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Abstract: Virtual Machines (VMs) live migration is one of the important approaches to improve resource utilisation and 

support energy efficiency in Clouds. However, VMs live migration leads to performance loss and additional 

costs due to increased migration time and energy overhead. This paper introduces a Performance and Energy-

based Cost Prediction Framework to estimate the total cost of VMs live migration by considering the resource 

usage and power consumption, while maintaining the expected level of performance. A series of experiments 

conducted on a Cloud testbed show that this framework is capable of predicting the workload, power 

consumption and total cost for heterogeneous VMs before and after live migration, with the possibility of 

recovering the migration cost e.g. 28.48% for the predicted cost recovery of the VM. 

1 INTRODUCTION 

With the increasing cost of electricity, cloud 

providers consider energy consumption as one of the 

biggest operational cost factors to be managed within 

their infrastructures. Most of the existing studies have 

focused on minimising the energy consumption and 

maximising the total resource usage, instead of 

improving the performance. Further, cloud providers 

such as Amazon1, have established their Service 

Level Agreements (SLAs) based on service 

availability without such an assurance of the 

performance. For instance, during service operation, 

when the number of VMs increases on the same 

Physical Machine (PM) stretching its capacity to its 

limits, resource competition may occur (e.g. once the 

workload exceeds the acceptable level of CPU such 

as 85% threshold) leading to VMs performance 

degradation which may affect the fulfilment of the 

SLAs and hence the cloud provider’s revenue. Hence 

to prevent such performance loss effects, it is 

necessary to have preventive actions such as re-

allocating and migrating VMs.  

VMs live migration is an important mechanism to 

improve resource utilisation and achieve energy 

efficiency in Clouds. Live migration allows VMs to 

                                                           
1 https://aws.amazon.com/ec2/sla/ 

move from one PM to another without any 

interruption in the service. This mechanism plays an 

important role in load balancing among the PMs and 

reduce the overall energy consumption. However, 

VMs live migration is a resource-intensive operation 

which has an impact on the performance of the 

migrating VM as well as the services running on other 

VMs. Besides, there are additional costs in terms of 

migration time and energy overhead that need further 

consideration. Hence, understanding the impact of 

VM live migration is essential to design an effective 

consolidation strategy. 

Previous studies show that in most situations, live 

migration overhead is acceptable but cannot be 

ignored as stated in (Voorsluys et al., 2009; Liu et al., 

2013). Consequently, predicting the future cost of 

cloud services can help the service providers offer 

suitable services that meet their customers’ 

requirements. Thus, a proactive framework has the 

advantage of taking preventive actions (e.g. re-

allocating or auto-scaling VMs) at earlier stages to 

avoid service performance degradation. The 

effectiveness of such framework will depend on 

potential actuators/decisions to implement at service 

operation. 

The first step towards this is a Performance and 

Energy-based Cost Prediction Framework that 
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supports the potential actuators (e.g. migrating VMs) 

to handle the performance variation. Therefore, this 

framework is proposed to predict PMs, and VMs 

workload using an Autoregressive Integrated Moving 

Average (ARIMA) model. The relationship between 

the predicted VMs and PMs workload (CPU 

utilisation) is investigated using regression models in 

order to estimate the VMs power consumption, as 

well as predict the total cost and the recovery cost of 

the VMs incurred by live migration. This paper’s 

main contributions are summarised as follows: 

 A Performance and Energy-based Cost Prediction 

Framework that predicts the migration cost for 

heterogeneous VMs by considering their 

performance, resource usage and power 

consumption. 

 An evaluation of the proposed framework in an 

existing Cloud testbed in order to verify the 

capability of the prediction models. 

The remainder of this paper is organised as 
follows: a discussion of the related work is 
summarised in Section 2. Section 3 presents the 
performance and energy-based cost prediction 
framework. Section 4 presents the experimental setup 
followed by results and discussion in Section 5. 
Finally, Section 6 concludes this paper and discusses 
the future work. 

