
Evaluating the User Acceptance Testing for Multi-tenant Cloud
Applications

Victor Hugo Santiago C. Pinto, Ricardo R. Oliveira, Ricardo F. Vilela and Simone R. S. Souza
Institute of Mathematical and Computer Sciences, University of São Paulo (ICMC-USP)

Keywords: Multi-tenancy, Cloud Applications, User Acceptance Testing.

Abstract: SaaS (Software as a Service) is a service delivery model in which an application can be provided on demand
via the Internet. Multi-tenant architecture is essential for SaaS because it enables multiple customers, so-called
tenants, to share the system’s resources in a transparent way to reduce costs and customize the software layer,
resulting in variant applications. Despite the popularity of this model, there have been few cases of evaluation
of software testing in cloud computing. Many researchers argue that traditional software testing may not
be a suitable way of validating cloud applications owing to the high degree of customization, its dynamic
environment and multi-tenancy. User Acceptance Testing (UAT) evaluates the external quality of a product
and complements previous testing activities. The main focus of this paper is on investigating the ability of the
parallel and automated UAT to detect faults with regard to the number of tenants. Thus, our aim is to evaluate
to what extent the ability to detect faults varies if a different number of variant applications is executed. A case
study was designed with a multi-tenant application called iCardapio and a testing framework created through
Selenium and JUnit extensions. The results showed a significant difference in terms of detected faults when
test scenarios with a single-tenant and multi-tenant were included.

1 INTRODUCTION

Cloud computing emerged from the application of
several technologies such as parallel computing, dis-
tributed computing and virtualization (Ru and Keung,
2013). This model makes applications, infrastructures
and platforms available as an on-demand service via
the Internet. In the case of applications, SaaS (Soft-
ware as a Service) is the service model that is most
likely to be adopted (Buxton, 2015).

Multi-tenant Architecture (MTA) is a key mecha-
nism for SaaS that allows a single instance of the ap-
plication to be transparently shared among multiple
customers, the so-called tenants, and offers exclusive
configuration according to particular needs in terms
of business rules and interfaces. System resources
such as services, applications, database or hardware
are shared to reduce costs (Kabbedijk et al., 2015).
A single-tenant application requires a dedicated set
of resources to properly address the needs of a par-
ticular organization, while a multi-tenant application
can serve multiple companies from a single shared in-
stance because tenants exploit the benefits of a service
through a virtual isolation of the application and its
data (SalesForce, 2008). In this way, by employing a

multi-tenant SaaS system several variant applications
can be provided for particular tenants.

Despite the growing popularity of multi-tenancy
and its benefits to businesses, there is an increasing
lack of data control and trust in cloud environments
as a result of this architectural pattern, since resource
sharing by a single customer can have an impact on
all the users. It remain unclear what are the key is-
sues in cloud computing for multi-tenant cloud appli-
cations with regard to vulnerability, requirements, se-
curity questions and potential faults (Bai et al., 2011;
Gao et al., 2011; Vashistha and Ahmed, 2012; Ru
et al., 2014). In view of this, security issues in cloud
environments must be addressed to ensure that there
is a secure deployment of cloud applications. In ad-
dition, the testing strategies should be defined so that
the quality of these application can be improved (Sub-
ashini and Kavitha, 2011).

The purpose of software testing is to ensure sys-
tem consistency by detecting any faults in time for
them to be repaired (Ostrand and Balcer, 1988). The
information obtained during the test execution can
help in the debugging activity. In general, the testing
activity must include the following stages: planning
and designing of the test case, execution of the tests

Hugo Santiago C. Pinto, V., R. Oliveira, R., F. Vilela, R. and R. S. Souza, S.
Evaluating the User Acceptance Testing for Multi-tenant Cloud Applications.
DOI: 10.5220/0006664000470056
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 47-56
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

47

and analysis of the results (Myers and Sandler, 2004).
User Acceptance Testing (UAT) is a type of black-box
testing that is carried out to examine an application
from user actions. As the testing procedure can be
very expensive in terms of time and effort spent, and
is often impracticable if undertaken manually, a solu-
tion that is widely adopted is automated testing. For
instance, Selenium1 is a suite of tools for automating
web browsers across many platforms.

