How Little is Enough? Implementation and Evaluation of a Lightweight
Secure Firmware Update Process for the Internet of Things

Silvie Schmidt', Mathias Tausigl, Manuel Koschuch!, Matthias Hudler!, Georg Simhandl?,
Patrick Puddu® and Zoran Stojkovic?
L Competence Centre for IT-Security, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
2Adaptiva GmbH, 1010 Vienna, Austria
3Embed-IT GmbH, 1040 Vienna, Austria

Keywords: Bootloader, Firmware Update, Security, Internet of Things, Performance Evaluation, RIOT-OS, Cryptography,
AES, Elliptic Curve Cryptography, ECDSA, Cortex M0+.
Abstract: With an ever growing number of devices connecting to each other and to the Internet (usually subsumed under

the “Internet-of-Things” moniker), new challenges arise in terms of keeping these devices safe, secure and
usable. Against better judegment, a large number of such devices never gets updated after being deployed,
be it from negligence, inconvenience or sheer technical challenges. And all that while a plethora of valid
approaches already exists for secure wireless remote update processes for such devices. In this work, we
present another approach to solve this problem, with a special focus on the ease of integration into existing
systems: we try to provide the absolute bare minimum to enable a secure over-the-air update process, analyze
the security of this approach, and evaluate the performance impact of the implementation. We show that our
solution can deal with nearly 80% of the identified threats, with a negligible impact on practical performance

in terms of processing power and energy consumption.

1 INTRODUCTION

There are many definitions of what exactly the
“Internet-of-Things” (IoT) is (and how it differs from
respectively overlaps with cyberphysical systems),
yet the fundamental characteristic is the presence of a
(usually large) number of (usually heterogeneous) de-
vices, communicating wirelessly with each other and
the Internet. Depending on the specific application
area, the data exchanged, processed and acted upon
by these devices can have impact on physical entities
(e.g. plant monitoring sensors, controlling the pro-
duction process), human beings (e.g. smart home sys-
tems, controlling light and heating), or personal, pos-
sible sensitive, information (e.g. medical monitoring
devices).

A single IoT node is essentially a microcon-
troller, together with some sensors and interfaces
for wireless communication, usually running an em-
bedded operating system. Recent research results
(e.g. (Tweneboah-Koduah et al., 2017; Lee et al.,
2017; Desnitsky and Kotenko, 2018)) have confirmed
that these implementations suffer from many of the

Schmidt, S., Tausig, M., Koschuch, M., Hudler, M., Simhandl, G., Puddu, P. and Stojkovic, Z.

same security problems known from interconnected
desktop-PCs and servers. But where in the latter case
most vendors have moved to deploying patches for the
most obvious problems at least during the lifetime of
the system, in the IoT domain this continuous update
process is still severely lacking. Not for the lack of
possible solutions, there is a huge amount of research
dealing with secure update processes for such devices
((Choi et al., 2016; Jain et al., 2016; Kachman and
Balaz, 2017; Jurkovic and Sruk, 2014; Lee and Lee,
2017, Idrees et al., 2011; Fuchs et al., 2016; Rico
et al., 2015), only to name a few). And while in some
— usually tightly controlled — areas, like the automo-
tive domain, different update solutions are already in
place, there are a lot of other areas that still suffer
from unpatched, vulnerable IoT components, despite
workable solutions being readily available. We argue
that part of this reluctance in adoption comes from
the difficult, complex and often expensive integration
of the existing solutions into systems designed with-
out a secure remote software update process in mind.
All of the solutions cited above either require special
hardware, complex update processes, or lack practical

63

How Little is Enough? Implementation and Evaluation of a Lightweight Secure Firmware Update Process for the Internet of Things.

DOI: 10.5220/0006670300630072

In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (loTBDS 2018), pages 63-72

ISBN: 978-989-758-296-7

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

evaluations that would enable possible implementers
to reliably estimate the impact of an actual implemen-
tation.

In this work, together with two companies, we de-
sign a secure bootloader for an embedded device, en-
abling secure remote firmware updates, by trying the
easiest and most bare-bones process possible, in the
hope that such a small, non-invasive solution might
provide for easier, faster adoption. We analyze the
threats that can be thwarted by this approach, as well
as its impact on device performance (in terms of com-
puting power, memory requirements and energy con-
sumption), by using combinations and extensions of
well tested existing solutions.

For this work we used an Atmel SAMR21-xpro
with an Cortex-M0+ CPU (48MHz, 32kB RAM and
256k flash memory) (Atm, 2015). The Cryptographic
libraries used are tinyAES! and micro-ecc’. Regard-
ing elliptic curve cryptography (ECC) the SECG?
standard curves were implemented and tested, as
well as Bernstein’s curve 25519 (in combination with
Ed25519).

