMethodDeclaration { Umple 

  String active activeMethodExample (String  

              param1, Integer param2) { 

      return "This is an active method:"+ param1         

           <<","<< param2; 

  } 

} 

Snippet 1: A simple active method declaration. 
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//This portion is the public interface from the  C++ 

ActiveMethodDeclaration.h file 

Active<ActiveMethodDeclaration, string, string, int>  

               activeMethodExample; 

Scheduler _internalScheduler; 

 

//This portion is a constructor from the 

ActiveMethodDeclaration.cpp file 

ActiveMethodDeclaration::ActiveMethodDeclaration()   

 : activeMethodExample(this, and_internalScheduler,  

 andActiveMethodDeclaration::_activeMethodExample)

  

} 

..... 

string _activeMethodExample(string param1){ 

    return "This is an active method:"+ param1 << ","  

      << param2; 

} 

Snippet 2: Portions of the generated code for Snippet 1. 

The name of the Active instance is the same as the 
active method defined in the Umple model (Snippet 
1- Line 2). The content of the active method is placed 
in a private method in the generated code, and its 
name is prefixed with an underscore (Snippet 2 – Line 
15). The Active instance refers to this private method 
(Snippet 2 - Line 11).  

The Scheduler API is used to handle the execution 
queue of active methods based on their order of 
invocation and priorities. When an active object 
exists in a class, we generate an internal Scheduler 
(Snippet 2 - Line 5) that will be used by all Active 
instances (Line 10 for instance) 

An active method without a return type will be 
assumed void. If an active method does not have 

parameters, a user will not need to worry about 
bureaucratically passing empty parentheses. 

3.1 Public Interfaces 

We use an Active template-based class to define 
public interface methods to decouple method 
invocation from execution (Klein et al., 2003; 
Lavender and Schmidt, 1996). We employ delegate 
and TMP to preprocess a public interface function to 
have the same signature of a delegated method, in 
addition to defaulted additional arguments such as 
priority and delay. Snippet 3 is a basic example to 
define an active method. 
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class Test { Umple 

     int active call (int val1, int val2) { 

          return val1*val2; 

     }               

     public static void main(int argc, char * argv[]) { 

          Test test;           

          FutureResult<int> mul = test.call(2,2); 

     } 

} 

Snippet 3: Basic active objects in Umple. 

We have two internal types of public interface 
methods, active and async, for each of which we gene-
rate API to handle certain time constructs (Table 1). 

They differ based on their ability to spawn a 
thread; in particular, async has its own concurrent 
thread, similar to the behaviour of a do activity. Async 
is mainly used with repetition or periodic constructs.  

Table 1: Basic APIs of time constructs.  

p1, p2… pn refers to a dynamic parameters; i.e 0 to * 

API Example 

Active methodCall(p1, p2, ..., pn, priority, delay, 

timeout) 

AsyncMethod methodCall (p1, p2, ..., pn, priority, 

period, delay, timeout) 

Active and Async extend the original methods, such 
that additional parameters are added to handle time 
constructs (Table 2); the default parameter values are 
zero. The methods that require asynchronous execution 
rely on the async Method, while those that do not 
require it rely on the Active (Table 2). Both Active and 
Async rely on the Scheduler API. 

It is important to mention that in Umple, for 
language usability purposes, we allow developers to 
define their main functions in a way similar to Java 
(Snippet 3 - Line 6). 
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class Test { C++ 

     .... 

public: 

    Test (): 
        call(this,and_internalScheduler, andTest:: 

callImpl){} 

       Active< Test , int, int, int> call; 

 

protected: 

          int_call(int val1, int val2) { 

                    returnval1 * val2; 

          } 

private: 

          Scheduler _internalScheduler; 

               .... 

          }; 

     .... 

int main(int argc, char * argv[]) { 

          Test test;           

          FutureResult<int> mul = test.call(2,2); 

     } 

} 

Snippet 4: An example of generated code of an active 

object. 

Table 2: Time-based constructs.  

The possible scopes are action code and model. 

Constructs Description API Scope 

Priority 

Sets a priority to 

determine the order 

of invocation in a 

queue 

Both Action 

code 

Timeout 

Sets the maximum 

waiting time for a 

task to be completed. 

