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Abstract: Real-time, accurate travel time prediction algorithms are needed for individual travelers, business sectors, 

and government agencies. They help commuters make better travel decisions, avert traffic congestion, help 

the environment by reducing carbon emissions, and improve traffic efficiency. Travel time prediction has 

begun to attract more attention with the rapid development of intelligent transportation systems (ITSs), and 

is considered one of the more important elements required for successful ITS subsystems deployment. 

However, the stochastic nature of travel time makes accurate prediction a difficult task. This paper proposes 

travel time modeling using a mixture of linear regressions. The proposed model consists of two normal 

components. The first component models the congested regime while the other models the free-flow regime. 

The means of the two components are modeled by two linear regression equations. The predictors used in 

the linear regression equation are selected out of the spatiotemporal speed matrix using a random forest 

machine-learning algorithm. The proposed model is tested using archived data from a 74.4-mile freeway 

stretch of I-66 eastbound connecting I-81 and Washington, D.C. The experimental results show the ability 

of the model to capture the stochastic nature of travel time and to predict travel time accurately. 

1 INTRODUCTION 

Minimizing drivers’ travel times from their origins 

to their destinations is a major Intelligent 

Transportation Systems (ITSs) objective. However, 

it is also extremely challenging due to the dynamic 

nature of traffic flow, which is, in most cases, highly 

unpredictable. One straightforward strategy involves 

directing vehicles or guiding drivers to follow routes 

that avoid congested paths. A critical step for this 

route planning or guidance to be effective is the 

ability to accurately predict travel times of different 

alternative routes from source to destination. 

In addition, travel time represents an important 

performance measure for traffic system evaluation. 

It is easily understood by drivers and operators of 

traffic management systems, and can be viewed as a 

simple summary of a traffic system’s complex 

behavior. In order for an ITS to accurately predict 

the travel time, it must have the following 

capabilities, each of which comes with associated 

difficulties: 

1. Sensing and acquiring the current state of 

the transportation network of interest where 

a number of data values need to be detected 

and collected, including traffic conditions 

and parameters at different parts of the 

network, whether some roads are currently 

congested, current weather conditions, time 

of day, whether there is an incident on any 

road in the network, etc. Gathering such 

data on every road and intersection with the 

quality that allows accurate forecasting of 

travel time between two points in the 

network may be fairly expensive. 

2. Storing a long history of traffic parameters 

for the transportation network of interest to 

support future prediction of travel times. 

This historical dataset may be large and 

difficult to use and manage.  
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3. Feeding the current state of the network 

along with its traffic history to some type of 

model that predicts travel time if a trip will 

start from some point and end in another in 

the network at some specific time. 

Designing such a model is challenging, as 

is finding a set of current or historical 

parameters with real prediction power. The 

most useful model may be road dependent, 

and even for a single road, it has been 

shown that different models may describe 

the traffic behavior more accurately at 

different traffic conditions. For instance, 

one model may be more useful when the 

road is congested, while another model may 

be more accurate when vehicles are flowing 

freely, etc. 

In short, accurate traffic time prediction is 

challenging due to the high cost of sensing and 

collecting enough useful current and historical 

traffic data. Even when such data is available, it is 

still difficult to determine which type of model best 

describes the traffic behavior, and which traffic 

parameters should be fed to the model for the best 

predictions. Moreover, the best course of action may 

be to use two or more models and switch between 

them depending on current traffic conditions. This 

option adds a new challenge, as it is necessary to 

decide which model from the set of models will be 

used for some specific input data, or whether 

different models will be used for prediction with 

some weight applied to each output prediction to 

reach a final travel time prediction. 