2 RELATED WORK 

Previous work has addressed specific issues relating 

to the cost of the VM live migration in a Cloud 

environment. For example, a survey study for several 

approaches to determining the costs of VM live 

migration and the parameters that may influence the 

migration costs is presented in (Strunk, 2012). 

According to the paper’s findings, the live migration 

process increases the resource usage on both the 

source and destination PMs which present a non-

trivial operating cost. However, the energy overhead 

and the performance loss during live migration were 

not considered.  

The energy consumption during VM live 

migration has been investigated in various research 

studies. For instance, a model to estimate energy 

overhead of migrated VM by means of linear 

regression considering memory and network 

bandwidth as key parameters; is presented in (Strunk, 

2013). Consequently, this model cannot be applied to 

a real-world scenario since it only considers idle 

VMs. 

Other work in the literature has shown that VM 

performance may be substantially affected during 

migration. For instance, methods that consider VM 

performance degradation caused by VM migration 

when making the placement decision are proposed in 

(Xu, Liu and Jin, 2016; Melhem et al., 2017). The 

results showed that placement of VMs on PMs is a 

critical task as it directly affects the performance of 

the VMs. However, both of the studies presented 

above do not consider the energy overhead when 

designing the models. 

Several prediction techniques have been proposed 

to predict over-loaded and under-loaded hosts. For 

example, a model that predicts the PMs workload for 

early detection of over-loads PMs then triggers a 

migration decision in order to avoid the performance 

loss in advance is presented in (Raghunath and 

Annappa B., 2017). However, the experiment is based 

on homogeneous PMs and does not consider the 

migration cost.  

Compared with the work presented in this paper, 

our approach considers the heterogeneity of 

PMs/VMs with respect to predicting the performance 

variation, resource usage, power consumption and the 

total migration cost. 

3 PERFORMANCE AND 

ENERGY-BASED COST 

PREDICTION FRAMEWORK 

In this paper, we extend our work (Aldossary, 

Alzamil and Djemame, 2017) and introduce a new 

Performance and Energy-based Cost Prediction 
Framework. This framework is aimed towards 

predicting PMs/VMs workload and power 

consumption as well as predict the total cost and the 

recovery cost of the VMs incurred by live migration, 

as depicted in Figure 1.  

 

Figure 1: Performance and Energy-based Cost Prediction 

Framework. 
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To achieve this aim, several steps are required in 

order to predict the PMs/VMs workload and power 

consumption, then estimate the total cost of the 

migrated VMs as explained below. The list of 

parameters and their notations is shown in Table 1. 

Step 1: to monitor the PMi workload, monitoring 

system is used. The max_upper and upper thresholds 

(e.g. 85% and 75%) are set. If the PMi workload 

equals or exceeds the max_upper threshold (e.g. 

85%), VM live migration is performed as shown in 

Algorithm 1. 

Step 2: if the PMi workload equal or exceeds the 

upper threshold (e.g. 75%) but is less than the 

max_upper threshold (e.g. 85%), then predict the PMi 

workload for the next time interval (e.g. every 5 

minutes) using the ARIMA model based on historical 

workload patterns. This prediction helps detect the 

workload and avoid unnecessary migration caused by 

the small peaks in the workload (false alert). If the 

predicted workload for the next interval exceeds the 

max_upper threshold, VM live migration is 

performed as shown in Algorithm 1. 

Table 1: List of parameters and their notations. 