In Section 2 we give an overview of the most im-
portant security requirements of an embedded sys-
tem, as well as of the challenges that arise during the
firmware update process. We follow with the defi-
nition of our threat model and possible countermea-
sures. Section 3 then details our implementation, fol-
lowed by a discussion of the achieved performance
in Section 4. Finally, we conclude and state the still
open questions concerning our solution in Section 5.

2 SECURITY REQUIREMENTS
AND THREAT MODEL

The most sensitive issue concerning embedded sys-
tems security is the process of updating the firmware,
since attacks on this process could render the device
completely useless, or inject malicious functionality.
Nevertheless, it is important to look at all arising as-
pects of security in embedded systems.

2.1 Security Requirements for an
Embedded Operating System

The general security requirements for operating sys-
tems (OS) for embedded devices are (Kleidermacher
and Kleidermacher, 2012):

Uhttps://github.com/kokke/tiny-AES128-C

Zhttps://github.com/kmackay/micro-ecc
3http://www.secg.org/

64

e Memory Protection is the primary requirement for
an embedded system; it can be achieved by hard-
ware, as well as software solutions.

e Virtual Memory provides further security through
guard pages and location obfuscation.

e Fault Recovery has to be assured by implemented
mechanisms.

e Guaranteed Resources are a major concern since
resource-hogging malware is still possible even
when Memory Protection and Virtual Memory are
enabled.

e Virtual Device Drivers ensure that one of the most
important elements of the system are protected,
i.e. the device drivers.

e [mpact of Determinism & Secure Scheduling is a
main concern of real-time embedded devices - it
assures secure time partitioning.

Access Control (Kleidermacher and Kleiderma-
cher, 2012) is another issue concerning security in
embedded systems. In this context this means that
applications have to be assured to get the resources
needed, but have to be restricted from all the resources
not needed.

Since the communication between the server
and the client requires a lot of energy, the power-
consumption during a firmware update is a critical is-
sue as well (as IoT devices are mostly battery-based).

2.2 Security Requirements for a Remote
Firmware Update

Integrity of the firmware has become the most impor-
tant security issue for embedded devices because its
protection solves various security and safety issues re-
garding the update process. Signing the firmware up-
date is easy to implement, however it should never be
the only security feature provided (Cui et al., 2013).
Securing the integrity means to discover tampered,
wrong, and incomplete firmware, i.e. any errors (in-
tentionally or unintentionally) or failures regarding
the transmission of the new firmware have to be de-
tected, as well as information loss. Not all of these
issues can be addressed by digital signatures.

Table 1 defines several requirements regarding se-
curity issues derived from the process of updating
firmware. Nevertheless, we are aware that these re-
quirements may differ slightly depending on the de-
vice and/or the specific application.

Some non-security issues have to be taken into
consideration as well: how and by whom (client,
server, usef,...) is the update-process initiated? How
often is an update necessary - on the average? Does

How Little is Enough? Implementation and Evaluation of a Lightweight Secure Firmware Update Process for the Internet of Things

Table 1: Major requirements of a secure remote firmware update process.

Authentication

The device may only accept software from a specific source.

Version Control

Only the version intended for the device shall,be accepted,;
this also prevents the installation of outdated software.

Code Integrity

Tampered or incomplete firmware shall not be accepted by the device.

Complete & Error-Free Transmission

After its transmission the update package has to be checked for errors
and it has to be transferred completely.

Operability Check

The new firmware has to be checked if it is working as intended.

Reduced User Interaction

The user should not have to be overly involved in the update process,
thereby reducing error sources and increasing usability.

each device need the same update? Are there different
updates for certain devices?

In the following Subsection we use these observa-
tion to construct a formal threat model for the process
of updating an embedded device’s firmware, together
with the appropriate countermeasures addressed by
this work.

2.3 Threat & Evaluation Model

We designed a threat & evaluation model by using
Microsoft’s STRIDE approach*. All threats caused
by physical access to the device were excluded for
the implementation and design of this secure update
process. Furthermore, the threat regarding the authen-
tication of the server to the device is not part of this
work, these issues are being treated in the near fu-
ture (currently we employ implicit authentication of
the server using a shared secret and the server’s sig-
nature). See Table 7 in the Appendix for the entire
threat model.

Analyzing this model and our solution, we find
that our simple approach addresses 15 out of 19 of
these threats (i.e. nearly 80%). Three of the four un-
addressed threats arise from malicious physical ac-
cess to the device.

3 SYSTEM DESIGN AND
IMPLEMENTATION

This Section first gives an overview of the entire sys-
tem including our chosen parameters, followed by a
deeper discussion of the individual building blocks.

3.1 System Overview

Our prototypical system consists of a management
server, storing the firmware (possible many different

“https://msdn.microsoft.com/en-us/library/
ee823878(v=cs.20).aspx

images, depending on the devices controlled by the
server), and the IoT devices themselves that can wire-
lessly communicate with the server, over a basically
insecure channel.

