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Abstract: The detection of code smells is a fundamental prerequisite for guiding the subsequent steps in the refactoring
process. The more the detection results are accurate, the more the performance of the refactoring on the
software is improved. Given its influential role in the software maintenance, this challenging research topic
has so far attracted an increasing interest. However, the lack of consensus about the definition of code smells in
the literature has led to a considerable diversity of the existing results. To reduce the confusion associated with
this lack of consensus, there is a real need to achieve a deep and consistent representation of the code smells.
Recently, the advance of deep learning has demonstrated an undeniable contribution in many research fields
including the pattern recognition issues. In this paper, wepropose a hybrid detection approach based on deep
Auto-encoder and Artificial Neural Network algorithms. Four code smells (God Class, Data Class, Feature
Envy and Long Method) are the focus of our experiment on four adopted datasets that are extracted from
74 open source systems. The values of recall and precision measurements have demonstrated high accuracy
results.

1 INTRODUCTION

Due to the ever-increasing software complexity, the
maintenance has become arduous, time-consuming
and hence more costly. More than two-third of the
total project budget is dedicated to the maintenance
activities, mainly because of the continuous changes
(Erlikh, 2000; April and Abran, 2012). Very often,
these changes could be improperly treated by devel-
opers who may, unwittingly, commit violations of
software design principles. In such case, possible
design problems may appear in the software. These
problems are known in the literature as code smells or
by other designations like anti-patterns (Brown et al.,
1998), anomalies, bad smells, design flaws, design
defects, etc. According to (Fowler et al., 1999), a code
smell is defined as ’a surface indication that usually
corresponds to a deeper problem in the system’.

Many research studies have empirically investi-
gated the impact of code smells on the software qual-
ity (Khomh et al., 2012; Soh et al., 2016). They
have pointed out that the code smells make the soft-
ware more fault-prone and difficult to maintain, which
subsequently leads to the deterioration of its qual-
ity. In order to mitigate the problems caused by
the code smells, a refactoring process should be fol-
lowed (Fowler et al., 1999). By definition, refac-
toring is a popular maintenance activity, devoted to

enhance the software quality with economical costs
(Mens and Tourwe, 2004). It reconstructs the inter-
nal software structure without affecting its external
behaviour (Fowler et al., 1999). According to (Mens
and Tourwe, 2004), the refactoring process consists of
three consecutive steps: (i) detection of code smells,
(ii) identification of the adequate refactoring opera-
tions and (iii) evaluation of the preservation of the
software quality.

The earlier the code smells are detected, the less
will be the cost of refactoring and the better the soft-
ware quality will be. Therefore, the detection step
plays a decisive role in improving the results of the
other steps and thereby on the performance of the
software refactoring. As a result, several approaches
have been proposed to deal with this research topic by
using different techniques. However, the lack of con-
sensus regarding the definition of code smells in re-
search studies results in great difficulties in interpret-
ing or making meaningful comparisons of detection
results. This was explicitly stated by (Mäntylä and
Lassenius, 2006), who confirmed that the conflicting
perceptions of developers conduct to subjective code
smell interpretations, which in turn lead to the vari-
ances in the performance evaluation. In this context,
the use of machine learning techniques has been con-
sidered as a suitable way to deal with the confusion
surrounding this lack of consensus. On the one hand,
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it can provide additional objectivity to face this issue
by reducing the developers’ subjective cognitive in-
terpretations (Arcelli Fontana et al., 2016). On the
other hand, it proves more efficiency when dealing
with large-scale systems and more ability to interact
with newly acquired data.

Recently, deep learning (LeCun et al., 2015), an
emerging branch of machine learning, has spread
widely over many research fields including the pat-
tern recognition issues. The architectures of deep
learning techniques are based on multilayer neural
networks that are intended to effectively model high-
dimensional data. According to (Bengio et al., 2013),
the deep learning algorithms aim to provide multi-
ple levels of abstraction of the data ranging from low
to high levels. They are different from conventional
machine learning techniques that are built on shallow
structure.

In this paper, we propose a hybrid learning ap-
proach to detect four object-oriented code smells. Our
approach consists of an unsupervised learning phase
followed by a supervised learning phase. In the first
phase, we perform a dimensionality reduction of the
input feature space by using a deep auto-encoder
(Hinton and Salakhutdinov, 2006) that extracts the
most relevant features. The output of this phase is
a reduced representation of newly extracted features
that is used as a basis for the supervised classification
in the second phase. The selected algorithm for this
task is the Artificial Neural Networks (ANN) classi-
fier.