In this paper, a new method for travel time 

prediction is proposed. This method uses a mixture 

of linear regressions motivated by the fact that travel 

time distribution is not unimodal, since two modes 

or regimes of traffic can exist—one at congestion 

state, and the other at free-flow state. The proposed 

model was built and tested using probe data 

provided by INRIX and supplemented with 

traditional road sensor data as well as mobile 

devices and other sources. The dataset was collected 

from a freeway stretch of I-66 eastbound connecting 

I-81 and Washington, D.C. The traffic on this stretch 

is often extremely heavy, which makes travel time 

prediction more challenging, but also makes the data 

more valuable and helps create a more realistic 

model. 

2 RELATED WORK 

Various methods and algorithms have been proposed 

in the literature for travel time prediction. These 

methods can roughly be classified into two main 

categories: statistical-based data-driven methods and 

simulation-based methods. This section focuses on 

the statistical-based methods since the proposed 

solution in this paper falls under this class of 

methods, and because more research in the literature 

uses statistical methods. 

Several researchers fit different regression 

models to predict travel time. A typical approach is 

to fit a multiple linear regression (MLR) model 

using explanatory variables representing 

instantaneous traffic state and historical traffic data, 

as, for example, (Rice and van Zwet, 2004, Zhang 

and Rice, 2003) . The model proposed in (1) was 

even able to use a single linear regression (SLR) to 

successfully provide acceptable travel time 

predictions. Some researchers developed hybrid 

methods where a regression model was used in 

conjunction with other advanced statistical methods. 

For example, (Kwon et al., 2000) used regression 

with statistical tree methods. Another approach 

(Chakroborty and Kikuchi, 2004) proposed an SLR 

model using bus travel time to predict automobile 

travel time. 

Regression models are generally powerful in 

predicting travel time for short-term prediction, 

whereas long-term predictions are less accurate. 

Regression models are also reported to be more 

suitable for use in free-flow rather than congested 

traffic, and fail to accurately predict when incidents 

have occurred (Guin et al., 2013). 

The idea of using a mixture models for different 

traffic regimes has also previously been explored 

(Guo et al., 2012). The model developed in this 

paper attempts to overcome the drawbacks of 

previous work that used mixture models of two or 

three components to model travel time reliability, 

which suffer from the following limitations: 

1. The mean of each component is not 

modeled as a function of the available 

predictors. 

2. The proportion variable is fixed at each 

time slot, which limits the model’s 

flexibility. 

3. Information provided given the time slot of 

the day is the probability of each 

component (fixed) and the 90th percentile. 

Another class of statistical-based methods in 

literature uses time series models for travel time 

prediction, using, for example, auto-regressive 

prediction models (Oda, 1990, Iwasaki and Shirao, 

1996, D'Angelo et al., 1999), multivariate time series 

models (Al-Deek et al., 1998), and the auto-
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regressive integrated moving average (ARIMA) 

technique (Williams and Hoel, 2003). Similar to 

regression models, time series models are more 

suitable for free-flow traffic than for congested 

traffic, may fail with unusual incidents, and are more 

accurate for short-term predictions (Guin et al., 

2013). 

Another common technique used for travel time 

prediction is the use of artificial neural networks. A 

feed-forward neural network is used in (A Cherrett 

et al., 1996) to predict journey time. Later, more 

advanced neural network techniques were used to 

model and predict travel time (Rilett and Park, 2001, 

Matsui, 1998, You and Kim, 2000, Guiyan and 

Ruoqi, 2003, Guiyan and Ruoqi, 2001, Wei et al., 

2003, . Kisgyorgy and Rilett, 2002). Accurate 

predictions were achieved for most proposed 

models; for example, in (Kisgyörgy and Rilett, 

2002) the prediction error was only 4%. 

3 METHODS 

In this section, we present a brief introduction of the 

powerful modeling techniques used in this paper. 

The random forest machine-learning algorithm (RF) 

is used to select a subset of important predictors for 

travel time modeling. Expectation-maximization 

(EM) is used to fit the mixture of linear regression 

models to the historical data. The techniques used 

are among a number of machine learning and 

statistical learning techniques representative of the 

wide variety of algorithms that can be used by 

transportation practitioners. 