The server sends encrypted and signed firmware
packages to the client(s), that can verify their integrity
using the server’s pre-deployed public key and de-
crypt them using a pre-shared symmetric key. The
implemented secure bootloader on the client is re-
sponsible for these checks and, after their successful
completion, installs the new firmware on the next re-
boot. Our main design philosophy for all parts was,
as already stated in the sections above, to follow a
very lean and non-intrusive approach that relies on
as little additional infrastructure as possible. The fol-
lowing subsections now detail our chosen asymmetric
algorithms (Subsection 3.2) as well as the concrete
bootloader implementation (Subsection 3.3). We pur-
posely omit the description of the update server’s im-
plementation in this work, since it depends a lot on
the specific environment it is used in, and we basi-
cally impose no special requirements on this server.

After evaluations of performance, memory re-
quirements and power consumption (as detailed in
Section 4), we decided to use ECDSA over the 256-
bit prime-field curve secp256rl for the signatures,
SHA-256 for hashing, and AES128-CBC as symmet-
ric blockcipher primitive.

3.2 Elliptic Curve Cryptography

An elliptic curve is formed by all the tuples (x,y)
satisfying the simplified Weierstrass equation y> =
ax® 4+ bx + ¢, where a,b € any finite field (Hankerson
et al., 2004). For the remainder of this work we focus
on prime fields GF(p), containing the integers up to
p— 1, where p is prime. Thus all arithmetic in GF (p)
has to be done modulo p. The points on an ellip-
tic curve, together with a so-called “point-at-infinity”
serving as the identity element, form an additive
group, with the operations point addition and point
doubling. A single operation in the elliptic curve
group requires several operations in the underlying

65

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

field, the exact number depending on the calculation
method used and the representation of the elements.
The basic building block for secure asymmetric cryp-
tographic systems utilizing elliptic curve groups is the
assumed intractability of the so-called “Elliptic Curve
Discrete Logarithm Problem (ECDLP)”. Given two
points P and Q on a curve, where Q resulted from
adding P k-times to itself (so Q = k* P, an operation
called “scalar multiplication”), there are no efficient
methods known to determine k. It is generally agreed
upon that the hardness of solving this problem for a
160-bit underlying finite field is equivalent to solv-
ing the integer factorization problem for a 1,024-bit
composite number (Lenstra and Verheul, 2001; Kras-
ner, 2004). So compared to e.g. RSA only a sixth of
the bit length is needed to achieve a comparable level
of security. This property makes elliptic curves espe-
cially attractive in the context of resource constrained
devices, since it means smaller intermediate values to
store, and also smaller signatures and messages to be
exchanged (Potlapallyy et al., 2002; Ravi et al., 2002).

Basically, two widely used cryptographic primi-
tives using elliptic curves are usually employed today:
key exchange, using elliptic curve Diffie-Hellman
(ECDH), and signing, using the elliptic curve digital
signature algorithm (ECDSA). In this work, we only
employ the latter.

In addition to an elliptic curve key pair a secure
hash function H is needed, whose output is not longer
than n. Algorithm 1 describes the signature gener-
ation process for ECDSA. Note that the transforma-
tion of x to an integer in step 3 can be easily done
by just looking at its binary representation, regardless
whether the involved field is a prime field or a binary
extension field. In addition, calculations in two differ-
ent finite fields have to be performed: the scalar mul-
tiplication involves computation in Fy, but ¥ in step 4
is calculated modulo the order n of the base point P.
The entire signature generation process requires one
scalar multiplication, one modular inversion and two
modular multiplications, for this work in the context
of 256-bit fields.

Algorithm 18 shows the verification of an ECDSA
signature. As in the generation of the signature, cal-
culations with two different moduli are also involved
in the verification process. For signature verification,
one modular inversion, two modular multiplications
and 2 scalar multiplications are required, although the
latter can be interleaved to take in fact only negligible
longer than a single scalar multiplication. In this work
we use the micro-ecc’ library to deal with the ECC
part of the implementation. It is small, adequately fast
and easy to use, and also employs basic protection

Shttps://github.com/kmackay/micro-ecc

66

Algorithm 1: ECDSA Signature Generation.

Input: Domain Parameters D =
(¢,FR,S,a,b,P,n,h), private key d, message m,
hash function H

Output: Signature (r,s)

: Select k € [1,n— 1] at random

Py k*P=(x1,y1)

Convert xj to an integer X

r< X1 mod n

e+ H(m)

s < k~(e+dr) mod n

return (7,s)

N RN

Algorithm 2: ECDSA Signature Verification.

