
Model-Aware Software Engineering
A Knowledge-based Approach to Model-Driven Software Engineering

Robert Andrei Buchmann1, Mihai Cinpoeru1, Alisa Harkai1 and Dimitris Karagiannis2
1Business Informatics Research Center, Babeş-Bolyai University, str. Th. Mihali 58-60, Cluj Napoca, Romania

2Research Group Knowledge Engineering, University of Vienna, Waehringerstr. 29, Vienna, Austria

Keywords: Agile Modelling Method Engineering, Resource Description Framework, Model-Driven Software

Engineering, Knowledge Representation.

Abstract: Standard modelling languages enabled the Model-Driven Software Engineering paradigm, allowing the

development of model compilers for code generation. This, however, induces a subordination of

implementation to the modelling language: the modelling benefits are confined to a fixed semantic space. On

the other hand, the rise of agile software development practices has impacted model-driven engineering

practices - an Agile Modelling paradigm was consequently introduced. This was later expanded towards the

Agile Modelling Method Engineering (AMME) framework which generalizes agility at the modelling method

level. By observing several AMME-driven implementation experiences, this paper specialises the notion of

Model-Driven Software Engineering to that of Model-Aware Software Engineering – an approach that relies

on modelling language evolution, in response to the evolution of the implemented system's requirements. The

key benefit is that the modelling language-implementation dependency is reversed, as the implementation

needs propagate requirements towards an agile modelling language.

1 INTRODUCTION

The convergence of agile software development

practices and the Model-Driven Engineering

paradigm has naturally lead to the Agile Modelling

methodology (Ambler, 2002). However, agility in

AM focuses on modelling practices rather than

modelling methods.

The underlying assumption is that all software

development needs can be subordinated and

conceptually subsumed to the fixed semantic space

defined by standard modelling languages. This is a

reasonable assumption in the two dominant

perspectives on the role of conceptual modelling in

software engineering: (i) the modelling is

documenting perspective, where models act as

guidance for developers, and are therefore "distilled"

by a human programmer relying on consensus with

respect to notation, structure and meaning; (ii) the

modelling is programming perspective, where models

are input for code generators that have been

preprogrammed based on the fixed semantic space.

The Agile Modelling Method Engineering

(AMME) framework (Karagiannis, 2015) introduced

a third perspective, that of modelling is knowledge

representation, where the modelling language is

tailored for capturing with diagrammatic means the

enterprise knowledge that is relevant for implemented

artefacts. The relation to implemented artefacts is not

based on code generation, but rather on

parameterization of software artefacts with properties

that are extracted or inferred from models. Compared

to process-aware information systems (van der Aalst,

2009), AMME advocates a full customization of the

modelling language.

This vision of AMME was adopted for the

purposes of the work at hand, which focusses on the

implementation of project-based instances of a

Model-Aware application for the goals of (i)

evaluating the feasibility of this software engineering

methodology and of (ii) positioning AMME in a

novel, knowledge-driven software development

method. Therefore the proposed contribution is ther a

software development method (labelled as Model-

Aware Software Engineering) that assumes the

adoption of AMME for modelling activities, as an

alternative to the standards that traditionally drive

model-driven engineering efforts.

The remainder of the paper is structured as

follows: Section 2 provides background on AMME.

Buchmann, R., Cinpoeru, M., Harkai, A. and Karagiannis, D.
Model-Aware Software Engineering.
DOI: 10.5220/0006694102330240
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 233-240
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

233

Section 3 shows how AMME fosters knowledge

processes that establish the "knowledge-driven"

quality of the hereby proposed method. Section 4

employs an illustrative example that is currently

being evolved in project-based work. Section 5

comments on related works. The paper ends with a

concluding evaluation and outlook.

2 BACKGROUND ON AGILE

MODELLING METHOD

ENGINEERING

The keynote paper of (Karagiannis, 2015) introduced

the principles of Agile Modelling Method

Engineering, indicating the Open Models Laboratory

- OMiLAB (Open Models Laboratory, 2017) as a

deployment environment and architecture where

AMME emerged and is being evaluated in project

work involving the development of domain-specific

modelling tools - see a presentation of tools in

(Karagiannis et al., 2016). A commonly employed

platform for the fast prototyping of modelling tools is

ADOxx (BOC, 2017). Earlier AMME experience

reports are available in the literature (Buchmann and

Karagiannis, 2015) - however, such experiences

focus on the development of modelling tools and not

on the software development processes that can be

supported by such tools and their agile qualities – a

gap that we aim to fill through this paper.