3.1 Variables (Predictors) Selection  

The I-66 stretch of the freeway section used for this 

research consists of 64 segments. The dataset 

comprises the spatiotemporal speed matrices for 

every day in 2013. The default approach for 

modeling and predicting travel time was to take all 

the speeds within a window starting right before the 

departure time t0 and covering L past time slots 

back to time t0 − L. Setting L=30 minutes for 

example, the number of predictors will be 64*6 at 5 

minutes time aggregation. In order to reduce the 

dimensions of the predictors’ vector, RF is used to 

select the most important predictors for the travel 

time model. Steps to select the most important 

predictors are as follows (Breiman, 2001): 

1. For each month, build an RF consisting of 

100 trees and find the out-of-bag samples 

that are not used in the training for each 

tree. 

2. Find the mean square error MSEout of bagof 

the RF using the out-of-bag samples. 

3. Randomly permute the value for each 

predictor xi among the out-of-bag samples 

and calculate the mean square error 

MSEout of bag
permuted xi of the RF.   

4. Finally, rank the predictors in descending 

order based on the 
1

12
∑ (MSEout of bag

permuted xi −12
month=1

MSEout of bag) and choose the top m ranked 

predictors. 

The higher the predictor’s rank in step 4, the 

more important that predictor. The ranking result 

shows that, most of the important predictors are 

speeds of recent segments (t0 − 5). In addition to 

speed predictors chosen by RF, the historical 

average travel time at t0 given the day of the week is 

added as a predictor.  

3.2 Mixture of Linear Regressions 

A mixture of linear regressions was studied carefully 

(De Veaux, 1989, Faria and Soromenho, 2009). It 

can be used to model travel time under different 

traffic regimes. The mixture of linear regression can 

be written as: 

 f(y|X) = ∑
λj

σj√2π
e

− 
(y−XTβj)

2

2σj
2

 m
j=1   

(1) 

where yi is the response corresponding to a vector p 

of predictors;  xi
T ,βj is the vector of regression 

coefficients for the jth component and λj is mixing 

probability of the jth component.  

The model parameters 

ψ={β1, β2, . . . , βm, σ1
2, σ2

2, . . . , σm
2 , λ1, λ2, . . . , λm} can 

be estimated by maximizing the log-likelihood of 

equation (1) given a set of response predictor pairs 

(y1, x1), (y2, x2), . . . , (yn, xn) using an EM 

algorithm. The EM algorithm iteratively finds the 

maximum likelihood estimates by alternating the E-

step and M-step. Let ψ(k) be the parameters’ 

estimates after the kth iteration. In the E-step, the 

posterior probability of the ith observation from 

component j is computed using equation (2). 

wij
(k+1)

=
λj
(k)

ϕj(yi|xi, ψ
(k))

∑ λ
j

(k)
ϕj(yi|xi, ψ

(k))m
j=1

 (2) 
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where ϕj(yi|xi, ψ
(k)) is the probability density 

function of the jth component. 

In the M-step, the new parameters' estimates 

ψ(k+1) that maximize the log-likelihood function in 

equation (1) are calculated using equations (3-5) 

λj
(k+1)

=
∑ wij

(k+1)n
i=1

n
 

(3) 

β̂j
(k+1)

= (XTWjX)−1XTWjY (4) 

where X is the predictors’ matrix with n rows 

and (p + 1) columns, Y is the corresponding nx1 

response vector, and W is a nxn diagonal matrix 

which has  wij
(k+1)

 on its diagonal. 

σ̂j
2(k+1)

=
∑ wij

(k+1)n
i=1 (yi − xi

Tβ̂j
(k+1)

)2

∑ wij

(k+1)n
i=1

 
(5) 

The E-step and M-step are alternated repeatedly 

until the change in the incomplete log-likelihood is 

arbitrarily small as shown in equation (6). 

                |∏ ∑ λj
(k+1)

ϕj(yi|xi, ψ
(k+1))m

j=1
n
i=1 −

                ∏ ∑ λj
(k)

ϕj(yi|xi, ψ
(k))m

j=1
n
i=1 | < ξ  

(6) 

where ξ is a small number.  