Input: Domain Parameters D =
(¢,FR,S,a,b,P,n,h), public key Q, message m,
signature (r,s), hash function H

Output: ACCEPT or REFUSE message

1: ifr,s ¢ [1,n— 1] then

2 return REFUSE

3: end if

4: e < H(m)

5: w« s modn

6: Uy < ewmod n

7: up < rw mod n

8 X+ P+ uQ = (x1,y1)

9: if X = O then

10: return REFUSE

11: end if

12: Convert x| to an integer X

13: v+ Xy modn

14: if v = r then

15: return ACCEPT

16: else

17: return REFUSE

18: end if

against most side-channel attacks (like timing- or
power-analysis), fitting well with our approach of try-
ing to implement a usable, lightweight and mostly
non-intrusive solution. Note that in the course of this
work, we detected and fixed a subtle bug in this li-
brary: the library uses the technique of implicitly up-
dating the Z-coordinate of the projective curve point
when performing the scalar multiplication using the
Montgomery ladder (as discussed in (Meloni, 2007),
(Rivain, 2011), and (Montgomery, 1987)). This ap-
proach works fine as long as the scalar used is smaller
than the order of the point it gets multiplied with.
However, since all scalars are always extended to a
common length by the library (to thwart side-channel-
attacks on scalars of varying length), in rare edge

How Little is Enough? Implementation and Evaluation of a Lightweight Secure Firmware Update Process for the Internet of Things

cases (of which we ran into one), this leads to scalars
larger than the group order, and as such wrong results
of the scalar multiplication. We fixed this by trans-

forming the scalar from the range 0 — r to the range
—r +r

2 2

3.3 Secure Bootloader

The development of a secure bootloader in the Inter-
net of Things has to take into account that the IoT
mainly consists of devices with very constrained re-
sources. The main parts of this bootloaders’ develop-
ment are:

e An update package which provides the founda-
tions to ensure integrity, authenticity and confi-
dentiality.

e A memory table holding all relevant data regard-
ing the currently running firmware.

The firmware itself is embedded into an update
application; both parts are based on RIOT-OSS.
In the context of this work the actual firmware
combined with the updater is simply called firmware
or application.

The bootloader’s update process starts with the
validation of the update header’s signature (for a
description of the header see Subsection 3.3.1); if it
is valid, the version number of the firmware update is
checked. If the version check is passed, the signature
of the payload is verified. After all these tests are
completed successfully, the remainder of the update
package is downloaded and saved into the update
area. Finally, the encrypted payload (firmware) is
decrypted on-the-fly and saved into the application
area. After rebooting the new firmware is started.

The bare metal developed bootloader contains five
callback functions in order to be able to “communi-
cate” with the application; i.e. these functions may be
called by the firmware:

e app_getUpdatePageSize: returns the size of one
flash page.

o app_writeUpdatePage: writes one full flash page
of data to the update area.

e app_retrieveAppVersion: returns the version num-
ber of the currently running firmware (as stored in
the memory table). The version is stored (and re-
turned) as a 16 bit BCD (binary-coded decimal).
The lowest 4 bits hold the patch version, the sec-
ond nibble the minor version and the third one the
major version; e.g. 0x0123 — 1.2.3.

Shttps://github.com/RIOT-0S/

o app_willAcceptUpdateWithHeader: verifies if the
image header stored in the update area can be
used for a valid update. It checks if the version
is higher than the currently installed one. If the
field header_signature is not NULL, then the sig-
nature is verified against the header in the update
area using a matching public key from the mem-
ory table.

e app_verifyUpdatePackage: verifies an update
package currently stored in the update area by do-
ing a signature verification.

3.3.1 The Update Package

The update package consists of two parts: the update
header and the payload. The payload represents the
new application. The header contains:

e the version of the new firmware,
e the payload size, and
e the key IDs (for signature and/or encryption).

The update package is created by a developed aux-
iliary tool called MKIMG. It is written in C++ and
signs and encrypts the raw firmware (provided in bi-
nary code). Furthermore, it creates and signs the
header. The final outcome is an image of the up-
date package containing the signed header and the en-
crypted and signed firmware (payload).

3.3.2 Memory Partitioning

The bootloader’s memory (256 KiB) is split into four
areas - as shown in Table 2.

Table 2: Memory Partitioning.

Area Start address | Size (KiB)
Bootloader 0x00000000 24
Memory table | 0x00006000 1
Firmware 0x00006400 103
Update area 0x00020000 128

The Bootloader area contains the running boot-
loader and the Firmware area holds the currently run-
ning firmware.

The Update area represents the upper 128 KiB
of the flash memory and saves the transmitted update
package. In this area the checks for version control
and signatures are executed. The memory table con-
tains all informations provided by the update header
as described in Section 3.3.1 plus the keys for signa-
ture and encryption.