The usable result of AMME is a modelling tool

that deploys a modelling method, as defined in

(Karagiannis and Kühn, 2002). Such a modelling tool

evolves through iterations reflecting the increments

applied on the modelling method's building blocks

(i.e., the language, procedure and functionality). The

fundamental drivers of this process are the modelling

requirements – a specialized notion of requirements

focusing on modelling scenarios / use cases. Just as

requirements are considered unstable or evolving in

agile software development, modelling requirements

are also considered essentially unstable in AMME –

several pragmatic reasons are behind this

consideration, confirmed by this paper's work

context: (i) users lacking in modelling experience will

start raising change requests once they gain initial

hands-on experience; (ii) if software is implemented

based on the created models, the changing

requirements for the software artefacts will propagate

in modelling requirements.

3 PROBLEM STATEMENT AND

SOLUTION OVERVIEW

The work at hand proposes a model-driven software

engineering method that reverses the traditional

subordination between implementation and models –

i.e., instead of having the implementation

subordinated to an invariant modelling language (i.e.,

confined to its fixed semantic space), the proposal is

to have the modelling language subordinated to

evolving implementation needs. Thus, a modelling

language (and tool) should be agilely tailored and

evolved through AMME to expose the semantics

needed for implementation.

The proposed method expands AMME towards

the goal of software engineering. The applied

extensions are summarized in Figure 1 (i.e., the Data

Management and the Implementation lane). Since

AMME produces an evolving modelling language

(and, consequently, an evolving semantic space) the

core assumption of traditional Agile Modelling (and

associated software development processes) that

models comply with some consensus on structure and

semantics does not hold anymore. It is not feasible to

evolve code generators in synchronicity with the

modelling language evolution – change requests may

be as drastic as adding an entirely new type of

diagram to the language, thus reusability is very

limited. AMME sacrifices reusability for benefits

pertaining to specificity –the modelling environment

will act as a Knowledge Management System rather

than as component in some standards-based roundtrip

engineering cycle. Under these assumptions, AMME

does not serve as a system design enabler, but rather

as a flexible knowledge acquisition enabler. Since

AMME is essentially a metamodelling framework, it

supports the acquisition of knowledge on two levels:

(i) Domain knowledge, captured in the metamodel

tailored for each language iteration; (ii) Case

knowledge, captured through the act of modelling (by

using a language iteration designed on the previous

level).

The two knowledge layers should be exposed to

software development processes in an agile manner –

i.e., changes in both the language and the model

contents should be immediately made available to

software development processes in a uniform

representation that covers both layers. Models should

be amenable to reasoning (i.e., if what was explicitly

captured in diagrammatic form is deemed

insufficient) - for this purpose, the Resource

Description Framework (W3C, 2017a) is employed to

streamline the knowledge conversion flow between

the method's phases (Figure 1):

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

234

Figure 1: Knowledge conversion flow in Model-aware Software Engineering.

The Conceptualization Cycle takes as input

requirements and domain knowledge to produce an

agile modelling tool engineered through AMME's

incremental and iterative cycle comprising the

following phases: Create (knowledge acquisition and

modelling requirements analysis), Design

(specification of the modelling method building

blocks, including metamodel), Formalize (method

formalization for a targeted audience or goal),

Develop (modelling tool implementation) and Deploy

(modelling tool deployment and usage).