4 DATA DESCRIPTION 

The freeway stretch of I-66 eastbound connecting I-

81 and Washington, D.C. was selected as the test 

site for this study. High traffic volumes are usually 

observed during morning and afternoon peak hours 

on I-66 heading towards Washington, D.C., making 

it an excellent environment to test travel time 

models. 

The traffic data was provided by INRIX, which 

mainly collects probe data by GPS-equipped 

vehicles, supplemented with traditional road sensor 

data, along with mobile devices and other sources 

(INRIX, 2012). The probe data covers 64 freeway 

segments with a total length of 74.4 miles. The 

average segment length is 1.16 miles, and the length 

of each segment is unevenly divided in the raw data 

from 0.1 to 8.22 miles. Figure 1 shows the study site 

and deployment of roadway segments. The raw data 

provides average speed for each roadway segment 

and was collected at 1-minute intervals.  

 

 

Figure 1: The study site on I-66 eastbound (source: 

Google Maps). 

We sorted the raw data was the roadway 

direction according to each TMC station’s 

geographic information (e.g., towards eastbound of 

I-66). Data was examined to check any overlapping 

or inconsistent stations along the route. Afterward, 

speed data was aggregated by time intervals (5 

minutes in this study) to reduce noise and smooth 

measurement errors. This way, the raw data was 

aggregated to the form of the daily data matrix along 

spatial and temporal intervals. Data was missing in 

the developed data matrix, so data input methods 

were conducted to estimate the missing data using 

values of neighboring cells. Finally, the daily 

spatiotemporal traffic state matrix was generated to 

model travel time. 

5 EXPERIMENTAL WORK  

The experimental work is divided into three parts. 

The first part is travel time modeling using a mixture 

of two linear regressions with fixed proportions 

(λ1, λ2) and comparing the proposed model with the 

linear regression model. The second part is travel 

time modeling using a mixture of two linear 

regressions with a variable proportions function of 

the same predictors used in the linear regression 

equations. The last part explains how the proposed 

model can be used to convey travel time reliability 

to users. 

5.1 Modeling Travel Time using a 
Mixture of Linear Regressions with 
Fixed Proportions  

The purpose of this section is to experimentally 

prove that a model using a mixture of two linear 

regressions is better than the one component linear 
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regression model. To show that, the proposed model 

is fitted to four months of the data then compared to 

the linear regression model. Three measures are used 

to compare the two models. The Mean Absolute 

Percentage Error (MAPE) and the Mean Absolute 

Error (MAE) are used to quantify the errors of both 

models with respect to the ground truth. MAPE is 

the average absolute percentage change between the 

predicted yi
ĵ
and the true values yi

j
. MAE is the 

absolute difference between the predicted and the 

true values. 

 MAPE =
100

IxJ
∑ ∑

|yi
j
− yi

ĵ
|

y
i
j

I
i=1

J
j=1                  (7) 

  MAE =
1

IxJ
∑ ∑ |yi

j
− yi

ĵ
|                I

i=1
J
j=1  (8) 

Here, J is the total number of days in the testing 

dataset; I is the total number of time intervals in a 

single day; and y and ŷ denote the ground truth and 

the predicted value, respectively, of the travel time 

for the time interval on the day. The lower the value 

of these error measures, the better the model. 

The other measure used for comparison is the 

histogram intersection. It measures how much the 

histogram of the predicted travel time, using a 

certain model, is similar to the histogram of ground 

truth travel time. The higher the value of the 

histogram intersection, the better the model, 
 

    H(y)⋂H(ŷ) =
1

Q
∑ min (Hq(y), Hq(ŷ))

Q
q=1  (9) 

 

where H(y) and H(ŷ) are the histograms of 

ground truth travel time and the predicted travel 

time, respectively. Table 1 shows values for the 

MAE, MAPE and the histogram intersection for 

models using a different number of top ranked 

predictors.  As shown in Table 1, for all models that 

are built using a different number of predictors, the 

models built using the proposed mixture of 

regressions are better than the linear regression 

models with smaller MAE, MAPE and greater 

histogram intersection. 