PMi 

PMj 

VMx 

C_CPU_PM 

C_RAM_PM 

U_CPU_PM 

U_RAM_PM 

C_CPU_VM 

C_RAM_VM 

U_CPU_VM 

U_RAM_VM 

the source PM 

the destination PM 

the candidate VM to migrate 

total CPU capacity of the PM 

total memory capacity of the PM 

used CPU capacity of the PM (∑ (vCPU𝑉𝑀_𝐶𝑜𝑢𝑛𝑡
𝑦=1 )) 

used memory capacity of the PM (∑ (RAM𝑉𝑀_𝐶𝑜𝑢𝑛𝑡
𝑦=1 )) 

total CPU capacity of the VM 

total memory capacity of the VM 

used CPU capacity of the VM  

used memory capacity of the VM  

Algorithm 1: Performance Prediction. 

   Initialise: PMi workload = 
U_CPU_PM𝑖

C_CPU_PM𝑖
 +  

U_RAM_PM𝑖

C_RAM_PM𝑖
; 

   PMi max_upper threshold = 0.85 × (C_CPU_ PMi, C_RAM_ PMi);     

   PMi upper threshold = 0.75 × (C_CPU_ PMi, C_RAM_ PMi); 

   Predicted workload = null. 

   Input: PMs list. 

      1: for each (PMi in PMs list) do 

      2:  if (PMi workload ≥ PMi max_upper threshold) then 

      3:     {perform VM live migration using (Algorithm 2); break.} 

      4:          else 

      5:  if (PMi workload ≥ PMi upper threshold) &&  

                    (PMi workload < PMi max_upper threshold) then 

      6:      Predicted workload ⟵ predict the (PMi workload) for the 

                                                        next interval using the ARIMA model. 

      7:      PMi workload = Predicted workload; 

      8:  end if 

      9:  end if 

      10: end for 

Step 3: the proposed Algorithm 2 is used to 

identify the candidate VMx to be migrated and the 

destination PMj to host it. The PMs are ranked in 

increasing order according to their workload whereas 

the VMs are ranked in decreasing order of their 

workload. Starting with the PMj with the lowest 

workload, the task is to select a matching candidate 

VMx for migration, considering firstly the one with 

the highest workload. This ensures 1) the candidate 

VMx does not overload the destination PMj, and 2) 

the source PMi workload decreases significantly once 

migration has taken place. 

Algorithm 2: VM Selection for Migration and PM 

Allocation. 

   Initialise: VMx workload = 
U_CPU_VM𝑥

C_CPU_VM𝑥
 +  

U_RAM_VM𝑥

C_RAM_VM𝑥
 ;  

   PMj workload = 
U_CPU_PM𝑗

C_CPU_PM𝑗
 +  

U_RAM_PM𝑗

C_RAM_PM𝑗
;  

   PMj max_upper threshold = 0.85 × (C_CPU_ PMj, C_RAM_ PMj); 

   PM power = 
PM𝑖 (idle power)

PM𝑗 (idle power)
 ; // to check the energy efficiency. 

   Destination PMj = null, Candidate VMx = null. 

   Input: PMs list, VMs list. 

   Output: Candidate VMx, Destination PMj. 

      1: Sort the PMs list in increasing order of the workload; 

      2: Sort the VMs list on PMi in a decreasing order of the workload; 

      3: for each (PMj in PMs list) do 

      4:     for each (VMx in VMs list) do 

      5:         if (PM power > 1) && ((PMj workload + VMx workload) <  

                                                           PMj max_upper threshold) then 

               {Destination PMj = PMj; Candidate VMx = VMx; break.}  

      6:         end if 

      7:     end for 

      8: end for 

      9: return (Candidate VMx, Destination PMj). 

After identifying the candidate VMx and the 

destination PMj, ARIMA model is used to predict the 

candidate VMx workload (including CPU, memory, 

disk and network) utilisation and identify the best fit 

model. The ARIMA model is a time series prediction 

model that has been used widely in different domains, 

including finance, owing to its sophistication and 

accuracy. Unlike other prediction methods, like 

sample average, ARIMA takes multiple inputs as 

historical observations and outputs multiple future 

observations depicting the seasonal trend; further 

details about the ARIMA model can be found in (Box 

et al., 2015). Once the candidate VMx workload is 

predicted using the ARIMA model based on historical 

data, the next step is to predict the PMs workload and 

PMs/VMx power consumption using regression 

models. Before predicting the power consumption for 

PMs/VMx, understanding how the resource usage 

affects the power consumption is required. Therefore, 

an experimental study is setup to investigate the 

effects of the resource usage on the power 

consumption. An experiment was carried out on a 

local Cloud Testbed (see Section 4), and the findings 

show that the CPU utilisation correlates well with the 

power consumption, as supported, for example, by 

(Dargie, 2015).  