Microiterations involving only the design and tool

implementation are common for fast prototyping

purposes; they are performed on metamodelling

platforms, benefitting from built-in user interaction

and model management features, thus allowing the

engineer to focus on the modelling semantics. The

Modelling Cycle uses the tool produced by the

Conceptualization Cycle to define models along a

typical modelling cycle. Feedback from hands-on

experience will drive new iterations of the

Conceptualization Cycle. In the Knowledge-Driven

Data Management Lane, model contents, enriched

with metamodel information are converted to RDF

knowledge graphs and linked through Linked Data

techniques to any data entities that are not depicted in

models. A graph database with reasoning capabilities

is necessary - GraphDB (Ontotext, 2017) has been

used in implementations. An adapter was

implemented for ADOxx, to serialize models

(enriched by metamodel information), according to a

highly abstract meta-metamodel easily translatable to

other metamodelling platforms, according to some

transformation rules detailed in (Karagiannis and

Buchmann, 2016). Their output is a conglomerate of

RDF graphs – one graph per diagram, including an

RDF schema derived from the metamodel and

metadata associated with each diagram. This "model

base" can be further enriched by the reasoning engine

of the database (GraphDB supports both custom rules

and OWL axioms), thus further filling the semantic

gap between model contents and front-end. The

Implementation Lane covers the model-aware

implementation tasks. The developed front-end

artefacts are semantically parameterized with

information retrieved via SPARQL queries (W3C,

2017b) from models, data, model-data links and any

inferences that might have been executed on the

"model base". Requirements for changes in the

developed functionality can propagate back to the

modelling language, thus triggering new AMME

iterations, including the reprototyping of the

modelling tool and the model base regeneration.

4 ILLUSTRATIVE EXAMPLE

4.1 Initial Requirements

Stakeholders require a Workflow Management

System driven by diagrammatic process descriptions.

Their organization coordinates a virtual enterprise

offering customized clothing, where a network of

Model-Aware Software Engineering

235

candidate tailors, embroidery providers and delivery

couriers can contribute, based on capacity and

availability, to the execution of make-to-order

production and delivery processes.

Figure 2 shows a simplified make-to-order

production process together with a screenshot of task

assignments in the workflow management system,

showing the tasks of the authenticated user – active,

fulfilled and pending (in the latter case showing

contact data for those responsible). Between the

required front-end functionality and the richness of

the model information there is an obvious semantic

gap that is commonly filled in Workflow

Management Systems by the data model employed at

run-time, using the model description as a backbone

to guide the task flow. Conceptual redundancy

manifests between the data model employed at run-

time and the metamodel employed at design-time

(e.g., the roles expressed by pools). Shifting

conceptual fragments from the run-time data model

towards the modelling environment will empower the

modeller to drive process execution.

4.2 Advanced Iteration

The following modelling requirements are derived for

an evolved iteration: Semantic Requirements: The

virtual enterprise ecosystem must be described in

more detail than what the swimlanes/pools allow.

That is, dedicated concepts and relations must be

devised to capture organizational structures, roles and

instance employees as well as business partners

grouped by the capability they can provide to the

virtual enterprise. Similarly, a geographical coverage

model should provide at least a grouping of targeted

locations. Instance data properties may be necessary

for those elements representing instances (e.g.,

address or coordinates for locations, contact data for

business partners and employees). A distinction must

be ensured between domain-specific task types

(production tasks, driving tasks and delivery tasks).

Syntactic Requirements: The new concepts must be

separated from the process description in distinct

types of models that may potentially evolve later

independently of one another: one for business

participants and one for locations, with the ability of

mapping them to process tasks through hyperlinks

across models. Notational Requirements: Simple

groupings as graphical containers are preferable to

visual connectors. The distinction between task types

must be reflected visually. The notation should be

enriched with domain specific visual cues rather than

a standard notation. Visual cues should act as anchors

for the hyperlinks between models.

A traditional model-driven system would assume that

the modelling language is invariant. Consequently,

such systems will assimilate any emerging semantic

requirements in their run-time components and data

model (i.e., the Task Manager functionality in a

Workflow Management System).

Figure 2: Example of process and process-aware front-end.

Model-
aware

Front-end

Process
model

Semantic Gap

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

236

Certain descriptions and properties implied by the

aforementioned requirements are out of the scope of

common business process modelling languages –

e.g., an organizational chart, mappings between roles

and instance candidates (as commonly necessary in

virtual enterprise agile configurations), the

geographical coverage of process executions or task

assignments (typically performed in the Task

Manager functionality).