In our study, the four selected code smells are God
Class, Data Class, Feature Envy and Long Method.
The two first ones belong to the class-level and the
two latter ones belong to the method-level. Accord-
ing to (Fowler et al., 1999), their corresponding defi-
nitions are as follows:

• God Class is a large class that dominates a great
part of the main system behaviour by implement-
ing almost all the system functionalities. It is dis-
tinguished by its complexity and by encompass-
ing a high number of instance variables and meth-
ods.

• Data Class is a class that is merely composed of
data without complex functionalities. This class
is free of responsibility; it is designated to be ma-
nipulated by other classes.

• Feature Envy is a method-level smell character-
ized by its excessive use of variables and/or oper-
ations belonging to other classes more than using
its own ones. Thus, this method tends to make so
many calls to use the data of the other classes.

• Long Method refers to a large method in terms of

its size, which dominates the implementation of
several functionalities.

To evaluate the performance of our approach, we
conducted our experiments on four adopted datasets
(Arcelli Fontana et al., 2016) that are generated from
74 open source systems. Furthermore, to evaluate the
effectiveness of our approach, we conduct a compari-
son between our hybrid detection method and the ba-
sic classifier. The reported experimental results un-
derline the importance of reducing the dimensionality
in improving the accuracy of the detection.

In summary, the main contributions of this paper
are two-fold:

• We propose the first hybrid detection approach
based on combining two learning techniques
(deep auto-encoder and ANN) for the detection of
code smells.

• We show that the detection performance can be
significantly improved when exploiting a reduced
number of extracted features by means of a deep
learning algorithm.

The rest of this paper is organized as follows.
Section 2 overviews the related work dealing specif-
ically with the machine learning-based detection ap-
proaches. Section 3 describes the proposed approach.
The experimental setup and results are described in
Section 4. Section 5 discusses the threats to validity
of our study. Finally, Section 6 concludes the paper
and outlines future work.

2 RELATED WORK

Several approaches have been proposed to detect code
smells. Based on the used techniques, we divide
these approaches into five broad categories: rule-
based (Moha et al., 2010a), search-based (Sahin et al.,
2014), visualization-based (Murphy-Hill and Black,
2010), logic-based (Stoianov and Şora, 2010) and
machine learning-based approaches (Kreimer, 2005;
Hassaine et al., 2010; Oliveto et al., 2010; Khomh
et al., 2011; Maiga et al., 2012a; Fu and Shen, 2015;
Palomba et al., 2015; Arcelli Fontana et al., 2016).

Since our approach belongs to the latter category,
we focus the related work only on the approaches
falling in the partially or fully machine learning-
based.

(Kreimer, 2005) proposed a detection approach
based on decision trees. The selected technique was
applied to detect two design flaws that are Long
Method and Large Class. The experimental result was
based on two projects that are IYC system and WEKA
package.
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Table 1: Machine learning-based detection approaches.

Learning Nature
ML Algorithm Number of Systems Features Type

Supervised Unsupervised Hybrid

(Kreimer, 2005) x Decision Tree 2 Structural

(Khomh et al., 2009) x Bayesian Belief Networks

(BBNs)

2 Structural + Lexical (From the

rule cards (Moha et al., 2010b))

(Hassaine et al., 2010) x Artificial Immune System

Algorithm

2 Structural

(Oliveto et al., 2010) x B-Splines 2 Structural

(Khomh et al., 2011) x BBNs based on the Goal

Question Metric (GQM)

2 Structural

(Maiga et al., 2012b) x Support Vector Machines

(SVM)

3 Structural

(Maiga et al., 2012a) x Support Vector Machines

(SVM)

3 Structural (Renforced with the

feedback of users)

(Palomba et al., 2013) x Association Rule Mining 8 Historical

(Fu and Shen, 2015) x Association Rule Mining 5 Structural

+ Historical

(Palomba et al., 2015) x Association Rule Mining 20 Historical

(Arcelli Fontana et al.,

2016)

x 16 Algorithms∗ 74 Structural

Our Approach x Auto-Encoder + Artificial

Neural Networks (ANN)