Although there have been some recent research
studies on software testing in cloud computing, we
found that there is a lack of empirical studies and
guidelines on which techniques and automation tools
to address particular objectives (Pinto et al., 2016).
Since multi-tenant SaaS systems have certain simi-
larities with other models, investigating testing tech-
niques and tools for traditional programs can provide
valuable information. However, we did not find any
empirical study involving UAT and multi-tenant cloud
applications in the literature.

This paper presents a case study using a multi-
tenant SaaS system for creating electronic restaurant
menus called “iCardapio” (Manduca et al., 2014).
This system was deployed in a cloud environment
called Heroku2, a Platform as a Service (PaaS) that
enables developers to build, run and operate appli-
cations entirely in cloud. On the basis of this appli-
cation, we applied UAT using parallel testing to de-
tect faults, which included test scenarios with both
a single-tenant and multi-tenant. A fault is found
when the output of a test case is different from the ex-
pected result, in accordance with the specification of
the iCardapio. This means that the faults are not con-
trolled, that is, they are real. Variant applications from
iCardapio must be isolated so that the faults can be
detected without external interference. On the other
hand, simulating a real-world multi-tenant scenario
with requests from tenants to single and shared in-
stance of the application, is essential to detect other
types of faults. The aim of the study is to report how
far this approach is able to determine specific faults
for variant applications and assess their impact when
the user’s operations are carried out simultaneously
with different tenants. The results of this exploratory
study can help developers/testers in determining pos-
sible faults, by employing a tenant identification and
persistence strategy.

A testing framework was created with JUnit3 ex-
tensions and Selenium to automate parallel tests. In
the context of web applications, parallel testing is
the process of running multiple test cases in multi-

1http://www.seleniumhq.org/
2https://www.heroku.com/
3http://junit.org/junit4/

ple combinations, with OS and browsers at the same
time. Its main advantage is that it allows the testers
and developers to devote their meaningful resources
to serious problems in the interests of cross-platform
compatibility. However, within the scope of our case
study, the reason for carrying out parallel testing is to
simulate simultaneous requests from different tenants
to a single and shared instance of the iCardapio. With
regard to generating test cases, functional testing cri-
teria such as Equivalence Partitioning Criteria (EPC)
(Roper, 1994; Copeland, 2004) and Boundary Value
Analysis (BVA) (Myers and Sandler, 2004) were ap-
plied.

The remainder of the paper is structured as fol-
lows: Section 2 provides an overview of multi-
tenancy, testing activities and other concepts. Sec-
tion 3 examines the case study. Section 4 addresses
the problem of threats to the validity of the study and
Section 5 summarizes the conclusions and makes sug-
gestions for future work.

2 BACKGROUND

This section outlines the main concepts of multi ten-
ancy for cloud applications and software testing.

2.1 Multi-tenancy

SaaS is a cloud delivery model that allows applica-
tions to be provided by a cloud service provider and in
which the customer does not need to monitor or con-
trol the underlying infrastructure, such as the network,
servers, OS and storage or installation of applications
and services (Mell and Grance, 2011). SaaS enables
service providers to share their infrastructure by meet-
ing the needs of a much larger number of customers
simultaneously (Chong and Carraro, 2006). An archi-
tectural pattern known as multi-tenancy must be em-
ployed to maximize the use of resources by the ten-
ants and determine which data belong to which cus-
tomer.

MTA enables software vendors to serve multiple
customers, the so-called tenants, and share the system
resources in a transparent way, such as services, ap-
plications, databases, or hardware, to reduce costs. At
the same time, it is still able to configure the system
exclusively to the needs of the tenants with variant
applications from a single online product (Kabbedijk
et al., 2015). Thus, both virtualization and resource
sharing must be carried out by the service provider
since these are key aspects of multi-tenancy.

With regard to the application layer, implementa-
tions of multi-tenancy differ significantly and, for this

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

48

reason, appropriate decisions such as (i) identifying
tenants and (ii) adopting a strategy for isolating the
tenant’s data, must take into account the target mar-
kets and requirements of the application.

Finding an approach for identifying the tenants
is important for the implementation of multi-tenancy
(Krebs et al., 2012). In making a multi-tenant aware
application, it is necessary to isolate the tenants in
nearly every part of an application. A “tenant ID”
or the so-called tenant context, is generally used to
identify each tenant and its resources. The follow-
ing three approaches for implementing this identifi-
cation are well-known to the developers: (i) custom
http headers or OAuth4 with bearer tokens; (ii) tenant
ID in the URI (http://app.com/tenantid/...) and (iii)
tenant ID in the hostname (http://tenantid.app.com).
In the first alternative, the URL may be completely
different for each variant application, whereas in the
second, the tenant ID is included in the main domain.
Finally, in the third choice, the tenant ID is shown at
the beginning of URI.