Both Both 

Delay 
Causes intentional 

delay 

Both Both 

Period 

Determines the 

polling time for 

rechecking a method 

Async Both 

In Snippet 4, the generated code for Snippet 3, 
Line 9 defines a delegate to a function that has two 
parameters of the type int, and its return type is also 
int. The initialization of an active method takes place 
in the constructor Line 5, which specifies a callback 
method and an active object scheduler. There will be 
no difference in method execution, except that it 
returns a future response of class FutureResult. 
FutureResult can be considered as a proxy that 
communicates with the active object, and holds the 
response containing the result, status, and errors. We 
discuss more about this in the next section. 

In generated Umple code, we follow the same 
structure shown in Snippet 4. In Line 6, a public 
method is created for the active method call. The 

implementation of the call is defined in an internal 
method _call as in Line 9. The visibility of call is 
protected instead of private in order to give the ability 
for subclasses to use or inherit it. Therefore, call acts 
as a public interface or client, while _call acts as a 
servant. There is no need to use history variables or 
other mechanism to handle inheritance anomalies.  

3.2 Future 

Future is a shared-object proxy that provides a 
channel between clients and active objects. It 
provides wait-set functionality (such as wait, notify 
and wait for a specific time) and a set of functions to 
inquire about an asynchronous response of an active 
method containing availability, content and/or errors. 
Future in Umple is an instance of FutureResult. 
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class Test { Umple 

     int active call (int intValue) { 

          return intValue*2; 

     } 

     public int main(int argc,  char* argv[]) { 

          Test test; 

          FutureResult<int> result =  

                 test.call(1, 10); 

          result.wait(9000); 

          assert(result.ready()); 

          cout<<result.data(); 

     } 

} 

Snippet 5: Wait-set example. 

Table 3: Status types of active object execution. 

Status Description 

Pending Not yet processed or activated due to 

queue requirements such as its order 

and priority in the queue. 

Waiting Processed and ready for execution in 

a queue. 

Deferred Postponed from being executed for 

not satisfying guard constraints, and 

added to deferred list to be recalled 

when constraints satisfied. 

Done Executed and completed without 

errors. 

Error Completed with errors. 

FutureResult shows a simple use of the wait-set 
functions (Snippet 5 - Lines 9-11). There is one active 
method with a single int parameter (Line 2), and it is 
invoked once (Line 7). There are other optional 
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parameters (with values 1 and 10 in this example) 
referring to priority and delay (Line 8). The wait 
function has an optional argument to specify the 
expected waiting time (Line 9), otherwise it will 
throw a timeout exception. Each method returns a 
response describing a status (Line 11). 

Table 3 shows the possible statuses, each of which 
is wrapped in an instance of FutureResult. 

FutureResult has error- and data-resolving 
functions. They can be used to throw exceptions such 
as timeout.  

3.3 Scheduler 

Scheduler handles mutual exclusion among queues 
and message requests. The process of message 
queuing may delay some tasks, even if trivial, such as 
read or status check tasks. For example, when there is 
a method request to update a value, it will put a mutex 
on some variables.  

There are three common mechanism to 
implement the internal concurrency of an AO. These 
are serial, quasi-concurrent, and full-concurrent 
(Fuks, Ostroff, and Paige, 2004; Meyer, 1993; 
Wegner, 1990). Serial or sequential creates only one 
thread, which uses a first-in-first-out (FIFO) queue to 
process messages and executes only one message at a 
time while other messages wait in a queue. Quasi-
concurrent extends serial to have an auxiliary queue 
to enable simultaneous message processing, but only 
one message can be in execution state at a time.  

Full-concurrent takes a different direction by 
creating multiple threads and enabling simultaneous 
message executions. However, there will be a need to 
control message execution, by guarding the shared-
state and using wait-set features to pause and resume 
threads. Also, the messages need to be separated into 
different independent containers to guarantee 
message order and run-to-complete semantics.  

We extend quasi-concurrent to have three 
priority-based double-ended queues: requests, 
pending, and deferred executions. A scheduler can be 
linked with a spawned thread such as an async 
method to control concurrency of the owning objects. 

3.4 Messages 

Message refers to invocation information, which 
contains the method delegate and arguments passed. 
We extend the message to include optional 
information, such as priority, delay, and guards.  

A guard is an anonymous function with a Boolean 
operator that checks satisfiability.  It is mainly used 
by the scheduler to make a decision to filter, execute, 
or defer. A defer decision adds a message to a 

deferred list of messages, such that deferred messages 
of higher priorities are executed first.  