4 Adopted

Datasets∗∗
Structural

+ Generated Features
∗J48 (with pruned, unpruned and reduced error pruning), JRip, Random Forest, Naı̈ve Bayes, SMO (with Radial Basis Function and Polynomial kernels) and LibSVM (with the two
algorithmsC-SVC andν-SVC in combination with Linear, Polynomial, RBF and Sigmoid kernels)
∗∗ See Section 4.1

(Khomh et al., 2009) proposed an extension of the
DECOR (DEtection & CORrection) approach (Moha
et al., 2010b) in order to support uncertainty in the
detection of smells. In this work, the authors trans-
formed the specifications which are in form of rule
cards into BBNs (Bayesian Belief Networks). How-
ever, the expressiveness of the rule cards was limited
and their composition can lead to the emergence of
many intermediate nodes in the BBNs. As a solu-
tion, the authors (Khomh et al., 2011) suggested BD-
TEX (Bayesian Detection Expert) that is based on the
GQM (Goal Question Metric) methodology to extract
information from the anti-pattern definition. Thus,
the BBNs can be systematically built without rely-
ing on the rule cards. The experiment was conducted
on GanttProject and Xerces to detect the occurrences
of Blob, Functional Decomposition and the Spaghetti
Code.

(Hassaine et al., 2010) have drawn a parallel be-
tween the human’s immune system and the detec-
tion approach. They have applied the artificial im-
mune systems algorithms to identify the occurrences
of Blob, Functional Decomposition and the Spaghetti
Code on two open source systems that are GanttPro-
ject and Xerces.

(Oliveto et al., 2010) proposed an approach, called
ABS (Anti-pattern identification using B-Splines).
The signature of the anti-pattern is learned and is per-
formed through an interpolation curve that is gener-
ated by a set of metrics and their values. Then, based

on the distance between this signature and the signa-
ture of a given class, the similarity value is deducted.
Thus, the higher the similarity value, the higher the
likelihood that the given class is affected. ABS has
been tested with Blob on two medium size Java sys-
tems.

(Maiga et al., 2012b) proposed a support vector
machine-based approach to detect the occurrences of
Blob, Functional Decomposition and the Spaghetti
Code. Later, the authors (Maiga et al., 2012a) ex-
tended their previous work by suggesting an approach
called SMURF, which takes into account the feedback
of practitioners. Both approaches were experimented
on the same three open source systems which are Ar-
goUML, Azureus and Xerces.

(Palomba et al., 2013; Palomba et al., 2015) pro-
posed an approach named HIST (Historical Informa-
tion for Smell deTection) to detect five types of bad
smells. Only the historical information extracted from
version control systems was used by the association
rule mining algorithm. Then, they defined heuristics
which were applied to identify each one of the con-
sidered code smells.

Similarly, (Fu and Shen, 2015) proposed a de-
tection approach by mining the evolutionary history
of projects extracted from revision control system.
Three code smells are chosen to be detected from 5
projects, whose the duration of the evolutionary his-
tory vary from 5 to 13 years. The two latter works
used historical properties. The common limitation
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shared by them is the lack of availability of ver-
sions from a given system in order to have historical
changes that are fed into the association rule mining
algorithm.

Recently, (Arcelli Fontana et al., 2016) conducted
an experimentation of 16 machine learning algo-
rithms on four code smells that are Data Class, Large
Class, Feature Envy and Long Method. The selected
algorithms are as follows: J48 (with pruned, unpruned
and reduced error pruning), JRip, Random Forest,
Naı̈ve Bayes, SMO (with Radial Basis Function and
Polynomial kernels) and LibSVM (with the two algo-
rithmsC-SVC andν-SVC in combination with Lin-
ear, Polynomial, RBF and Sigmoid kernels). Addi-
tionally, these algorithms have been combined with
a boosting technique. The experiment is based on a
large heterogeneous repository composed of 74 soft-
ware systems belonging to the Qualitas Corpus (Tem-
pero et al., 2010).

In contrast to the previous approaches, we exploit
in this paper two learning algorithms for the tasks
of dimensionality reduction and classification. Also,
the type of the trained features is the extracted ones
from the deep auto-encoder because they can signif-
icantly help the learner to reduce the computational
overhead and yield high accuracy results. More de-
tails about the previous works and ours are tabulated
in Table 1. They are listed according to the nature
of learning (i.e., supervised, unsupervised or hybrid),
the machine learning (ML) algorithm, the number of
systems and the type of the used features. For the
datasets, we adopt them from (Arcelli Fontana et al.,
2016) because their oracle was built by means of advi-
sors and raters (see Section 4.1), in difference to other
works that are applied on fully manually constructed
oracles.