With regard to the persistence of data, a suitable
implementation model must be chosen for isolating
the tenants’ data. Three models can be highlighted
(Chong and Carraro, 2006): (i) isolated databases -
each tenant has its own database; (ii) isolated schema
- the tenants share a common database where each
tenant has its own schema and (iii) shared schema -
data for all the tenants are stored in the same tables
and identified through a tenant discriminator column.
The first and second choices are probably the least
intrusive, provide the highest level of isolation and do
not vary significantly in the way they implement the
application. The third can be more vulnerable several
threats with regard to data privacy, since these same
tables are used for all the tenants, so that if there is an
attack on a variant application, the data from the other
tenants may become visible.

2.2 Software Testing

Software testing is a critical and dynamic activity in
the development of software, since faults may appear
in the software during the process. The application
must be executed with appropriate test data so that
these faults can be detected and the quality assurance
of the software can be improved (Balci, 1994). Al-
though this activity is not able to guarantee that a soft-
ware system is free of defects, it can help to make it
more reliable. Generally, software testing activities
involve running an application with test cases pro-
vided by a tester, observing their results, comparing
them with some expected values and reporting their

4https://oauth.net/2/

consequences (Hoffman, 2001; Myers and Sandler,
2004).

As the testing usually cannot take into account all
the possible inputs because the input space is too large
or even infinite, testing criteria must be adopted to de-
cide which test inputs to use and when to stop testing
(Ostrand and Balcer, 1988). Functional testing crite-
ria as equivalence partitioning criteria and boundary
value analysis can be applied to define suitable test
cases that cover equivalence classes with valid and in-
valid values, including upper and lower limits (Myers
and Sandler, 2004).

User Acceptance Testing is a type of functional
testing technique that involves validating software in
real-world conditions. The goal is not just to check
the requirements but to ensure that the software sat-
isfies the customer’s needs. User actions can be sim-
ulated for this to check if the requirements were met
(Pusuluri, 2006). Automating these tests reduces the
effort needed to run a large test suite, as well as as-
sisting regression testing and iterative development.
For instance, Selenium5 is a suite of tools designed
to automate web browsers across many platforms and
offers an interface for test classes written with JUnit6.

Parallel programming has become an increasingly
common practice for cloud applications, insofar as it
ensures the tests can benefit by dividing test activities
into separate and parallel tasks to reduce costs. How-
ever, as the cloud environment changes its state con-
tinuously at runtime in proportion to the number of
virtual machine instances, the effectiveness of hyper-
visor scheduling and load balancing, the testing may
become a complex task because these factors cannot
be fully predicted and controlled even for a single ap-
plication being tested (Bai et al., 2011). Generally, in
the case of conventional web applications, the parallel
execution of test cases takes place to confirm multi-
ple combinations with OS and browsers, support the
regression testing (Garg and Datta, 2013) and solve
problems concerning cross-platform compatibility.

3 THE CASE STUDY

This section describes the case study which was car-
ried out to compare the number of detected faults in-
cluding single-tenant and multi-tenant test scenarios.
The multi-tenant SaaS system chosen was iCardapio
because it is open-source and can address multiple
tenants from a single instance. Thus, variant appli-
cations can be defined and configured for a simulta-
neous execution of the tests. According to the authors
5http://www.seleniumhq.org/projects/webdriver/
6http://junit.org/junit5/

Evaluating the User Acceptance Testing for Multi-tenant Cloud Applications

49

(Manduca et al., 2014), iCardapio was developed with
the aid of the following technologies: Spring7, Spring
Tool Suite8, MySQL, Maven, EclipseLink9 and Java.
It should be noted that the source code is available to
download from github10 and was designed to allow
any SaaS provider to download and start using it di-
rectly. The application was deployed in Heroku and
is available11.

Figure 1 shows an entity relationship diagram of
this application. One tenant refers to a particular
restaurant which has a single identifier, i.e., a tenant
ID called “subdomain”. Products have a single cat-
egory, such as: pizza, pasta, drinks or desserts. In
addition, there is only one user who has authenticated
access and can carry out the registration operations
for all the possible tenants.