5.2 Travel Time Prediction 

Modeling travel time allows for travel time 

prediction, and conveying this information to 

travellers helps them make better decisions. If we 

are interested in providing travel time information, 

we usually convey the expected travel time as one 

value and sometimes also we provide upper and 

lower travel time bounds.  

Table 1: Comparison between One and Two Components 

Models. 

 MAE MAPE Similarity 

p m=1 
m=

2 
m=1 m=2 m=1 m=2 

6 

11 

16 

21 

26 

31 

36 

41 

46 

51 

56 

61 

66 

71 

76 

81 

86 

91 

96 

6.57 

6.39 

6.36 

6.32 

6.31 

6.32 

6.30 

6.30 

6.29 

6.23 

6.24 

6.18 

6.18 

6.20 

6.19 

6.20 

6.18 

6.19 

6.19 

5.22 

5.10 

5.05 

5.04 

5.06 

5.09 

5.08 

5.13 

5.12 

5.13 

5.12 

5.16 

5.16 

5.15 

5.15 

5.16 

5.19 

5.21 

5.22 

7.19 

6.99 

6.96 

6.89 

6.90 

6.90 

6.88 

6.88 

6.87 

6.80 

6.82 

6.77 

6.76 

6.79 

6.78 

6.79 

6.78 

6.79 

6.79 

5.69 

5.63 

5.57 

5.56 

5.59 

5.64 

5.62 

5.69 

5.68 

5.70 

5.69 

5.74 

5.74 

5.73 

5.73 

5.74 

5.78 

5.80 

5.80 

189 

192 

196 

200 

199 

198 

199 

200 

200 

208 

207 

215 

215 

216 

215 

215 

215 

214 

214 

217 

223 

224 

225 

227 

228 

228 

231 

232 

232 

232 

233 

234 

234 

233 

233 

233 

234 

234 
 

Conveying travel time as an interval makes more 

sense because it reflects the travel time uncertainty 

In this work, for a given unseen new vector of 

predictors, the mean of each component is 

determined and then travel time is predicted as a 

weighted average of the travel time means. The 

weights used are the λj′s. The travel time interval for 

the unseen predictors' vector is calculated as the 

weighted average of the 95% confidence interval for 

each component. To evaluate the proposed model in 

travel time prediction, the two regression mixture 

models are tested using four unseen months. MAPE 

and MAE are used to measure expected travel time 

accuracy. To evaluate the travel time interval, a 

hitting rate measure is defined as the ratio of the 

number of ground truth travel times within the 

calculated interval to the total number of ground 

truth travel times. Table 2 shows the MAPE, MAE, 

hitting rate, and travel time width at different 

number of predictors. As shown in the table, the 

models built using 16 or more predictors have 

almost the same accuracy. The parameters' estimates 

for the model using a predictor vector of 16 

dimensions are shown in Table 3. Figure 2 gives a 

better idea of how good the predicted travel times 

and intervals are.    
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Table 2: Travel Time Accuracy in Terms of MAPE and 

MAE, Travel Time Interval's Width and Hitting Rate. 