It can be argued that some of this information

belongs to the realm of instances and execution-time

data repositories – however, the following aspects

must be considered: (i) some data is sufficiently

stable to be stored in models; (ii) certain instance

representations are of interest for modelling in

general (see also the multi-level modelling paradigm

(Clark et al., 2014)) or for specific model analysis

goals (e.g., workload simulation). Numerous types of

models include elements that designate instances –

e.g., concrete business partners, concrete locations,

concrete software, As-Is or To-Be system

components. Their properties can be just as stable as

process models and therefore semantically coupled

with more abstract model elements (a common

situation in Enterprise Architecture Management).

In other words, those parts of a relational database

that have a rather invariant nature and can support a

modelling use case (e.g., simulation, model-based

reporting) may be transferred to the model base,

rather than being redundantly covered by both models

and run-time components. Links between their model

representations and their more dynamic properties

(e.g., real-time availability of employees) will be

maintained with the help of the inherent linking

mechanisms provided by RDF.

Figure 3 shows a sample of how the BPMN

process in Figure 2 can be evolved in a domain-

specific modelling language with three types of

diagrams – processes, locations and participants.

Hyperlinks establish semantic relations between

these models (e.g., locations of participants, task

assignments on role level or instance level).

Such an evolution requires, of course, a

reimplementation of the modelling tool, which is

supported by the AMME conceptualization cycle and

its fast prototyping support. Agility can manifest in

all building blocks of the modelling method –

notation (e.g., replacing the BPMN symbols with

domain-specific visual cues), syntax (e.g., splitting

the metamodel in multiple model types connected

through hyperlinks), semantics (e.g., adding new

concepts, specializing concepts, adding domain-

specific property sheets), functionality (e.g., scripting

model-driven functionality relevant for the current

language iteration).

Further down the development process, the

customized models are exported in an RDF

knowledge base and subjected to relevant extensions.

Figure 4 isolates a fragment that contains model

elements from all three model types depicted in

Figure 3, including the hyperlinks between them. It

also depicts the enriched machine-readable graph that

can be derived from it, by applying several graph

extensions (e.g., OWL inferences or rules): (i) Links

to dynamic data (e.g., real time availability) not

included in models; such links rely on the URI

identification scheme, with model elements having

the same identifier as their counterparts in the

external data model (assumed to be a semantic graph

database, to simplify interoperability); (ii) Inferred

direct relations (e.g., directFollowedBy)

corresponding to the graphical connectors available

in models (connectors are typically n-ary relations to

also capture their annotations); (iii) Inferred types

based on property restrictions (e.g.,

AvailableTextileProvider for those whose availability

property is set to true and are contained within the

CandidateTextileProvider box of required

capability); (iv) Inferred types based on property

restrictions (e.g., AvailableTextileProvider for those

whose availability property is set to true and are

contained within the CandidateTextileProvider box

of required capability); (v) Certain relations (e.g.,

assigned instance) may be set either in the modelling

user interface (e.g., the coordinator directly assigning

instances to tasks through modelling means) or in the

front-end interface (e.g, a user taking responsibility

for tasks assigned to its capability container pool);

(vi) Inferred relations based on relevant property

chains (e.g., the destination identified by combining

visual containment with instance availability).

Examples of such axioms are provided here for

case (iii), with a richer discussion on OWL reasoning

on model contents being available in (Karagiannis

and Buchmann, 2018).

:containedBy owl:inverseOf :contains.

:TextileProvider

owl:onProperty :containedBy;

 owl:hasValue :CandidateTextileProvider.

:AvailableInstance

 owl:onProperty :availability;

 owl:hasValue true .

:AvailableTextileProvider

 owl:intersectionOf

 (:AvailableInstance :TextileProvider).

Model-Aware Software Engineering

237

Figure 3: The agile modelling tool – metamodel (top) and model samples (bottom).

Figure 4: Machine-readable knowledge graph derived from inferences applied on model content.

Agilely
extensible
attribute
sheets
(driven by
requirements)

Evolved
Modelling

Language

Evolved

Models

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

238

5 RELATED WORKS

The proposed software engineering method

converges from a tradition in investigating flexibility

in semantics-driven engineering methods – see the

paradigms of situational method engineering (Kumar

and Welke, 1992), ontology engineering (Corcho et

al., 2003) and agile software engineering (Agile

Manifesto, 2017). Situational method engineering

was introduced generically as a process for

constructing methods that are tuned to situation

specificity, specialized by AMME for modelling

methods regardless of their application and goals. For

modelling languages and tools, other methodolo-gies

and platforms aiming for flexible customization are

also available (Kelly et al., 2013) (Frank, 2013) and

could be included in the engineering method hereby

proposed – i.e., if they are enriched with a knowledge

streamlining approach to interoperate with RDF

graph databases. This key ingredient was originally

envisioned in (Karagiannis and Buchmann, 2016) and

later deployed in several implementations

(Buchmann and Karagiannis, 2015), (Buchmann and

Karagiannis, 2016).