Category

Product
Restaurant

+id
+name

+id
+name
+description
+price

+id
+name
+subdomain
+slogan
+phone
+address
+city

1 0..* 0..* 1

Figure 1: Entity relationship diagram of iCardapio.

General information about the project structure
and complexity12 was assessed by the code quality
management tool SonarQube13 and the data are dis-
played in Table 1.

Table 1: Information about iCardapio collected by Sonar-
Qube.

Code lines 1.552
Java 843
CSS 97
JavaScript 9
JavaServer Pages (JSP) 239
XML 166

Complexity 4.900
Complexity/classes 7.0
Complexity/method 2.3

Implementation units 37
Number of classes 20
Number of methods 2.159

Whith regard to the tenant identification, the
application has the tenant ID in the hostname

7https://spring.io/
8https://spring.io/tools/sts
9http://www.eclipse.org/eclipselink/
10https://github.com/michetti/icardapio/tree/multitenant
11https://icardapio.herokuapp.com/
12https://docs.sonarqube.org/display/SONAR/Metrics+-

+Complexity
13https://www.sonarqube.org/

(http://tenantid.myapplication.com). Owing to the
technical constraints of the cloud provider, the ten-
ant identification was changed for the tenant ID in the
URI (http://myapplication.com/tenantid/...). The iso-
lation of the tenants’ data is a key requirement when
providing a multi-tenant application. As implemen-
tation model, iCardapio was developed by means of
a shared schema, in which data for all the tenants are
stored in the same tables and can be identified through
a tenant discriminator column.

The automated tests were executed locally to en-
sure the test environment was controlled more ef-
fectively and the different types of faults could be
clearly isolated. Thus, the user actions are simulated
from different local instances of the browser. The
test scripts can be executed automatically in the cloud
through a TaaS (Testing as a Service), however, when
using the cloud environment there is a lack of knowl-
edge of how the tests will run. Moreover, the fact
that the cloud environment changes its state contin-
uously and the test execution depend on its runtime
environment (which cannot fully predicted and con-
trolled), means that the results may be distorted (Bai
et al., 2011; Subashini and Kavitha, 2011).

3.1 Planning

The main reason for planning the case study was to
answer the following research questions:

• RQ1: Is there a different number of detected faults
when either a single-tenant or multi-tenant test
scenarios are used? To answer this question,
we gathered and assessed the number of detected
faults when only one variant application from
iCardapio was subjected to the tests and two vari-
ant applications were checked with the same tests
in a parallel way. The purpose of this comparison
is to provide evidence that in a multi-tenant sce-
nario some external factors (such as simultaneous
requests from users for variant applications) can
affect their execution, and result in a larger num-
ber of faults than in a single-tenant scenario.

• RQ2: Is the number of detected faults different
when a multi-tenant test scenario is used and
there is an increasing number of variant appli-
cations? Similarly, when answering this second
question, we analyzed the number of faults by tak-
ing account of the number of variant applications
using parallel tests. In other words, we wanted to
find out if an increasing number of variant appli-
cations can affect the number of detected faults.

The planning phase was divided into three parts
that are described in the next subsections.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

50

3.1.1 Experimental Setup

Conducting the case study included the following
phases:

• Generation of test cases in accordance with EPC
and BVA testing criteria for iCardapio based on
its requirements;

• The Selenium and JUnit tools are used to auto-
mate the execution of these test cases;

• Deployment of iCardapio in Heroku;
• Development of a testing infrastructure that al-

lows the parallel execution of the tests for multiple
variant applications;

• Execution of the test classes for a unique variant
application from single and shared instance of the
iCardapio - single-tenant (ST) test scenario;

• Execution of the test classes in a parallel way
for several variant applications from single and
shared instance of the iCardapio - multi-tenant
(MT) test scenario;

• Collecting, evaluating and reporting the test re-
sults.

There were 10 test executions in both the ST and
MT scenarios, because this value was assumed to be
a sufficient measure for a reliable analysis. With re-
gard to the number of variant application, there was
only one for ST and for parallel executions in the
MT scenario - the numbers were defined as 2, 5 and
10. The execution order between the variant applica-
tions is not pre-defined, which makes a real and non-
deterministic behavior likely.