3 PROPOSED APPROACH

In this study, we propose a hybrid learning-based ap-
proach consisting of two main phases. The first phase
performs an unsupervised learning procedure based
on the use of a deep auto-encoder. The auto-encoder
is applied on an unlabelled data in order to reduce its
dimensionality and to extract a new feature represen-
tation. Then, based on the output of the first phase, the
second phase targets a supervised learning classifica-
tion by using an Artificial Neural Networks (ANN).

The structure of the proposed approach is outlined
in Figure 1. More details of the approach are given in
the next subsections.

Datastets

Auto-Encoder

Dimensionality Reduction 

ANN Classifier

Results

ed

uction 

=>

Code Smell Not Code Smell

Figure 1: Overview of the proposed approach.

3.1 Phase 1: Unsupervised Feature
Learning

The presence of a large number of features may con-
tain redundancy and noise that can affect the per-
formance of a learner and subsequently increase the
complexity of the generated model. To tackle these
problems, a dimensionality reduction should be ap-
plied. Given an input of unlabelled data, a feature ex-
traction is applied to perform the needed transforma-
tions that generate the most significant features (Han
et al., 2011). As a consequence, the generated low-
dimensional data will be easily classified and also
makes it possible for the classifier to improve its per-
formance results.

An auto-encoder (Bengio et al., 2009) is an unsu-
pervised neural network that is trained with feedfor-
ward and backpropagation algorithms. It mainly aims
at the reduction of its original input and reproducing
it as an equivalent reconstructed output. The structure
of the auto-encoder consists of an input and output
layers of equal sizes, and one or more hidden layers.
It is composed of an encoderf : x→ h that maps the
input to the hidden layerh, and a decoderg : h → x̂
that maps back to the original input. The principle of
the encoding procedure is as follows:
Given an input data{x(1),x(2), ...,x(n)}, the encoder
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network compresses thesen inputs into a lower di-
mensional feature subspace. The hidden layer is given
by:

h= f (x) = tanh(Wx+bh) (1)

whereW is the weight andbh is the bias of the hidden
layer. Afterwards, the decoder network reproduces
the output{x̂(1), x̂(2), ..., x̂(n)} that is computed as
follows:

x̂= g(h) = tanh(WTh+bx̂) (2)

wherebx̂ is the bias of the output. The auto-encoder is
trained to minimize the reconstruction error between
the input and the output:

Err =

√
n

∑
i=1

(xi–x̂i)
2 (3)

Figure 2 illustrates an example of an auto-encoder
containing 3 hidden layers that are respectively com-
posed of 4, 2, 4 neurons.

Encoding

Input Layer Output LayerHidden Layers

Decoding

X1

X2

X3

X4

X5

Xn

X1

X2

X3

X4

X5

Xn

˄

˄

˄

˄

˄

˄

Figure 2: An auto-encoder structure.

3.2 Phase 2: Supervised Classification

In this phase, the new extracted feature space will
be combined with a feature vector from the original
dataset. This feature vector is the response class that
indicates if the sample is affected or not by one of the
studied code smells. Thus, we obtain a reduced la-
belled training set to be fed as an input of the selected
classifier.

There exists a variety of supervised learning algo-
rithms, like the probabilistic classifiers (i.e., BBNs),
classification rules (i.e., JRip), decision trees (i.e.,
Random Forest) and neural networks (i.e., ANN). In
our study, we select a supervised classifier belonging
to the family of neural networks that is the Artificial
Neural Networks (ANN). The ANN consist of input,
hidden and output layers, in which the neurons are

connected, and for each connection, weights are set.
As it is a binary classification, the output neuron will
decide whether it is a code smell or not, according to
its type.

4 EXPERIMENTS

In this section, we describe the used datasets as well
as the experimental settings. Then, the results are
evaluated according to the standard measures of per-
formance.