3.5 Time Constraints 

Table 2 shows the set of time constraints we 
introduced into Umple. In an active method, a time 
constraint can be set at the operation level, action 
code level, or both of them. The operation level refers 
to the active method definition, while the action code 
level refers to the user code written in that active 
method body.  

Typically, action code of an active method is 
executed sequentially within its owning active 
object's thread. Nevertheless, some specialized 
Umple time constructs can be used to enable 
asynchronous execution, such that it will need to 
spawn a thread to run concurrently; refer to period in 
the API column, in Table 2. 

4 METHOD INVOCATION 

In this section, we discuss the features we 
implemented to improve writing the action code of an 
active method.  

Writing action code in the target language may 
have limitations. For instance, the C++ 03 standard 
does not provide an easy way to define anonymous 
functions. At the model level, we need to have a way 
to regulate the process of handling error exceptions or 
then calls.  

Although the content of an active method runs in 
a separate thread, this may still have some limitations. 
For instance, within the action code of the same active 
method, we may find it important to invoke other 
methods, which could be regular methods. 

In terms of the code generation, an Active instance 
will be created to wrap the regular method within 
active execution.  

The trigger operator, "/" is used to invoke a 
method, either active or nonactive, or an anonymous 
body. It is used to enforce active behaviour on a 
method even if it is not defined active. For instance, 
the call in (Snippet 6 - Line 8) will have its own 
thread, while the call in (Line 9) will not. 

Trigger can be used to embed and call anonymous 
functions (Snippet 6 - Lines 13-15). In the generated 
code, we create a new method that has the content of 
the anonymous function. We make sure that this 
anonymous method has a unique name derived from 
the active method name and nonactive method being 
invoked, augmented with an integer to distinguish 
each case.  

The call/then pattern is similar to the try/finally 
pattern that exists in common programming 
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languages such as C++ and Java, but it differs in that 
it works asynchronously. Simply, we wrap method 
invocation within an anonymous body (Snippet 6 - 
Lines 19-31). We can directly write code (Lines 19 
and 23), or invoke other methods (Line 26). The code 
generated will make a call to the then body (Lines 22 
and 28) after the call body (Lines 20 and 26).   

The call/then/resolve pattern is used to handle 
exceptions, such that the resolve body is only invoked 
upon exceptions (Snippet 6 – Lines 30 and 40). 
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class MethodInvocation{ Umple 

   void regularMethod(){ 

       cout << "A regular method but can  

             be invoked actively"; 

   } 

 

   void active regularInvocation(){ 

       /regularMethod(); 

       regularMethod(); 

   } 

 

   void active annomousMethod(){ 

 /{ 

     cout << "Anonymous body" ; 

 } 

   } 

 

   void active thenMethod(){ 

      /{ 

         cout <<"Call body" ; 

      }.then({ 

         cout <<"Then body"; 

      }) 

 

/{ 

         this-> regularInvocation(); 

}.then({ 

   cout <<"Then body"; 

      }).resolve({ 

          cout << "Handle Exception"; 

}) 

   } 

 

   void active deferredTest(){ 

       [/{cout << " Anonymous";}, 

        /{this->regularInvocation ();} 

        ].then({ 

            cout << " Then body"; 

         }).resolve({ 

             cout << "Handle Exception"; 

  }) 

    } 

} 

Snippet 6: Method invocations. 

Deferred list is a way to combine multiple resolve 
bodies in a single call (Snippet 6 – Lines 35-36). After 

the execution of a deferred list, the then or resolve 
bodies are invoked one time (Lines 38 and 40). 

5 CONSTRAINTS 

Constraints, either logical or time, are used to guard 
active method from being invoked unless they are 
satisfied. These constraints can be applied on 
scheduler (Table 2), method (Snippet 7 - Line 10), or 
action code (Line 5) level.  

Table 2 shows the list of time constructs that can 
be applied upon method or action code invocation. A 
simple example of using the period keyword is shown 
in Snippet 7- Lines 10-13. 
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class LogicalConstraintsTest{ Umple 

   Boolean flag= false; 

 

   void active activeMethod{ 

       [flag==true]/{ 

         cout <<"Execute only if Flag is true" ; 

      } 

   } 

 

  [period(1000)] 

   void active periodMethod(){ 

   cout <<"Called each one second"; 

   } 

Snippet 7: Constraints. 

6 EVALUATION 

We evaluate our work, qualitatively and 
quantitatively. In our qualitative evaluation, we 
compare our work against relevant specifications.  