p MAPE MAE 
% Hitting 

rate 

Interval 

width in 

minutes 

6 

11 

16 

21 

26 

31 

36 

41 

46 

51 

56 

61 

66 

71 

76 

81 

86 

91 

96 

7.97 

7.74 

7.70 

7.70 

7.69 

7.68 

7.67 

7.67 

7.68 

7.68 

7.70 

7.69 

7.69 

7.69 

7.70 

7.71 

7.74 

7.73 

7.73 

7.64 

7.43 

7.39 

7.37 

7.36 

7.35 

7.34 

7.34 

7.34 

7.33 

7.34 

7.32 

7.32 

7.32 

7.32 

7.33 

7.34 

7.33 

7.33 

81.9 

81.1 

81.0 

80.9 

80.8 

80.6 

80.6 

80.4 

80.5 

80.4 

80.5 

80.4 

80.4 

80.4 

80.3 

80.4 

80.2 

80.1 

80.1 

26.4 

24.7 

24.5 

24.4 

24.3 

24.1 

24.1 

23.9 

23.8 

23.8 

23.8 

23.7 

23.7 

23.6 

23.6 

23.5 

23.5 

23.4 

23.4 

Table 3: Parameters' Estimates for Mixture of Two 

Regressions*. 

 
1st 

component 

2nd 

component 

𝛽 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

𝑥29,𝑡0−1 

𝑥2,𝑡0−1 

𝑥28,𝑡0−1 

𝑥18,𝑡0−1 

𝑥27,𝑡0−1 

𝑥40,𝑡0−1 

𝑥25,𝑡0−1 

𝑥14,𝑡0−1 

𝑥29,𝑡0−2 

𝑥1,𝑡0−1 

𝑥39,𝑡0−1 

𝑥21,𝑡0−1 

𝑥24,𝑡0−1 

𝑥19,𝑡0−1 

𝑥30,𝑡0−1 

𝑥13,𝑡0−1 

79.4354 

-0.0153 

-0.0903 

-0.0668 

-0.0912 

0.0187 

-0.2107 

-0.0652 

-0.0245 

-0.0106 

-0.0745 

-0.0174 

-0.0203 

-0.0742 

0.0075 

-0.1269 

0.6767 

96.5943 

-0.0148 

-0.0250 

0.0061 

-0.0519 

-0.0449 

-0.1107 

-0.0603 

-0.0136 

-0.0224 

-0.0150 

-0.0331 

-0.0252 

-0.0239 

-0.0078 

-0.0558 

0.0834 

𝜎2 11.8066 1.7746 

𝜆 0.4466 0.5534 

*(In this table x_(seg#,time) is the speed at certain segment and 

time) 

 

 

Figure 2: Travel time ground truth (red), predicted travel 

time (cyan), and travel time interval (blue). 

5.3 Travel Time Reliability  

Travel time reliability is another piece of 

information that can be conveyed to drivers using 

the travel time model. Using the proposed model, a 

traveler can be informed of probabilities for 

congestion and free-flow. Moreover, the expected 

and 90th percentile travel times for each regime can 

be provided. In order to get good estimates for the 

above quantities, the proportions should be functions 

of the predictors. Revisiting the EM algorithm, it 

estimates the posterior probabilities wij and model 

parameters ψ, and returns only ψ at convergence 

without using wij. As shown in equation (4), the 

returned λj is the average of the posterior 

probabilities wij. In the two components model, if 

wij is modeled using logistic regression at the 

convergence of the EM, this means that λj becomes 

a function of the predictors as well as the 

components' means. Values of wij are used, which 

result from fitting the model shown in Table 3 to 

build a logistic regression. This logistic regression 

models the probability of the predictor vector being 
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drawn from component number two. Then, using 

simple algebraic manipulation, equation (10) is 

derived for λ2 . The new model is the same model in 

Table 3 but with variable λ2and λ1. 
 

λ2 = 1/1 − exp([1 x29,t0−1 x18,t0−1 

x40,t0−1 x25,t0−1 x14,t0−1 x1,t0−1 

x21,t0−1 x30,t0−1 x13,t0−1]

[
 
 
 
 
 
 
 
 
 
−1.8828
−0.0249
−0.0062
−0.0114
−0.0305
−0.0155
−0.0141
−0.0131
0.0042
0.0896 ]

 
 
 
 
 
 
 
 
 

)  (10) 

This model is tested by calculating the mean, 

90th percentile, and probabilities of congestion and 

free-flow for each predictor vector in each day of 

May 2013. Then a day is divided into four time 

intervals and the mean of the above quantities is 

calculated within each time interval given the day. 