67

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

3.3.3 Data Encoding

All data in the update header and the memory table
is stored as DER encoding of custom ASN.1 types
specified for this purpose. This approach was chosen
in order to guarantee a clean and precise definition of
the data and to ensure extensibility for future devel-
opments.

Since available ASN.1 encoding libraries are usu-
ally quite memory intensive, especially concerning
dynamic memory, they are not suitable to be easily
used on a microcontroller platform. Because of that,
a new library tiny-asnl was developed which can do
arbitrary DER encoding and decoding relying solely
on stack memory.

4 PRACTICAL EVALUATION

All measurements were done using a single purpose
RIOT-OS application on an Atmel SAMR21-XPRO
evaluation board with a Cortex MO+ CPU. We used
either the then current version of the master branch
(between February and April 2015) or the release ver-
sion 2016.04. This Section presents all our test re-
sults as well as descriptions of the respective param-
eters and settings. Note that we give results for more
than just the parameters we decided to use in our fi-
nal implementation, in order to provide comparative
reference values as a decision base for different im-
plementations.

4.1 Cryptographic Primitives

Three common ECDSA operations were tested on
various curves using the micro-ecc package running
on the micro-controller:

I Key generation
I Signature generation (with the key created in I)
IIT Verification of the signature created in II

Note that in our actual implementation, only oper-
ation III has to be performed on the IoT device, after
receiving the updated firmware. All the other oper-
ations currently have to be performed by the update
server. All operations were tested with the standard
SECG curves (Brown, 2010) secpl60rl, secpl92rl,
secp224rl, secp256rl, and secp256kI.

Furthermore, we evaluated the implications of
certain optimization settings within the micro-ecc
package, providing an easy and fast way to practically
influence the performance in real-world implemen-
tations, without requiring deep knowledge of the

68

inner workings on the implementer’s side. Table 4
shows the improvements in relation to Table 3 for the
160-bit curve. Improvements for the other curves are
on a similar level. The uECC_OPTIMIZATION_LEVEL
(OL) is set to 2 by default.

The evaluation of the memory consumption
(ROM/flash and RAM) by using the micro-ecc pack-
age is shown in Table 5 and is given in relation to
the baseline without any inclusion of ECC, indicated
in the first table row. The test code solely contains
calls to all standard functions (key generation, signa-
ture creation, signature verification).

In order to find a blockcipher algorithm suitable
for the given environment, we measured the runtime
of encryption and decryption of one block of data
in different modes of operations, using the RIOT-OS
implementation of these primitives. The results are
given in Table 6.

4.2 Power Consumption

For power consumption measurements we devel-
oped a RIOT-OS application that executes various
cryptographic operations. All measurements were
performed on the Atmel SAMR21-XPRO evaluation
board; at the beginning of the operation a GPIO-PIN
is set and at the end of the operation it is deleted, in
order to be able to map the power consumption of the
board to the actual operations. At the beginning of
this application all used pins are set to 0.

The following GPIO-PINs are used:

Extension Header EXT1:

[GPIOLl] = PAl3 = port 1 pin 3
[GPIO2] = PA28
[SPI_SS_B/GPIO] = PA23

Extension Header EXT3:

[GPIO1] = PAL5
[SPI_SS_B/GPIO] = PAOS

The test setup for measuring the power consump-
tion is shown in Figure 1.

A digital-trigger-oscilloscope was used in order to
be able to test all algorithms separately. Due to cur-
rent differences in a sub-milliampere area, the mea-
surements were done using a shunt and a measure-
ment amplifier to achieve significant results. Our re-
sults show that adding security using our approach re-
sults in an additional 10% to 30% higher power con-
sumption compared to the baseline without employ-
ing any cryptographic operations.

How Little is Enough? Implementation and Evaluation of a Lightweight Secure Firmware Update Process for the Internet of Things

Table 3: Comparison of ECDSA signature key generation, signature generation and signature verification for different curves,

mean time in ms from n = 50 runs.

Key Generation | Signing | Verification
secpl160rl 1443 ms | 161.1 ms 170.9 ms
secp192rl 179.4 ms | 194.5 ms 213.7 ms
secp224rl 262.0 ms | 281.7 ms 214.0 ms
secp256rl 426.1 ms | 451.0 ms 504.3 ms
secp256k1 502.5 ms | 527.3 ms 554.2 ms

Table 4: Runtime Improvements for different compiler set-
tings, in relation to Table 3.

Signing Verification
secpl60rl, 0L=0 | 4,446.4 ms | 5,008.940 ms
Change +2,654% +2,860%
secpl60rl, OL=1 145.7 ms 145.7 ms
Change -9.8% -13.9%
secpl60rl, OL=3 144.1 ms 144.1 ms
Change -10.7% -14.8%

Table 5: Memory Consumption & RAM Requirement
(micro-ecc), given in Bytes relative to the baseline imple-
mentation without any ECC.