In our quantitative evaluation, we evaluate a set 
of snippets for different variation of concurrency 
using Umple. 

6.1 Qualitative Evaluation 

In this section, we show a comparison (Table 4) of 
our approach against two common specifications, 
UML (OMG, 2011a) and Modelling and Analysis of 
Real Time and Embedded systems (MARTE) (OMG, 
2011b), which both are used to manage time. We aim 
in this comparison to show how our implementation 
of concurrency and active objects can cover the core 
requirements specified in those specifications. 

MARTE is an OMG standard for embedded 
applications and real-time modelling (OMG, 2011b); 
it is aligned with UML specifications. 

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

580



MARTE extends UML in order to have better 
handling for embedded systems. 

Table 4: A comparison of time management specification. 

 UML MARTE Umple 

Timing model SimpleTime Time Package 
Language 

constructs 

Time constraints OCL 

Logical and 

physical 

constraints 

Logical and 

physical OCL 

constraints 

Time units and 

other accessible 

variables 

Time expressions 

Limited 

(timing 

diagrams) 

Conditional 

assertions and 

Jitters 

Supported on 

end-to-end flows 

and action code 

Synchronization 

Limited 

(sequence and 

activity 

diagrams) 

Supported 

(TimedConstrai

nt) 

Language 

constructs 

E
v

en
t 

m
an

ag
em

en
t 

Repetition 

Limited 

TimedConstraint 

Poll 

Reaction call/then/resolve 

Delay Delay 

Periodic Timeout, period, 

and priority 

Other 

Burst, 

aperiodic, 

sporadic, time 

intervals, and 

workload 

generator 

Delay, guards, 

and constraints 

Scheduling 

Sequence and 

activity 

diagrams 

End-to-end 

flows 

End-to-end flows 

Support other 

behavior Umple 

models. 

Active blocks 

Composition 

Interfaces 

(provides and 

requires) 

Runnable 

entities, takes, 

operation 

Interfaces 

(provides and 

requires ) 

Interfaces 

(Provides and 

Requires ) 

 Support 

composition 

rules through 

active invoke 

blocks. 

Synchronization 

semantics 
RTC 

Depends on 
synchronization 

(read/write) 

events 

Depends on 

synchronization 

(read/write) 

events and the 

precedence of 

their logical 

relationship 

Supports RTC 

Supports the four 

types of 

communication 

Trigger 

Classes and 

state 

machines 

Trigger 

Trigger Blocks 

Call/'then/resolve 

patterns 

In Table 4, there are two levels of comparison, 
operating systems and modelling levels. The 
comparison criteria at the operating system level are 
timing extensions, activation events, and scheduling. 
The comparison criteria at the modelling level are 
composition, synchronization semantics, and trigger. 

The timing extension criterion consists of 
subcriteria: timing models, time constraints, time 
expressions, and synchronization. By a timing model, 
we refer to how timing is handled in the given 
technology. In UML, the root package used to handle 
time is SimpleTime (OMG, 2011a).  

In terms of the timing model for MARTE, 
temporal properties are handled using the "Time" 
package (Mallet, 2008); this package is often used 
with a non-normative annex of MARTE, Clock 
Constraint Specification Language (CCSL). On the 
other hand, timing in Umple is handled directly using 
Umple constructs. 

In terms of time constraints, UML uses Object 
Constraint Language (OCL) (Gherbi and Khendek, 
2006). 

In MARTE, there are physical and logical 
constraints. Both are handled using a clock model, 
which is handled at the model level, mainly using the 
CCSL mentioned above. In Umple, we follow OCL 
semantics when defining physical or logical 
constraints (Section 5). 

By time expressions, we refer to constructs 
provided by a language or specification to create time 
expressions; e.g. to define time constraints. Time 
expressions are limited in UML, but a specialized 
type of sequence diagrams, a timing diagram is used 
to handle time constraints and expressions (Gherbi 
and Khendek, 2006).  

MARTE provides a direct way to define several 
time expressions such as conditional assertions and 
jitter. 

We showed before that we have three levels to 
handle time expressions, task, queue, and scheduler 
levels; constructs used to define time expressions 
were summarized in Section 5.  
 

In Umple, the constructs provided to handle 
constraints and time are used to support end-to-end 
flow. 