The proposed method generalizes and repurposes

earlier attempts of applying reasoning on models

(Corea and Delfmann, 2017). Workflow management

systems, traditionally driven by XML serialization of

standard process descriptions - e.g., XPDL (WfMC,

2017) - may also benefit from this proposal, if models

represent processes and their execution context (as

highlighted in the presented illustrative example).

The Semantic Business Process Management

paradigm (Hepp and Roman, 2007), which aims to

splice Web Services, semantic technology and

business process modelling also takes a knowledge-

centric approach to processes. It emphasizes process

checking and composition under ontological

frameworks, showing less interest in their impact on

agile software engineering methods.

Since the semantic parameterization of the

developed software artefacts replaces the more

traditional code generation practices, the traditional

roundtrip engineering challenges (Maciaszek, 2002)

must be reconsidered. An ADOxx plug-in ensures

that the RDF graph's schema is kept in synch with

metamodel changes for any modelling tool

implemented on ADOxx (Open Models Laboratory,

2017). A roundtrip engineering cycle can be devised

as a generalization of the proposed method– however,

currently we only consider the benefits of the

unidirectional knowledge flow from the model base

back-end to the model-aware front-end.

6 CONCLUDING DISCUSSION

Figure 5 shows empirically observed efforts averaged

over three development processes where the hereby

proposed method was employed. The chart shows the

evolution, across the 5 iterations, of several indicators

corresponding to the knowledge conversion flow

phases presented earlier in Figure 5:

For the conceptualization effort we have isolated

only the microiteration cycle (language design and

modelling tool implementation). We also subtracted

the AMME training and the learning curve of

nonexperienced modelling method engineers, as this

develops a skill that is reused across projects. Once a

modelling tool was prototyped, the modelling effort

was also isolated, this time including the learning of

the modelling language which is significantly high in

the initial iteration, until users gain initial hands-on

experience. The data management effort includes (i)

the setup of the external data that does not make sense

to be included in models (e.g., resource availability)

and (ii) the setup of rules or OWL axioms to enrich

the derived graphs according to the information

needed in the front-end and (iii) the preparation of

retrieval queries – e.g., SPARQL queries over HTTP

and, in one case, a dereferencing mechanism for all

model elements (Cinpoeru, 2017). Finally, the model-

driven implementation effort covers the semantically

parameterized implementation taking input from the

model-data mashup and the inference results.

Figure 5: Empirically observed efforts across multiple

implementations (averaged).

The chart shows a slow start due to the modelling

language (re)implementation – however, this includes

significant parts of the data model (including instance

data, as shown in Figure 3) that otherwise would be

created later; also, it relies on metamodelling

platforms for fast prototyping. An essential benefit is

that the setup is inherently prepared for integration

Model-Aware Software Engineering

239

within a Linked Data-based application environment.

As this is a novel engineering approach that benefits

from the interplay of Agile Modelling Method

Engineering, semantic technology and model-driven

software development, the existing experience is still

limited and must be subjected to comparisons with

traditional agile processes in order to quantify the

trade-off between agile semantic richness and

specificity in models and the benefits of standards-

based code generators. Just as with the maturation of

agile development practices, the uptake of the

proposed Model-Aware Software Engineering

approach depends on an accumulation of learned

lessons from experimentation-oriented projects.

ACKNOWLEDGEMENTS

This work is supported by the Romanian National

Research Authority through UEFISCDI, under grant

agreement PN-III-P2-2.1-PED-2016-1140.

REFERENCES

Agile Manifesto, 2001. http://www.agilemanifesto.org, last

accessed: 30th October 2017.

Ambler, S. W., 2002. Agile Modeling: effective practices

for Extreme Programming and the Unified Process,

Wiley.