Step 4: to predict the PMs workload represented 

as (PMs CPU utilisation), would require measuring 

the relationship between the number of Virtual CPUs 
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(vCPU) and the PM CPU utilisation for the PMs, as 

shown in Figures 2 and 3. 

 

Figure 2: Number of vCPUs (VMx) vs PM CPU Utilisation 

(Source PMi). 

 

Figure 3: Number of vCPUs (VMx) vs PM CPU Utilisation 

(Destination PMj). 

A linear regression model has been applied to 

predict the PMs CPU utilisation based on the used 

ratio of the requested number of vCPU for the VMx 

with consideration of its current workload as the PMs 

may be running other VMs already (Alzamil and 

Djemame, 2016). The following equation is used (1): 

PM𝑖𝑃𝑟𝑒𝑑_𝑈 = (α × (∑ (VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀_𝐶𝑜𝑢𝑛𝑡
𝑦=1 ×

𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈

100
)) +

                            𝛽) + (𝑃𝑀𝑖𝐶𝑢𝑟𝑟_𝑈 − 𝑃𝑀𝑖𝐼𝑑𝑙𝑒_𝑈)                    

(1) 

PM𝑖𝑃𝑟𝑒𝑑_𝑈 is the predicted PMi CPU utilisation; 

 is the slope and  is the intercept of the CPU 

utilisation. The VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠  is the number of 

requested vCPU for each VM and 𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈 is the 

predicted utilisation for each VM. The 𝑃𝑀𝑖𝐶𝑢𝑟𝑟_𝑈 is 

the current PMi utilisation and 𝑃𝑀𝑖𝐼𝑑𝑙𝑒_𝑈 is the idle 

PMi utilisation. Consequently, the workload for the 

destination PMj will be predicted using Equation 1, 

but substituting PMi with PMj. 

Step 5: the PMi power consumption is predicted 

based on the relationship between the predicted PMi 

workload (PMi CPU utilisation) with PMi power 

consumption on the PMi. Using a regression analysis, 

the relation is best described as linear regression for 

this particular PMi, as shown in Figure 4. 

 

Figure 4: The PM CPU Utilisation vs Power Consumption 

(Source PMi). 

Thus, the predicted PMi power consumption 

PM𝑖𝑃𝑟𝑒_𝑃 measured by Watt, can be identified using 

the following formula (2). 

PM𝑖𝑃𝑟𝑒𝑑_𝑃 = (α ×  PM𝑖𝑃𝑟𝑒𝑑_𝑈 +  𝛽)            (2) 

Where  is the slope,  is the intercept and 

PM𝑖𝑃𝑟𝑒𝑑_𝑈 is predicted PMi CPU utilisation. 

In the destination PMj using a regression analysis, 

the relation is best described using a polynomial 

model with order three for this particular PMj, as 

shown in Figure 5. 

 

Figure 5: The PM CPU Utilisation vs Power Consumption 

(Destination PMj). 

Thus, the predicted PMj power consumption 

PM𝑗𝑃𝑟𝑒𝑑_𝑃 measured by Watt, can be identified using 

the following formula (3). 

Where ,  and  are all slopes,  is the intercept 

and PM𝑗𝑃𝑟𝑒𝑑_𝑈 is predicted PMj CPU utilisation. 