In the case of the MT test scenario, the average
must be calculated on the basis of the number of vari-
ant applications (n) under test (2, 5 and 10), as ex-
pressed in Equation 1. For instance, from 10 execu-
tions of 2 variant applications (n = 2) carried out in a
parallel way and the detection of their corresponding
faults, the number of identified faults are added and
divided by n for each execution. Finally, the averages
by execution are added and divided by 10. The same
calculation must be made when n = 5 and n = 10.

1
10

10

∑
z=1

[
1
n

n

∑
i=1

xi

]
(1)

Regarding the defined host for test execution, the
settings are as follows: Ubuntu 16.04 64 bits, CPU
Intel Core i5-3210M 2.5 GHz, 16 GB of RAM, 250
GB SSD and AMD Radeon HD 7670M - 1 GB. Fire-
fox was the browser chosen for running the tests. It
should be pointed out that in case of parallel execu-
tions, Selenium was used for running tests in multiple

runtime environments, specifically when there were
different and isolated instances of the browser at the
same time.

3.1.2 Hypothesis Formulation

The RQ1 was formalized as follows: Null hypothesis,
H0: There is no difference between the ST and MT
test scenarios in terms of detected faults, that is, the
test scenarios are equivalent.

Alternative hypothesis, H1: There is a difference
between the ST and MT test scenarios in terms of de-
tected faults; this means that the test scenarios are not
equivalent. Hypotheses for the RQ1 can be formal-
ized by Equations 2 and 3:

H0 : µST = µMT (2)
H1 : µST 6= µMT (3)

Similarly, RQ2 was also formalized in two hy-
pothesis, as follows: Null hypothesis, H0: There is
no significant difference in terms of faults found dur-
ing the test execution, since there are a different num-
ber of variant applications (n and p) running at the
same time.

Alternative hypothesis, H1: There is a difference
in the number of faults found during the tests, since
there is a different number of variant applications run-
ning simultaneously. Similarly, the hypotheses for
RQ2 can be formalized by Equations 4 and 5:

H0 : µMT n = µMT p | n 6= p (4)
H1 : µMT n 6= µMT p | n 6= p (5)

3.1.3 Variable Selection

The dependent variables are (i) the “number of de-
tected faults from the test executions” and (ii) “the
number of variant applications being used simul-
taneously in testing”. The independent variables are:
(i) “iCardapio”, (ii) test scenarios with a single-
tenant and multi-tenant, (iii) testing framework for
parallel execution established with the support of Se-
lenium and JUnit and (iv) a test environment that in-
cludes test cases and scripts for simulating user ac-
tions.

3.2 Operation

Once the case study had been defined and planned, it
was carried out in the following stages: preparation,
execution and data validation.

Evaluating the User Acceptance Testing for Multi-tenant Cloud Applications

51

3.2.1 Preparation

At this stage, we were concerned with preparing the
material needed, such as data collection forms and
the testing environment variables. iCardapio was de-
ployed in Heroku and a testing infrastructure was de-
fined for a parallel execution of the test classes and
variant applications.

In the ST test scenario, a single thread for running
the tests might be enough, but there are many threads
for MT test scenario that must be executed in parallel
because several variant applications will be testes at
the same time. However, we cannot be sure that all the
submitted tasks will be executed in the same amount
of time or before some event, because this depends on
thread scheduling and it cannot be controlled (on ac-
count of its non-deterministic behavior). Even if we
submit all the tasks at the same time, this does not im-
ply that they will be executed simultaneously. Despite
these limitations, a framework was developed from
JUnit extensions, (such as the Parameterized14 run-
ner) so that the tests could be conducted in a parallel
way. Test classes were formed with the aid of Se-
lenium and JUnit to automate and simulate possible
user actions in iCardapio. Additionally, other objects
were taken into account such as the following:

• Documentation of the application: technical guid-
ance documents to assist in the development of
iCardapio and which are useful to define test
cases;

• Test Case forms: forms to be filled in with the test
cases in accordance with EPC and BVA criteria;

• Data Collection form: a document with blank
spaces to be filled in with the number of detected
faults obtained from the test execution and variant
application.

The platform used to conduct the experiment em-
ployed Java as its implementation language and the
Eclipse IDE as the development environment.

3.3 Data Analysis

This section sets out our findings. The analysis is di-
vided into two areas: (i) descriptive statistics and (ii)
hypothesis testing.