Image size | RAM needed
Nno micro-ecc 8,424B 9,072B
Only secp160rl +12,436B +72B
Only secp192r1 +12,464B +72B
Only secp224rl +12,824B +72B
Only secp256r1 +12,600B +72B
Only secp256k1 +12,234B +72B
All curves 0L=1 +15,152B +72B
All curves 0L=2 +15,296B +72B
All curves 0L=3 +15,278B +72B
All curves
Only verification +3,576B +0B

Figure 2 shows the results of the power consump-
tion measured for each operation listed.

Based on these results an estimation for the
runtime and energy necessity for the security func-
tions within the update process was provided. The
parameters for this estimation are:

e hardware: Atmel SAMR21-XPRO evaluation

board,
e operating system: RIOT-OS,
e software elliptic curves: micro-ecc,
e cryptographic implementation AES: RIOT-OS,
e cryptographic implementation SHA-2: RIOT-OS
e update package size: 128 KiB.

For this test-setting the verification and installing an
update three cryptographic functions are called:

e HASH calculation using SHA-256,

Table 6: Runtime for En- and Decryption, respectively, for
different symmetric blockciphers.

Algorithm Encryption | Decryption
AES-ECB
(16 byte data) 101 us 171 us
AES-CBC
(64 byte data) 347 us 349 us
AES-CCM
(24 byte data,
8 byte auth data) 626 us 623 us
TWOFISH-128 1,137 us 1,137 us
Oscilloscope
% SN\
Voltage source e A
v AN \;/
Q 8bit T‘llgger CHI CH2 CH3
N NI Q OO
L
M:.ZNR DuT BXGPIO :?“RMeasuring amplifier

50:1

(LMPBG0ZMA)

(ATMEL SAMR21)

[N

Figure 1: Test setup for power consumption measurements.

e signature verification using ECDSA over curve
SECP256r1, and

e decryption using AES-CBC.

The results for this update test process are:
e runtime: 2,279 ms
e power consumption: 178.91 mJ

The part for verifying the signature is constant
(498 ms, 36.6 mJ) and the remainder of the process
(1781 ms, 142.26 mJ]) is linearly dependent on the
size of the update package.

69

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

140

120

Enegry [ml]

socplBOrl
secpl92rl
socp224r1
secp224rl §

socplBOrl
secpl92rl

Generate Key SEgn

secp2akrl r

secpl6OrL
SHA-1
SHA-256
AES-CBC

secpl92rl

secp2akrl

AESCBCHSHAL
AES-CECHSHAZSE

Verify Hash Decryption

Figure 2: Energy consumption for various cryptographic operations.

S CONCLUSIONS AND
OUTLOOK

We were interested in the practical and formal evalu-
ation of a process for remotely updating the firmware
of IoT devices as easy and less intrusive as possible,
requiring neither modification to COTS hardware, nor
specialized update servers or secure connection tun-
nels. The developed bootloader is able to eliminate
nearly 80% of the threats identified for this project.
This result was achieved by designing a specialized
update package format, by signing the header of the
update package and by signing and encrypting the
firmware (i.e. the payload of the update package).

The decision which cryptographic libraries to use
for this purpose was dependent on various perfor-
mance tests. Implementing our solution has a negli-
gible impact on performance and power consumption
(and thus battery lifetime) of the IoT device.

Future work will deal with further practical evalu-
ations of this approach in the business context of the
participating companies, as well as addressing the still
open identified security threats.

70

ACKNOWLEDGEMENTS

This project was supported by the Vienna Business
Agency.

Manuel Koschuch is being supported by the
MA23 - Wirtschaft, Arbeit und Statistik - in the
course of the funding programme “Stiftungspro-
fessuren und Kompetenzteams fiir die Wiener
Fachhochschul-Ausbildungen”.

MA23
iiiiiaitiisiiia

Wirtschaft, Arbeit 37 Statistik

StaDt+Wien

vienna
business

agency

A service offered by
the City of Vienna

REFERENCES

(2015). Atmel — SMART SAM R21. Technical report,
Atmel Corporation, 1600 Technology Drive, San Jose,
CA 95110 USA.

Brown, D. R. (2010). Recommended elliptic curve domain
parameters. In Standards for Efficient Cryptography

2 (SEC 2): Recommended Elliptic Curve Domain Pa-
rameters. Certicom Research.

How Little is Enough? Implementation and Evaluation of a Lightweight Secure Firmware Update Process for the Internet of Things

Choi, B. C., Lee, S. H., Na, J. C,, and Lee, J. H. (2016).
Secure firmware validation and update for consumer
devices in home networking. IEEE Transactions on
Consumer Electronics, 62(1):39-44.