Step 6: based on the requested number of vCPU 

and the predicted vCPU utilisation, the VMx power 

consumption is predicted on PMi using the proposed 

formula, as shown in equation (4). 

 

PM𝑗𝑃𝑟𝑒𝑑_𝑃 = (α(PM𝑗𝑃𝑟𝑒𝑑_𝑈)3 +  γ(PM𝑗𝑃𝑟𝑒𝑑_𝑈)2

+  δ(PM𝑗𝑃𝑟𝑒𝑑_𝑈)  +  𝛽) 
(3) 
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VM𝑥𝑃𝑟𝑒𝑑_𝑃_𝑃𝑀𝑖 = 𝑃𝑀𝑖𝐼𝑑𝑙𝑒_𝑃  ×  ( 
VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠

∑ VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀_𝑐𝑜𝑢𝑛𝑡
𝑦=1  

) +

(𝑃𝑀𝑖𝑃𝑟𝑒𝑑_𝑃 − 𝑃𝑀𝑖𝐼𝑑𝑙𝑒_𝑃) ×

(  
VM𝑥(𝑃𝑟𝑒𝑑_𝑈×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)

∑ VM𝑥(𝑃𝑟𝑒𝑑_𝑈×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)
𝑉𝑀_𝑐𝑜𝑢𝑛𝑡
𝑦=1

 )              

(4) 

Where VM𝑥𝑃𝑟𝑒𝑑_𝑃_𝑃𝑀1 is the predicted power 

consumption for VMx running on the PMi measured 

by Watt. VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠  is the requested number of 

vCPU and VM𝑥𝑝𝑟𝑒𝑑_𝑈 is the predicted VM CPU 

utilisation. ∑ VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀_𝑐𝑜𝑢𝑛𝑡
𝑦=1   is the total 

requested number of vCPU for all VMs on the PMi. 

𝑃𝑀𝑖𝐼𝑑𝑙𝑒_𝑃 is the idle power consumption and 

𝑃𝑀𝑖𝑃𝑟𝑒𝑑_𝑃  is the predicted power consumption for 

PMi. Hence, the VMx power consumption on the 

destination PMj will be predicted using Equation 4, 

but substituting PMi with PMj. 

The energy providers usually charge by the 

Kilowatt per hour (kWh). Therefore, the conversion 

of the power to energy VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 is required 

using the following equation (5): 

VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 =  
VM𝑥𝑃𝑟𝑒𝑑_𝑃_𝑃𝑀𝑖

1000
               (5)  

Substituting PMi with PMj to get the energy 

consumption for the VMx on the destination PMj. 

Step 7: this step predicts the total cost for the 

migrated VMx based on the predicted VMx resource 

usage in step 3 and the predicted VMx energy 

consumption in step 6.  

The total time required for migrating the VMx can be 

given by: 

𝑇𝑚𝑖𝑔 = (𝑇𝑚𝑖𝑔_𝑒𝑛𝑑 − 𝑇𝑚𝑖𝑔_𝑠𝑡𝑎𝑟𝑡)             (6) 

𝑇𝑟𝑢𝑛_𝑠𝑜𝑢 = (𝑇𝑟𝑢𝑛_𝑠𝑜𝑢_𝑏𝑒𝑓_𝑚𝑖𝑔 +  𝑇𝑚𝑖𝑔)        (7) 

𝑇𝑟𝑢𝑛_𝑑𝑒𝑠 = (𝑇𝑟𝑢𝑛_𝑑𝑒𝑠_𝑎𝑓𝑡_𝑚𝑖𝑔 + 𝑇𝑚𝑖𝑔)         (8)  