4.1 Datasets

As stated before, we experiment our approach us-
ing the datasets proposed in (Arcelli Fontana et al.,
2016). In brief, the authors selected 74 open source
systems from Qualitas Corpus (Tempero et al., 2010).
The systems are heterogeneous; they belong to dif-
ferent application domains and vary in their sizes.
Then, the metrics are computed using the DFMC4J
(Design Features and Metrics for Java) tool (Ferme,
2013). Afterward, the authors achieved the la-
belling by means of advisors which are existing
code smell detection tools (iPlasma (Marinescu et al.,
2005), PMD1, Fluid Tool (Nongpong, 2012), AntiPat-
tern Scanner (Wieman, 2011)) and rules (Marinescu,
2005), followed by a manual validation made by 3
raters. Once the labelling process is done, a balanced
dataset is generated for each type of code smells.
Each dataset contains 1/3 smelly samples and the rest
2/3 are non smelly samples.

As shown in Table 2, the two first datasets concern
the code smells at class level where the number of
features is 62. While at method level, the number of
features rises because of the difference in granularity
where there is more fine-grained features. The list
of all the used features is shown in Figure 3. The
detailed definitions of these features are available in
the appendix in (Arcelli Fontana et al., 2016).

Table 2: Datasets description.

Dataset Code Smell # Samples # Features

Class level
DS1 God Class 420 62

DS2 Data Class 420 62

Method level
DS3 Feature Envy 420 83

DS4 Long Method 420 83

1https://pmd.github.io/
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Figure 3: Original features at class and method levels.

4.2 Experimental Setup

Our experiments are performed in the R programming
environment (R Core Team, 2014).

In order to tune the parameters of the auto-
encoder, we use the metric of mean squared error
(MSE) to minimize the rate of the reconstruction of
the input. The chosen auto-encoder in this experiment
is a five-layers network composed of input and output
layers with three hidden ones. The activation function
is hyperbolic tangent (tanh). The rest of the selected
parameters are summarized in Table 3. For the ANN
classifier, the parameter optimization was made by the
use of a grid search approach.

Table 3: The parameters of the auto-encoder.

Parameters Values

Activation function Hyperbolic Tangent (Tanh)

Number of hidden layers 3

Neurons in each hidden layer 20 . 10 . 20

Number of epochs 200

4.3 Experimental Results

The experimental results are first discussed, then are
followed by a comparison with a conventional detec-
tion.

4.3.1 Performance Measurements

The performance of our approach is evaluated based
on the precision, recall and F-measure metrics. They
are defined as follows:

• Precision: the percentage of correctly identified
code smells by the number of detected code smell
candidates.

precision=
TP

TP + FP
(4)

• Recall: the percentage of correctly identified code
smells by the total number of actual code smells.

recall =
TP

TP + FN
(5)

• F-measure: the harmonic mean of the precision
and recall metrics, it represents a balance between
their values.

F −measure= 2 ∗
Precision∗ Recall
Precision+ Recall

(6)

Where TP (True Positive) indicates the number of the
correctly detected code smells. TN (True Negative) is
the number of non code smells that are correctly clas-
sified. While FP (False Positive) and FN (False Neg-
ative) correspond to incorrectly classified code smells
and non code smells respectively.

4.3.2 Performance Evaluation

To evaluate the performance of the model, we use 10-
fold cross-validation (Witten et al., 2011) where the
data is randomly split into 10 subsets. Each time one
subset is used for testing and the other nine subsets are
used for training. Once the 10 subsets are reported,
the mean of each performance measurements is con-
sidered.

Overall, the values of the precision and the recall
have demonstrated high accuracy results. As shown
in Table 4, the best F-measure value is of 98.93%, it
is reached with the code smell God Class. Even at
method level, the F-measure surpasses 96%. In sum-
mary, the results were very close which means the ef-
fectiveness of the proposed approach at both abstrac-
tion levels.

To further evaluate our approach, we plot the ROC
(Receiver Operating Characteristic) curves for each
code smell. The curve is obtained by means of plot-
ting the TPR (True Positive Rate) against the FPR
(False Positive Rate) for different threshold values.
Figure 4 shows four ROC curves that correspond to
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(d) Long Method

Figure 4: The ROC curves of (a) God Class, (b) Data Class, (c) Feature Envy and (d) Long Method.

Table 4: The performance results.

Code Smell Precision Recall F-measure

God Class 99.28% 98.58% 98.93%

Data Class 98.92% 98.22% 98.57%

Feature Envy 96.78% 96.09% 96.44%

Long Method 96.78% 97.83% 97.30%

the four code smells. The area under the ROC curve is
a sign of the performance of the classifier. The larger
area under the ROC curve is, the better the classifier’s
performance will be. In parallel with the results de-
picted in Table 4, the ROC of God Class outperforms
the ROC of the other code smells.