Cui, A., Costello, M., and Stolfo, S. J. (2013). When
firmware modifications attack: A case study of em-
bedded exploitation. In NDSS. The Internet Society.

Desnitsky, V. and Kotenko, 1. (2018). Modeling and Analy-
sis of IoT Energy Resource Exhaustion Attacks, pages
263-270. Springer International Publishing, Cham.

Fuchs, A., KrauB}, C., and Repp, J. (2016). Advanced Re-
mote Firmware Upgrades Using TPM 2.0, pages 276—
289. Springer International Publishing, Cham.

Hankerson, D., Menezes, A., and Vanstone, S. (2004).
Guide to Elliptic Curve Cryptography. Springer Pro-
fessional Computing. Springer-Verlag New York.

Idrees, M. S., Schweppe, H., Roudier, Y., Wolf, M.,
Scheuermann, D., and Henniger, O. (2011). Secure
Automotive On-Board Protocols: A Case of Over-
the-Air Firmware Updates, pages 224-238. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Jain, N., Mali, S. G., and Kulkarni, S. (2016). Infield
firmware update: Challenges and solutions. In 2016
International Conference on Communication and Sig-
nal Processing (ICCSP), pages 1232-1236.

Jurkovic, G. and Sruk, V. (2014). Remote firmware update
for constrained embedded systems. In 2014 37th In-
ternational Convention on Information and Communi-
cation Technology, Electronics and Microelectronics
(MIPRO), pages 1019-1023.

Kachman, O. and Balaz, M. (2017). Firmware update man-
ager: A remote firmware reprogramming tool for low-
power devices. In 2017 IEEE 20th International Sym-
posium on Design and Diagnostics of Electronic Cir-
cuits Systems (DDECS), pages 88-91.

Kleidermacher, D. and Kleidermacher, M. (2012). Embed-
ded Systems Security: Practical Methods for Safe and
Secure Software and Systems Development. Elsevier.

Krasner, J. (2004). Using Elliptic Curve Cryptography
(ECC) for Enhanced Embedded Security - Finan-
cial Advantages of ECC over RSA or Diffie-Hellman
(DH).

Lee, B. and Lee, J.-H. (2017). Blockchain-based secure
firmware update for embedded devices in an internet
of things environment. The Journal of Supercomput-
ing, 73(3):1152-1167.

Lee, Y., Lee, W., Shin, G., and Kim, K. (2017). Assess-
ing the Impact of DoS Attacks on loT Gateway, pages
252-257. Springer Singapore, Singapore.

Lenstra, A. K. and Verheul, E. R. (2001). Selecting Cryp-
tographic Key Sizes. Journal of Cryptology: the jour-
nal of the International Association for Cryptologic
Research, 14(4):255-293.

Meloni, N. (2007). New point addition formulae for ecc
applications. In WAIFI 2007. LNCS, pages 189-201.
Springer.

Montgomery, P. L. (1987). Speeding the pollard and elliptic

curve methods of factorization. Mathematics of Com-
putation, 48(177):243-264.

Potlapallyy, N. R., Raviy, S., Raghunathany, A., and Lak-
shminarayanaz, G. (2002). Optimizing Public-Key
Encryption for Wireless Clients. In Communications,
2002. ICC 2002. IEEE International Conference on,
volume 2, pages 1050 — 1056.

Ravi, S., Raghutan, A., and Potlapally, N. (2002). Securing
Wireless Data: System Architecture Challenges. In
1SSS 02.

Rico, J., Sancho, J., Diaz, A., Gonzilez, J., Sanchez, P,
Alvarez, B. L., Cardona, L. A. C., and Ramis, C. F.
(2015). Low Power Wireless Sensor Networks: Se-
cure Applications and Remote Distribution of FW Up-
dates with Key Management on WSN, pages 71-111.
Springer International Publishing, Cham.

Rivain, M. (2011). Fast and regular algorithms for scalar
multiplication over elliptic curves. iacr cryptology
eprint archive.

Tweneboah-Koduah, S., Skouby, K. E., and Tadayoni, R.
(2017). Cyber security threats to iot applications and
service domains. Wireless Personal Communications,
95(1):169-185.

APPENDIX

The STRIDE threat model for the entire project
comprises the following threats (the Test passed:
results are from our implementation, as detailed in
Section 3):

71

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

STRIDE Threat Model.