3.3.1 Descriptive Statistics

Descriptive statistics of the gathered data from the
case study are shown in Table 2. The first column con-
tains the execution order and the remaining columns,

14https://goo.gl/DS6Gkg

the number of faults detected in each variant appli-
cation. A total number of 95 test cases were defined
that followed the requirements of iCardapio and its
possible execution paths, from the users’ perspective.
On the basis of this principle, the number of faults re-
ported in this study refers to failed test cases. It should
be noted that the data are grouped by the number of
variant applications. This led to four groups being
categorized which are as follows: the first with only
“t1” represents a single variant application, the sec-
ond contains data from two variant applications (“t1’
and “t2”, n = 2) executed simultaneously and so on.

Table 2: Gathered data from the results of the automated
tests.

Exec. t1 t1 t2 t1 t2 t3 t4 t5
1st 34 37 39 48 47 47 51 47
2nd 34 38 40 50 49 49 49 48
3rd 34 37 39 47 47 47 48 50
4th 34 40 42 48 48 48 51 49
5th 34 38 40 47 48 49 50 47
6th 34 37 39 47 47 48 50 49
7th 34 38 40 51 49 49 49 48
8th 34 37 42 47 47 47 49 50
9th 34 39 42 48 48 47 50 49

10th 34 38 39 47 47 51 48 51

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
1st 46 42 46 45 44 43 51 47 42 45
2nd 48 46 49 50 42 42 43 49 47 49
3rd 46 47 48 42 43 50 51 48 49 48
4th 47 43 47 45 44 44 49 48 49 46
5th 47 43 45 49 51 50 49 48 44 45
6th 47 42 47 46 45 44 51 50 43 46
7th 47 43 47 43 45 47 51 50 45 46
8th 46 42 47 46 45 50 51 48 43 46
9th 47 46 45 44 44 43 52 48 43 46

10th 47 48 48 45 46 50 49 48 49 51

Before applying the statistical methods, we deter-
mined the quality of the input data. Incorrect data
sets may be formed because of systematic errors or
the presence of outliers, which are data values that
are much higher or much lower than expected when
compared with the remaining data. For this reason,
we used box plot as a means of identifying the out-
liers. Figure 2 shows the box plot based on the faults
detected in the ST and MT test scenario, where n = 1,
n = 2 (t1...t2), n = 5 (t1...t5) and n = 10 (t1...t10).
Note that in the ST test scenario, the number of faults
found was the same for all the executions. In contrast,
in case of the MT test scenario, the results from Equa-
tion 1 for n = 2, n = 5 and n = 10 were as follows:

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

52

39.05, 48.44 and 46.49 identified faults (on average
and including all the executions), respectively.

Figure 2: Box plot for the detected faults with an increasing
number of variant applications.

3.3.2 Hypothesis Testing

In this section, there is a discussion of hypothesis test-
ing for research questions.

RQ1 - Hypothesis Testing: Since some statistical
tests are only valid if there is a normal population dis-
tribution, before choosing a statistical test we exam-
ined whether our gathered data departs from linearity.
This led us to use the Shapiro-Wilk test for the collec-
tion of detected faults. With the data concerning the
t1 and n= 2 (t1..t2), Shapiro-Wilk statistic W was cal-
culated as 0.874, the critical value of W (5% signifi-
cance level) was 0.930 and the p-value was 0.002061,
assuming α = 0.05. Therefore, we reject the null hy-
pothesis that the data are from a normally distributed
population, as calculated W is less than the critical
value of W and p < 0.05. In addition, the test Q-Q
plot was applied, which is plotted in Figure 3.

Figure 3: A normality test for gathered data when a single
application and two variant applications were subjected to
automated testing.

Subsequently, we applied the Wilcoxon-Mann-
Whitney Test, which is a suitable non-parametric test
for two unpaired samples. This statistical test evalu-

ates the existence of significant differences in contin-
uous and ordinal-level dependent variables. The al-
ternative hypothesis H1 is that the number of detected
faults when running a single variant application (t1)
and running two variant applications simultaneously,
i.e., a MT test scenario with n = 2, are non-identical
populations. As a result, the p-value is 7.186e−06;
therefore, at a significance level of 0.05, there is a dif-
ference between the samples.

RQ2 - Hypothesis Testing: in a similar way, the
Shapiro-Wilk normality test was used, for the data
concerning n = 2, n = 5 and n = 10. As a result, W is
0.922, critical value of W (5% significance level) was
0.984 and p-value was 6.797e−08, assuming α= 0.05.
Therefore, we also reject the null hypothesis for RQ2
that the data are from a normally distributed popula-
tion. Figure 4 shows a Q-Q plot for gathered data that
only includes the MT test scenario.