Generally, the values are very encouraging and in-
dicate the efficiency of dimensionality reduction by
means of the auto-encoder in improving the detection
performance of the classifier.

4.3.3 Comparison Between our Hybrid
Approach and the Basic Classifier

To evaluate the effectiveness of our approach, we
conduct a comparison between our hybrid detection
method and a detection based solely on the basic clas-
sifier. The latter detection is the followed strategy ap-

plied in previous works where the original features are
directly fed into the basic classifier that is the ANN in
our case. For more consistent evaluation, we use the
boxplots to compare side by side the results of both
approaches by means of the median values and even
the distribution of values between the lower and upper
quartiles.

The F-measure is the selected metric for the com-
parison as it provides a balance between the precision
and recall metrics. As depicted in Figure 5, our results
are better than those of the basic classifier. It is signif-
icantly observed from the distribution of values across
the quartiles that the detection with the auto-encoder
outperforms the basic classifier which is trained with-
out dimensionality reduction. Another difference re-
sides in the tuning of the ANN. When applying a con-
ventional detection, the tuning of the ANN parame-
ters becomes more complex and time-consuming be-
cause of the high number of features (that is 62 at
class level and 83 at method level). Whereas the tun-
ing of the ANN parameters in our approach is faster
and less complex with the extracted features.

A Hybrid Approach To Detect Code Smells using Deep Learning

143



Using_Original_Features

Using_Extracted_Features

0.90 0.95 1.00

Our Hybrid Approach

Basic Classifier

(a) God Class

Using_Original_Features

Using_Extracted_Features

0.7 0.8 0.9 1.0

Our Hybrid Approach

Basic Classifier

(b) Data Class

Using_Original_Features

Using_Extracted_Features

0.75 0.80 0.85 0.90 0.95 1.00

Our Hybrid Approach

Basic Classifier

(c) Feature Envy

Using_Original_Features

Using_Extracted_Features

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Our Hybrid Approach

Basic Classifier

(d) Long Method

Figure 5: Comparison of F-measure between our hybrid approach and the basic classifier of (a) God Class, (b) Data Class, (c)
Feature Envy and (d) Long Method.

5 THREATS TO VALIDITY

There is a number of potential threats to validity that
could influence the results of our study.

• Internal validityrefers to whether there is a causal
relationship between the experiment and the ob-
tained results. In our study, this threat can be
related to the adopted datasets (Arcelli Fontana
et al., 2016). As we have mentioned above, the
datasets are partially built manually. The manual
part is not performed by experienced developers.
Potentially, this may affect, to some extent, the
experimental results. However, since there is an
automatic part in the construction of the datasets
that is performed by previous detection tools and
rules, this can alleviate the actual threat.

• Conclusion validityconcerns the relationship be-
tween the treatment and the results of the experi-
ment. It relates to the analysis of the experimental
results, i.e., the implementation of the treatment
and the measurement performance. This threat
is treated by performing a comparison to another
scenario of detection that is similar to the strategy
of the prior works, where the detection is based

solely on the basic classifier with the original fea-
tures.

• External validityrefers to the ability to generalize
the findings obtained from the experiment. Ac-
tually, we use generated datasets from only open
source systems. Thus, we cannot generalize our
findings to industrial projects. Additional study is
required to resolve this issue.

6 CONCLUSION

In this paper, we propose a hybrid approach that ap-
plies both unsupervised and supervised algorithms to
detect four code smells. The first phase performs a di-
mensionality reduction by using a deep auto-encoder
that extracts the most relevant features. Once the fea-
ture space is reduced with a small reconstruction er-
ror, the ANN classifier learns the new generated data
and outputs the final results. Our approach is vali-
dated on four adopted datasets that are generated from
a large number of open source systems. The experi-
mental results confirm that the dimensionality reduc-
tion prior to classification plays an important role in
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improving the detection accuracy. Additionally, we
observed that the hybrid approach is able to outper-
form the basic classifier algorithm because it is based
on the most relevant features that are extracted with
the deep auto-encoder.

Our future direction focuses on exploring other
types of features in order to underpin the results of
our detection approach. The features that we intend to
add, are fine-grained and cover the detection of other
types of code smells. In addition, we plan to apply
other deep learning algorithms and compare between
them. For this reason, we will expand the data be-
cause deep learning outperforms better results with
richer dataset.
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