where 𝑇𝑚𝑖𝑔  is the VMx total migration time measured 

by seconds. 𝑇𝑚𝑖𝑔_𝑠𝑡𝑎𝑟𝑡 is the time when the migration 

is started and 𝑇𝑚𝑖𝑔_𝑒𝑛𝑑 is the time when the migration 

is ended. 𝑇𝑟𝑢𝑛_𝑠𝑜𝑢 is the running time of the VMx on 

the PMi before migration starts plus the migration 

time 𝑇𝑚𝑖𝑔 itself and 𝑇𝑟𝑢𝑛_𝑠𝑜𝑢_𝑏𝑒𝑓_𝑚𝑖𝑔 is the running time 

of the VMx before migration. 𝑇𝑟𝑢𝑛_𝑑𝑒𝑠 is the running 

time of the VMx on the PMj during and after 

migration and 𝑇𝑟𝑢𝑛_𝑑𝑒𝑠_𝑎𝑓𝑡_𝑚𝑖𝑔 is the running time of 

the VMx after migration. 

To predict the total cost for VMx before 

migration, equation (9) is proposed: 

VM𝑥𝑃𝑟𝑒𝑑_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 = ((VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠_𝑃𝑀𝑖 ×

𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈_𝑃𝑀𝑖

100
) × (𝐶𝑜𝑠𝑡_𝑣𝐶𝑃𝑈 ×  𝑇𝑟𝑢𝑛_𝑠𝑜𝑢)) +

(VM𝑥𝑃𝑟𝑒𝑑_𝑅_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝑟𝑢𝑛_𝑠𝑜𝑢)) +

(VM𝑥𝑃𝑟𝑒𝑑_𝐷_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝑟𝑢𝑛_𝑠𝑜𝑢)) +

(VM𝑥𝑃𝑟𝑒𝑑_𝑁_𝑈_𝑃𝑀𝑖 × (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝑟𝑢𝑛_𝑠𝑜𝑢)) +

(VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝑘𝑊ℎ ×  𝑇𝑟𝑢𝑛_𝑠𝑜𝑢))     

(9) 

where VM𝑥𝑃𝑟𝑒𝑑_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 is the predicted total cost 

of the VMx before and during migration on the source 

PMi. VM𝑥𝑃𝑟𝑒𝑑_𝑅_𝑈_𝑃𝑀𝑖  is the predicted resource usage 

of RAM times the cost for that resource for a period 

of time. We consider the similar notation for the CPU, 

disk and network resources on PMi. VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 is 

the predicted energy consumption of the VMx times 

the electricity cost as announced by the energy 

providers. Thus, the total cost of the VMx during and 

after migration on the destination PMj will be 

predicted using Equation 9, but substituting PMi with 

PMj and so on for each resource such as CPU, RAM, 

disk, network and energy. 

Step 8: finally, this step compares the predicted 

total cost of VMx before live migration with the 

predicted total cost of the same VMx after live 

migration, in order to check the ability to recover the 

costs incurred by live migration, as shown in 

Algorithm 3. 

Algorithm 3: Migration Cost Recovery. 

   Initialise: VMx Cost Before Migration = VM𝑥𝑃𝑟𝑒𝑑_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖;  

   VMx Cost After Migration = VM𝑥𝑃𝑟𝑒𝑑_𝐶𝑜𝑠𝑡_𝑃𝑀𝑗. [as explained in Section     

3. Step 7]. 

   Input: VMs list. 

   Output: Boolean Cost Recovery list. 

      1: for each (VMx in VMs list) do  

      2:     if (VMx Cost After Migration ≤ VMx Cost Before Migration) then 

      3:         Cost Recovery list = true; // The cost of migration is recovered.  

      4:             else 

      5:  Cost Recovery list = false; // The cost of migration is not    

recovered.  

      6:     end if 

      7:     end for 

      8: return Cost Recovery list. 

4 EXPERIMENTAL SETUP 

This section describes the environment and the details 

of the experiments conducted in order to evaluate the 

proposed Performance and Energy-based Cost 

Prediction Framework. The prediction process starts 

by firstly predicting the PMs/VMs workload using the 
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(auto.arima) function in R package2 and then 

completing the cycle of the framework and 

considering the correlation between the physical and 

virtual resources to predict power consumption of the 

VMs on a multiple PMs. After that, the total cost is 

predicted for the VMs based on their predicted 

workload and power consumption. 