Figure 4: A normality test for gathered data when 2, 5 and
10 variant applications were subjected to automated testing.

Afterwards, we applied the Kruskal-Wallis Test,
which is a non-parametric test that evaluates signif-
icant differences in continuous and ordinal-level de-
pendent variables by a categorical independent vari-
able with two or more unpaired samples. As a result,
the Kruskal-Wallis chi-squared was 68.764, d f = 2,
H was 67.94, critical chi-square was 5.991 and the p-
value was 1,221e−15, when α = 0.05. If it is assumed
that p < 0.05 and the critical chi-square is less than
the H statistic, the null hypothesis that the medians
are equal can be rejected. Therefore, there is a sig-
nificant difference between the three samples (n = 2,
n = 5 and n = 10).

As the alternative hypothesis H1 assumes that at
least one of the samples comes from a different pop-
ulation than the others, we applied the Bonferoni
method for multiple comparisons, with FWER = 0.05.
This allowed us to conclude that each sample is statis-
tically different. The difference between n = 10 and
n= 2 was 73.025, with upper limit of 50.58 and lower
limit of 95.48. For n = 10 and n = 5, the difference
was−34.14, with an upper limit of−50,02 and lower
limit of −18,27. Finally, between n = 2 and n = 5, it

Evaluating the User Acceptance Testing for Multi-tenant Cloud Applications

53

was −107,165, with an upper limit of −131.42 and
lower limit of −82.92. With regard to the groupings,
the rankings for n = 5, n = 10 and n = 2 are as fol-
lows: 118.19, 84.05 and 11.025, respectively.

Additionally, an effects plot was defined from the
lower limit, effect and upper limit, by analyzing these
three samples separately, as shown in Figure 5. For
n = 10, the values were as follows: 46.049, 46.49 and
46.931; with n = 2: 38.063, 39.05 and 40.036; and
finally, for n = 5: 47.815, 48.44 and 49.064.

Figure 5: Effects plot for the MT test scenario.

3.3.3 Discussion on the Nature of the Detected
Faults

A) Single-tenant faults: after analyzing the detected
faults when only a single variant application was de-
termined from the automated tests, we concluded that
all of them are functional and have typical web faults.
61 out of 95 test cases passed, i.e, the behavior of
the application was consistent with its specifications
in 64% of the tests. The detectability of faults in
the single-tenant test scenario did not require a con-
siderable effort, since the tests are conducted at the
unit level and this enables the faults to be discovered
clearly in the source code from the user actions in
the web pages. It should be noted that there was no
competition with other tenants for the same resources
and it is possible that there are other kinds of faults
with regard to performance, security and data privacy
that were not considered to be within the scope of this
study.

B) Multi-tenant faults: an important question is
how to detect faults, which can only be discovered
during runtime. For this reason, automated and par-
allel UAT can be regarded as a valid approach to ex-
amine these kinds of faults. Within the multi-tenant
context, it is clear that there are problems related to
concurrent behavior in cloud applications that must
be further investigated in the testing activity.

The challenge of detecting a fault in this type of
program, mainly arises from the synchronization pro-
cess (i.e. the threads). The tenants compete for shared
resources that are made available on demand; that

is, a scheduling policy must share and distribute the
resources in an equitable manner. This means that
we cannot control the execution order of the pro-
cesses, i.e., the data dependency and inter-process
synchronization of a program might be affected dur-
ing the scheduling. With this in mind, a program
can carry out different execution sequences, even
with the same test input. Hence, the testing activity
must check whether the possible synchronization se-
quences were executed and if the outputs obtained are
correct. This difficulty is well-known among practi-
tioners in the concurrent programming field, as being
a non-deterministic kind of behavior. There are sev-
eral problems in testing concurrent applications due
to this characteristic, such as high computational costs
and many false positives (Arora et al., 2016).

Another concept applicable to the multi-thread
context is thread safety. A piece of code is thread-
safe when it can manipulate shared data structures in
such a way that it can ensure a secure execution across
multiple threads at the same time (Lewis and Berg,
1995). Similarly, variant applications can be executed
from a single instance of a multi-tenant SaaS system
that must manipulate shared data structures. Regard-
less of the persistence strategy, each variant applica-
tion must be connected to a specific database/schema.
To achieve this, the multi-tenant system must identify
the tenant and be able to provide users with the ex-
pected data, interface and features.