Table 7

S[1om STy} *90eJI9)UI SNQap BIA *901AQP Y} 0} $S999¢ [ed1sAyd o) anp
Jo 1red jou AJowrour ysey oy} Suno[op “Iom sty Jo ed jou *$SO[OSN AOTAIP QremuIIy Oy} Sunofep A[enuewt
““““““““““““““““““““““““““““““““““““ ‘S¥oeIe S0 JO TONUSIUL o) i
SHA aremuLly A)nej Surpuos “Jopeay 9epdn oy} SurusIs *9[qBYOBAIUN AJTAJP pajendiuew a5eyoed ojepdn
T T T T henppeAss Aquomsstwsien T ITT T T TR TTToooTTTooooooEs ~GOTSSIUISTE B1ep
SdA eyep dojs Jo Jdnuour Jjerdwosur Jo 1091100UT
-aSeyoed ojepdn omyeudis S80]oST. SOTATD ‘Juaprooe Aq peSewrep
SHA parerndruew Surpuos Jo pajerndruew st oSeyoed aepdn
a3eyoed ojepdn 7 oSeyoedaepdnoy)
SHA poyendiuewr Jurpuos soje[ndruewr A[euonuojur Joxoene
7 omeuSis preauwt we gus T -ofeyoed oyepdn 901AI0G JO
SHA a3eyoed ojepdn ue Surpuos -o8eyoed ojepdn oy) Surudrs SSO[OSN AOIAIP 9U) JO pBIISUI JUDS ST AIRM[BW [eruaq
Iom STy} ‘uondA1ouo pue
Jo red jou yIom sty Jo yred Jou oM sty jo 1ed jou o1njeusIs J0J SAY SOAQLIJAI I9Nor)e *03e10)S Ao WOIJ POAdLI)aI SuIoq o1e SAoY
“““““ peorked porendiuew & qum peojked s ofuoed depdn | | 010 “S10m01SS Jo vonewopuE 1 Jepesy 21epdn o) wol peaiio
SHA oFeyoed oyepdn ue Surpues oy Jo uondAous pue SuruIis PUE ©JEP SOAILIIAI IO e payerndruew st peojAed oy
T T A sms peoked poendigem T mpesy 0T C SFeyped ~ " " 7~ “xopeoy a1epdn our woxy pediio
SHA ynm oSeyoed ojepdn ue Jurpuas s, 93eyoed ojepdn oy JuruSis 9repdn oy oFewep ued s1ayoe)e pajendiuew st 9z1s peojAed oy}
““““““““““““““““““““““““““ Sopsnuondleme T oo oTTho
pue arnyeuSis SULIOPUAI 9014)
£q pasn 2q p[nod sAay Suoim
sq[Aoy parerndrueur “1opeay s o3eyoed ajepdn ‘ST A9y woIj umeip “Iopeay ojepdn oy} woij peal Jo
SHA yum a3eyoed ojepdn ue Jurpuos ay) SundAious pue Furugis 9q ued sA9Y 9y JnOqe SUOISN[OUOD parerndiuew are s A9 oy}
T T T T T T iy T aopeoy 5.a5mpoed | (oeqiiey) 291ASD oY) UG Poj[eIsul -iapeay oiepdi 3y woiy pesi soparendiuew st amsopasiql
SHA parepino ue Furpuos qrepdn oy Jurudis 9q UBD AIBMUWILIY 9Y) JO SUOISIOA PO QIEMULIY) JO JOQUINU UOISIOA) UOTBULIOJU]
SIoMm ST} ‘uoreonuayne Juoim JUAT[D oy} Je -a3eyoed ojepdn
Jo 1red jou s oSexoed arepdn puos JOAIDS QY) JO UOnEONUAYINE Sjiom s1y) jo 3red jou 9y} Jo SUIpuas oY) SOIUAP IOpuds oy uoneipndoy
SHIOM STY) oIeMULIY SUOIM B [)IM Q0BJIAUI *901AQP Y} 0] $S999¢€ [ed1sAyd 0) onp
Jo yred jou [BLISS BIA 90TAQp o) wiwrer3oid “Spom st Jo Jred jou *90TAJP 9Y) JO JOIABYQQ pauyapun dremuiIy oy jo uone[ndruew [enuew
T (oI ey 9pou “aIn[ley 19IN0I-19pIog
‘aIn[rej JoAIas 03 anp)ageyoed ajepdn
SHA oY1 Jo uorssiusuen ojo[dwioour
- — -a3eyoed ojepdn
RERS 9repdn poyerndruew € Surpuos ‘peojAed s oFeyoed POINOAXD ST AIBMJOS - — — — — — — — — — awyo mO_\mm_:\Emﬂﬁowmow:_ -
e G orepdn oy Surugts Suo1m 00UIS $SI[ASN ST A[AIP £q poSeurep st umﬁumwcwmwﬁwm
T T T Seyped oepdn oy e iim
SHA soje[ndiuewr A[[euonuojul Joyoene Suadwre],
‘aIyeusis Suoim e yim "901AQP Y} 0] AIM]JOS Anuapp
SHA a3eyoed ojepdn ue Surpues UMO SPUAS PUE JOAIOS SE S}OB Iayoene Sugoodg
passed uonen[eAq QINSBIUWLIAUNOD) J3ewreq JeaIy],

72