BOC GmbH, ADOxx platform page – official website,

2017, http://www.adoxx.org/live, last accessed: 30th

October 2017.

Buchmann, R. A., Karagiannis, D., 2015. Agile Modelling

Method Engineering: lessons learned in the

ComVantage project. In Proceedings of PoEM 2015,

LNBIP 235, pp. 356-373, Springer.

Buchmann, R. A., Karagiannis, D., 2016. Enriching Linked

Data with semantics from domain-specific

diagrammatic models. In Business and Information

Systems Engineering, 58(5), pp. 341-353, Springer.

Cinpoeru, M., 2017. Dereferencing service for navigating

enterprise knowledge structures from diagrammatic

representations. In Proceedings of BIS 2017

Workshops, LNBIP 303, pp.85-96, Springer.

Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B., 2014.

A foundation for multi-level modelling. In Proceedings

of Multi-level Modelling Workshop at MoDELS 2014,

CEUR-WS 1286, pp. 43-52.

Corcho, O., Fernandez-Lopez M., Gomez-Perez, A., 2003,

Methodologies, tools and languages for building

ontologies. Where is their meeting point? In Data and

Knowledge Engineering, 46(1), pp. 41-64, Elsevier.

Corea, C., Delfmann, P., 2017. Detecting compliance with

business rules in ontology-based process modeling. In

Wirtschaftsinformatik 2017 Proceedings, pp. 226-240.

Frank, U., 2013. Domain-specific modeling languages:

requirements analysis and design guidelines. In

Domain Engineering, pp. 133–157, Springer.

Hepp, M., Roman, D., 2007. An ontology framework for

semantic business process management. In

Wirtschaftsinformatik 2007 Proceedings, 27.

Karagiannis, D., 2015. Agile modeling method engineering.

In Proceedings of the 19th Panhellenic Conf. on

Informatics, pp. 5-10, ACM.

Karagiannis, D., Buchmann, R. A., 2016. Linked Open

Models: extending Linked Open Data with conceptual

model information. In Information Systems 56, pp. 174-

197, Elsevier.

Karagiannis, D., Buchmann, R. A., 2018. A proposal for

deploying hybrid knowledge bases: the ADOxx-to-

GraphDB interoperability case. In Proceedings of the

51st HICSS 2018, pp. 4055-4064, University of Hawaii.

Karagiannis, D., Kühn, H., 2002. Metamodelling platforms.

In Proceedings of the Third International Conference

EC-Web 2002 – DEXA 2002, Aix-en-Provence, France,

LNCS 2455, pp. 182, Springer.

Karagiannis, D., Mayr, H., C., Mylopoulos, J. (eds.), 2016,

Domain-specific conceptual modelling, Springer.

Kelly, S., Lyytinen, K., Rossi, M., 2013. MetaEdit+ A fully

configurable multi-user and multi-tool CASE and

CAME environment. In Seminal Contributions to

Information Systems Engineering, pp. 109-129,

Springer.

Kumar, K., Welke, R. J., 1992. Methodology engineering:

a proposal for situation-specific methodology

construction. In Challenges and strategies for research

in systems development, pp. 257-269, Wiley & Sons.

Maciaszek, L. A., 2002. Process model for round-trip

engineering with relational database. In Successful

Software Reengineering, pp.76-91, IGI Global

Ontotext, 2017. GraphDB, http://graphdb.ontotext.com/,

last accessed: 30th October 2017.

Open Models Laboratory, 2017, The EnterKnow project

page, http://austria.omilab.org/psm/content/enterknow,

last accessed: 30th October 2017.

van der Aalst, W. M. P., 2009. Process-aware information

systems: lessons to be learned from process mining. In

Transactions on Petri Nets and Other Models of

Concurrency II, LNCS 5460, Springer, Berlin-

Heidelberg, pp. 1-26.

W3C, 2017a, RDF - Semantic Web Standards.

https://www.w3.org/RDF/, last accessed: 30th October

2017.

W3C, 2017b, SPARQL 1.1 Overview.

https://www.w3.org/TR/sparql11-overview/, last

accessed: 30th October 2017.

WfMC, 2017. XML Process Definition Language (XPDL),

http://www.xpdl.org/, last accessed: 30th October, 2017.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

240