Synchronization refers to a way used to enforce 
timing requirements and data flow among channels 
and events. Examples of synchronization include 
defining a maximum data rate between input and 
output events, maximum and minimum jitter, time 
interval, and absolute and relative duration. An 
absolute duration refers to hard real-time 
requirements, which do not accept any sort of delay. 
A relative duration refers to soft requirements, which 
accept delays using concepts such as jitter and 
latency. Latency refers to amount of time taken for 

Concurrent Programming using Umple

581



transmission between source and target; e.g. 
response. Jitter varies over time, since it refers to the 
variation of latency over time, such as in 
milliseconds. Stable connections have less jitter (S. 
Rappaport, 2001). 

Synchronization can be either enforced on input 
or output events. Output synchronization is supported 
by all items in our comparison. In UML, 
synchronization is handled via activity and sequence 
diagrams. 

In MARTE, the package TimedConstraint 
handles both input and output synchronization. In 
Umple, we handle synchronization using time 
constructs and the call/then pattern (Sections 4 and 5). 

Event management is the way method invocation 
is handled. Method invocation is temporal and event-
oriented so we prefer to refer to the whole process as 
event management. The subcriteria of our comparison 
include repetition, reaction, delay, periodic, and 
other.  

Repetition means making the same calls or 
invocation several times over a period. However, a 
repetition rate does not necessarily refer to a repeated 
sequence of events; it also refers to receiving events 
from different places such as ports, at the same time. 
In such a case, the appropriate guards and logical 
conditions must be applied in order to ensure data 
acceptance. 

A clock port is a good example to describe 
handling repetition rates. For example, every two 
seconds a port can receive multiple signals at the 
same time. In such a case, the port must provide a way 
to recognize these signals incoming from different 
places, and properly process them in the right 
sequence based on the logical and physical 
constraints. 

Reaction is self-explanatory as it refers to the 
reaction to events or method invocation; this reaction 
can also involve sending new signals or making new 
method invocations. Predefined constraints or guards 
are important to manage reactions. 

Delay refers to how to handle delays that are 
either unintentional or intentional. By intentional 
delay, we mean that a developer intentionally wants a 
delay to occur. Unintentional delay refers to delays 
that occur because of unexpected circumstances such 
as networking; examples of handling related to this 
context include jitter, latency, and timeout. Periodic 
refers to the appropriate ways used to handle delays 
and repetitions such as jitter and latency. By other, we 
refer to any other general terms or additional 
keywords provided by specifications. 

UML does not provide a direct way to handle the 
abovementioned concepts of event management. A 
developer will need to implement their event 
management mechanisms manually. For example, 
they will need to implement a clock port manually. 

Event signals are done using diagrams such as state 
machine, sequence, and composite structure. 
Concepts such as repetition will be done manually 
such as using for loops. 

In MARTE, a base class, TimedConstraint is used 
to handle event management. MARTE provides 
several options to manage events such as burst, 
aperiodic, sporadic, time intervals, and workload 
generator.  

In Umple, we support event management using 
time and logical constraints at different levels: model, 
scheduler, and action code (Section 5). In terms of 
reactions, we rely on the call/resolve/then patterns 
(Section 4). Generally, we rely on OCL constructs to 
build guard conditions. 

Scheduling refers to the way that events are 
scheduled for a period. Scheduling is important to 
handle timing constraints. In UML, sequence and 
activity diagrams can be used to handle the sequence 
of events. Concepts such as join and fork can be used 
to enable creation or merging of multiple paths of 
execution.  

On the other hand, MARTE has end-to-end flows 
to handle scheduling. An end-to-end flow enables 
method invocation from different places or diagrams 
according to a sequence. A sequence in this context 
means what method(s) to be invoked next upon 
method execution. As well, MARTE uses the fork 
and join constructs. 

Similarly, in Umple, we support end-to-end 
flows. For instance, we can invoke a state machine 
method from an active method. Joining and forking 
are also supported in Umple. For example, we can 
define multiple code blocks in an active method 
(Section 4), or multiple regions in a state machine. 

At the modelling level, we focus in our 
comparison on the context of platform, analysis, 
resources, and workflow behaviour. This is summed 
up to three comparison items, composition, 
synchronization semantics, and trigger. Generally, 
composition is handled using composite structure 
diagrams. All items in our comparison rely on 
interfaces, mainly as provide or require ports. 

Umple supports communication via R-Ports and 
P-Ports (Orabi et al., 2016) as chains of events. The 
common ports used in MARTE include FlowPort and 
MessagePort (Espinoza, Gérard, Lönn, and Kolagari, 
2009). Additionally in Umple, developers are able 
define composition rules such as constraints and 
guards. 