A number of experiments have been designed and 

implemented on a local Cloud Testbed with the 

support of the Virtual Infrastructure Manager (VIM), 

OpenNebula3 version 4.10, and KVM hypervisor for 

the Virtual Machine Manager (VMM). This Cloud 

Testbed includes a cluster of 8 commodity Dell 

servers, and two of these servers with four core 

X3430 and eight core E31230 V2 Intel Xeon CPU 

were used. The servers include 16GB RAM and 

1000GB hard drives. Also, each server has a Watt 

meter4 attached to directly measure the power 

consumption. Heterogeneous VMs are created and 

their monitoring is performed through Zabbix5, which 

is also used for resources usage monitoring. 

Rackspace6 is used as a reference for the VMs 

configurations. Three types of VMs, small, medium 

and large are provided with different capacities. The 

VMs are allocated with 1, 2 and 4 vCPUs, 1, 2 and 4 

GB RAM, 10 GB disk and 1 GB network, 

respectively. The cost of the virtual resources are set 

according to ElasticHosts7 and VMware8; and the cost 

of Energy according to CompareMySolar9. 

In terms of the workload patterns, Cloud 

applications can experience different workload 

patterns based on the customers’ usage behaviours, 

and these workload patterns consume power 

differently based on the resources they utilise. Several 

cloud workload patterns are identified in (Fehling et 

al., 2014). The periodic workload pattern is 

considered as it fits nicely with the performance 

variation modelling. Thus, a number of direct 

experiments have been conducted to synthetically 

generate periodic workload by using Stress-ng10 in 

order to stress all resources on different types of VMs. 

The generated workload of each VM type has four 

time intervals of 30 minutes each. The first three 

intervals will be used as the historical data set for 

prediction, and the last interval will be used as the 

testing data set to evaluate the predicted results.  

                                                           
2 http://www.r-project.org/ 
3 https://opennebula.org/ 
4 https://www.powermeterstore.com 
5 https://www.zabbix.com/ 
6 https://www.rackspace.com/cloud/servers/pricing 

5 RESULTS AND DISCUSSION 

This section presents the quantitative evaluation of 

the Performance and Energy-based Cost Prediction 

Framework. The figures below show the predicted 

results for three types of VMs, small, medium and 

large, running on a multiple PMs based on historical 

periodic workload pattern. Because of space 

limitation, only small VM results are shown. 

In Algorithm 1, when PMi is overloaded and 

exceeds the predefined (upper threshold), instead of 

immediately migrating VMs, the prediction model is 

used to minimise the number of VM migrations and 

avoid unnecessary migrations caused by the small 

peaks in the workload. However, when PMi is 

overloaded and exceeds the predefined (max_upper 

threshold), the proposed Algorithm 2 is used to 

migrate the candidate VMx, in order to reduce the 

overloaded PMi and allocate the VMx on appropriate 

PMj which have sufficient resources and potentially 

more energy efficient. It is also checked that the 

destination PMj utilisation will not exceed the 

max_upper threshold for reallocating of the incoming 

VMx. Figure 6 shows the predicted versus the actual 

PMs workload when the VMs run CPU-intensive 

workload. In order to achieve the live migration 

without degrading the performance, both the PMi and 

PMj (CPU and RAM) resources need to be carefully 

managed. Since the PMi max_upper threshold (85%) 

predefined and PMj have available resources to 

accept the candidate VMx, thus the performance 

during live migration is not affected. 

 

Figure 6: Predicted vs Actual in both PMs (Source PMi and 

Destination PMj). 