The results shown in Table 4 are consistent with the 

travel time pattern observed in Table 3, where the 

probability of the congestion component increases at 

the congestion time of the day. Also, the model 

shows that the probability values of morning 

congestion during weekends are lower than on 

weekdays. 

6 CONCLUSIONS  

In this paper, we demonstrated the effectiveness of a 

travel time model based on a two component 

mixture of linear regressions. The proposed model 

captures the stochastic nature of travel time, and 

assigns one component for the free-flow regime and 

the other component for the congested regime. The 

means of the components are a function of the input 

predictors, which are chosen using a random forest 

algorithm. The proposed model can be used to 

predict the travel time and the upper and lower 

bounds for the travel time as well. Moreover, the 

proposed model can be used to provide travel time 

reliability information at any time on any day. The 

experimental results show the proposed algorithm’s 

performance to be promising. The current model 

does not consider weather conditions, incidents, or 

work zones; however, this model can easily integrate 

these factors if a dataset including them is available. 

 

Table 4: Testing the Model for Travel Time Reliability Using May 2013 Data. 

 

1:40 a.m.– 

4:55 a.m. 

5:00 a.m.– 

10:00 a.m. 

10:05 a.m.– 

3:00 p.m. 

3:05 a.m.– 

7:00 p.m. 

congested 
free-

flow 

congeste

d 

free-

flow 
congested 

free-

flow 
congested 

free-

flow 

Tues 

Mean (min) 87.07 73.07 127.66 85.51 94.88 75.53 120.96 81.44 

90th percentile (min) 71.94 70.80 112.53 83.23 79.75 73.25 105.83 79.17 

probability 0.0046 0.9954 0.8241 0.1759 0.1334 0.8666 0.8516 0.1484 

Wed 

Mean (min) 87.09 73.09 127.71 85.65 95.45 75.91 121.44 81.85 

90th percentile (min) 71.96 70.82 112.58 83.37 80.32 73.63 106.31 79.57 

probability 0.0051 0.9949 0.8114 0.1886 0.1488 0.8512 0.8684 0.1316 

Thurs 

Mean (min) 87.41 73.28 127.01 85.02 96.26 76.23 122.50 82.55 

90th percentile (min) 72.28 71.00 111.87 82.75 81.13 73.96 107.37 80.28 

probability 0.0050 0.9950 0.8035 0.1965 0.1581 0.8419 0.9057 0.0943 

Fri 

Mean (min) 87.24 73.12 119.99 81.62 95.53 75.95 122.95 82.96 

90th percentile (min) 72.11 70.84 104.86 79.34 80.40 73.67 107.82 80.69 

probability 0.0045 0.9955 0.7499 0.2501 0.1432 0.8568 0.9146 0.0854 

Sat 

Mean (min) 87.47 73.30 109.75 75.64 98.78 78.32 123.52 83.33 

90th percentile (min) 72.34 71.03 94.62 73.36 83.65 76.05 108.39 81.06 

probability 0.0048 0.9952 0.5760 0.4240 0.3129 0.6871 0.9588 0.0412 

Sun 

Mean (min) 86.84 73.07 110.00 76.00 99.38 78.38 120.64 81.81 

90th percentile (min) 71.71 70.80 94.87 73.73 84.25 76.11 105.51 79.54 

Probability 0.0038 0.9962 0.5908 0.4092 0.3237 0.6763 0.9145 0.0855 

Mon 

Mean (min) 87.19 73.18 122.06 82.46 93.21 74.46 117.66 79.51 

90th percentile (min) 72.06 70.90 106.93 80.18 78.08 72.19 102.53 77.24 

Probability 0.0046 0.9954 0.7524 0.2476 0.0738 0.9262 0.8304 0.1696 
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