Synchronization semantics refers to the semantics 
followed for synchronization processes; we 
mentioned earlier in this section what we mean by 
synchronization. In UML, the default semantics is 
run-to-completion (RTC), since active objects are not 
a part of the UML constructs. For example, direct 
calls for state machines will have RTC behaviour. 
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In MARTE, synchronization depends on 
notifications occurring from read and/or write 
operations. Such operations require using an 
appropriate locking mechanism. 

We support all types of semantics including RTC, 
since we support the four types of communication. 
For example, we can invoke state machine methods 
via asynchronous methods. This is mainly because in 
Umple, semantics can be written directly at the code 
level. As well, synchronization can be applied on 
events, which can be aligned in a prioritized queue. 

A trigger is a well-known concept that refers to a 
method or procedure to be invoked upon a condition 
or event. In UML, triggers are defined at the level of 
classes and state machines (Kaneiwa and Satoh, 
2010).  

In MARTE, triggers are defined as "Trigger" 
objects. Triggers in Umple can be defined using 
call/'then/resolve patterns or state machines. A trigger 
in Umple is indicated using the ‘/’ operator as well as 
the call/then/resolve pattern. 

6.2 Quantitative Evaluation 

In this section, we evaluate aspects of our work based 
on measuring software complexity. 

We calculate McCabe Cyclomatic Complexity at 
the model level based on the Boolean constraints 
defined, such that each constraint has a weight of two; 
i.e. two constraints defined will be valued 4. We 
calculate the complexity ratio as 100 −
 (𝑈𝑚𝑝𝑙𝑒 𝑀𝑐𝑎𝑏𝑒/𝑀𝑐𝐶𝑎𝑏𝑒) × 100. This corresponds 
to the percent reduction of complexity when writing 
in Umple, as opposed to the generated C++ code. We 
computed Cyclomatic Complexity using the 
LocMetrics tool (http://www.locmetrics.com/).  

The code generated by Umple provides additional 
lightweight libraries to support multi-threading, 
distributing, and serialization. We exclude this code 
to avoid bias: In other words, code that would be 
written by developers in Umple is compared against 
code that would need to be written by developers in 
C++ if Umple was not available. 

 

Figure 1: LOC comparison. 

In Figure 1, there is a high statistical significant 
(𝑝 <  0.0001 and 𝑡 =  22.098) reduction in lines of 
code between Umple models and their generated C++ 
code. This reduction averages 222 LOC and 90.9% 
difference and is roughly constant, hence independent 
of model size.  

Figure 2 shows the reduction in percentage for 
various Umple models that exercise the Umple 
constructs. More details about the Umple models 
used in our evaluation are in (Orabi, 2017). 

 

Figure 2: LOC comparison by percentage. 

The cyclomatic complexity reduction averages 
about 67.45%. Figure 3 shows doughnut graph for 
cyclomatic difference between C++ and Umple.  

 

Figure 3: Cyclomatic Complexity doughnut. 

A threat to validity of this analysis is that the C++ 
code written by a developer might be rather different 
from that generated by Umple. It may be possible for 
a developer to leave out some parts, or find other 
ways to make the C++ more compact. However, we 
suggest that writing such compact C++ might in fact 
make it more obfuscated, and hence add even more to 
complexity. 
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7 CONCLUSIONS 

In this paper, we showed how Umple provides major 
features required for concurrent programming. The 
focus was on showing how active object development 
in Umple will be simplified such that a user will not 
need to worry about all of its challenges and 
implementation details.  

Concurrent programming in Umple is supported 
at the model level meaning that concurrency will be 
consequently enforced at the generated code level. 
We showed how concurrency definition and 
implementation in Umple could easily help a 
developer to optimize performance of their 
applications 

Using simple Umple constructs, a user is able to 
define their time constraints.  We evaluated our work 
on two bases, qualitative and quantitative. In the 
qualitative evaluation, we showed a comparison 
between standards (UML and MARTE) used for time 
management, and Umple. The essence behind our 
comparison was to show how Umple can meet time 
requirements specified in these common standards. 
For quantitative evaluation, we showed a comparison, 
based on LOC and cyclomatic complexity, between 
Umple models and their generated code in C++, 
based on which we showed significant statistical 
difference.  

For future work, we will highlight the 
communication among active objects in a distributed 
environment. This requires the implementation of 
concepts such as ports and composite structure. 
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