Figure 7 (a, b, c and d) depict the results of the 

migrated VMx predicted versus the actual workload, 

including CPU, RAM, disk, and network usage for 

7 https://www.elastichosts.co.uk/pricing/ 
8 https://www.vmware.com/cloud-services/pricing-guide 
9 http://blog.comparemysolar.co.uk/electricity-price-per-

kwh-comparison-of-big-six-energy-companies/ 
10 http://kernel.ubuntu.com/~cking/stress-ng/ 
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the VMx. Despite the periodic utilisation peaks, the 

predicted VMx CPU, RAM and network workload 

results closely match the actual results, which reflects 

the capability of the ARIMA model to capture the 

historical seasonal trend and give a very accurate 

prediction accordingly. The predicted VMx disk 

workload is also matching the actual workload, but 

with less accuracy as compared to the CPU, RAM and 

network prediction results. This can be justified 

because of the high variations in the generated 

historical periodic workload pattern of the disk not 

closely matching in each interval. Beside the 

predicted mean values, the figures also show the high 

and low 95% and 80% confidence intervals. 

In terms of prediction accuracy, a number of 

metrics have been used to evaluate the results, such 

as Mean Error (ME), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Mean 

Percentage Error (MPE), and Mean Absolute 

Percent Error (MAPE); further details about these 

accuracy metrics can be found in (Hyndman and 

Athanasopoulos, 2013). The accuracy of the 

predicted VMs workload (CPU, RAM, disk, network) 

based on periodic workload is evaluated using these 

accuracy metrics, as summarised in Table 2. 

 

 

 

Table 2: Prediction Accuracy for a Small VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU  0.00486 1.7101 0.5652 -3.4611 4.978 

RAM 0.00167 0.0189 0.0055 0.1618 0.6585 

Disk 0.00072 0.0051 0.0030 0.64200 2.8612 

Network  -0.0052 0.1869 0.0461 31.459 60.940 

 

Figure 7: Predicted VMx Power Consumption on (Source 

PMi and Destination PMj). 

The proposed framework can predict the power 

consumption for a number of VMs when running on 

source PMi and destination PMj (based on Step 6, 

Equation 4 in Section 3), noting that the PMj is more 

energy efficient than PMi as shown in Figure 8. The 

predicted power consumption attribution for each 

VM is affected by the variation in the predicted CPU 

utilisation of all the VMs. 

  

(a) (b) 

  

(c) (d) 

Figure 8: The Prediction Results for a Small VMx. 
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Figure 9: Predicted Total Cost Before vs After Migration 

with The Migration Cost Recovery. 

This framework is also capable of predicting the 

total cost before and after live migration for a number 

of VMs as shown in Figure 9, along with their 

migration cost recovery based on Algorithm 3. 

In addition, Figure 10 shows the results of the 

predicted migration cost recovery for all VMs with 

(the cost recovery percentage incurred by live 

migration):  22.28% for the small VM, 28.48% for the 

medium and 28.19% for the large one.  

 

Figure 10: The Potential Migration Cost Recovery. 

Despite the high variation of the workload 

utilisation in the periodic pattern, the accuracy metrics 

indicate that the predicted VMs workload and power 

consumption achieve good prediction accuracy along 

with the predicted live migration total cost. 

6 CONCLUSION AND FUTURE 

WORK 

This paper has presented and evaluated a new 

Performance and Energy-based Cost Prediction 

Framework that dynamically supports VMs 

reallocation, and demonstrates the trade-off between 

cost, power consumption, and performance. This 

framework predicts the total cost before and after live 

migration by considering the resource usage, power 

consumption and performance variation of 

heterogeneous VMs based on their usage and size, 

which reflect the physical resource usage and power 

consumption by each VM.  The results show that the 

proposed framework can predict the resource usage, 

power consumption, total migration cost and the 

migration recovery cost for the VMs with a good 

prediction accuracy based on periodic workload 

patterns. As a part of future work, we intend to extend 

our approach by considering the scalability aspects 

(auto-scaling) to further understand the capability of 

the proposed work.  
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