The results of the case study demonstrated that
there are differences when running the same test cases
when they include both a single and several variant
applications at the same time. Update Synchroniza-
tion Failure is the most likely reason for the number
of faults in an MT test scenario, because many test ex-
ecutions have led to unexpected ways. For instance,
when users carried out the same actions in different
variant applications, specific execution paths were af-
fected. This happened when the user logged on and
logged out in a certain variant application. As these
deviations adversely affected the expected execution,
several faults were reported in the test environment.

With regard to faults in tasks carried out concur-
rently by tenants, the parallel execution of the vari-
ant applications has enabled us to identify some faults
that could not be detected because they only included
one isolated application. Figure 6 shows the results
of the parallel execution for a test class that verifies
the field “name” of the products. In this execution,
two variant applications were verified with simulated
requests. It should be pointed out that the number
of detected faults is different in each execution, even
with the same input and features provided by variant
applications.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

54

Figure 6: Results of automated and parallel tests of two ap-
plications that verify the product names.

4 THREATS TO VALIDITY

Test executions: the processing capacity of the host
where the tests were conducted and the robustness of
the cloud provider can influence the test results (Bai
et al., 2011). However, this influence was not mea-
sured and compared with other settings. To mitigate
this threat, all the tests were conducted in the same
hardware configuration and operating system.

Although we have defined ten executions, there
may be unidentified faults in the application or false
positives. As the faults examined in this case study
were not seeded (as in a controlled environment with
a predefined set of possible faults), the test cases
were manually defined to explore the execution flows
from the user’s standpoint and in accordance with the
requirements of iCardapio, and for this reason, the
faults were reported from this set of test cases.

Test cases: designing test cases is an important
matter that can affect the collected data and make the
case study less impartial. A test professional who
only had access to the application’s documentation
and GUI, was invited to ensure impartiality, and avoid
bias by not knowing the source code of the applica-
tion.

Interaction between configuration and handling:
it is possible that the exercises carried out in the case
study are not accurate enough for any real-world ap-
plications. However, the main value of this empirical
study is that it has provided evidence that if the test-
ing activity only includes a variant application, it is

unable to detect the main faults owing the external
factors such as the resource sharing and the competi-
tion among variant applications, which can result in
non-deterministic effects.

Assessing the degree of reliability: this refers to
the metrics used to measure the number of faults.
To mitigate this threat we carried out ten executions
which can be regarded as a sufficient measure, since
the number of detected faults was recorded in forms
filled in after each execution of the variant applica-
tions.

Low statistical power: the ability of a statistical
test to reveal reliable data. We applied two tests,
the Wilcoxon-Mann Whitney test to statistically an-
alyze the differences between two unpaired samples
for RQ1 and the Kruskal-Wallis test to analyze the
number of faults found when a different number of
variant applications were verified simultaneously, in
answer to RQ2.

5 CONCLUSION

The focal point of this study was to investigate the
parallel and automated UAT for multi-tenant SaaS
systems. A case study was designed using a multi-
tenant application called iCardapio. Test cases were
defined by applying functional criteria and conduct-
ing automated tests with JUnit and Selenium. The aim
of this study was to compare the number of faults by
taking into account test scenarios with single-tenant
and multi-tenants. The main findings of our experi-
ment showed that, in terms of detected faults, there is
a statistical difference between the samples. In addi-
tion to faults of functional and web nature, there was
evidence of update synchronization failure and faults
arising from a non-deterministic behavior. Although
the results are provisional, given the limitations of the
study, they can demonstrate that these questions must
be included in the testing of multi-tenant cloud appli-
cations.

A package containing the tools, materials and
more details about the experiment steps is available at
https://goo.gl/ESNCGD. In future studies, we intend
to explore the following factors: (i) the feasibility of
low-cost fault injection in multi-tenant SaaS systems
to examine the mechanisms of fault detection; (ii)
defining a tenant-oriented testing process that takes
into account faults and test levels when supporting the
development of high-quality cloud applications, and
(iii) conducting controlled experiments to investigate
the use of a TaaS (e.g., Sauce Labs15) that takes ac-

15https://saucelabs.com/

Evaluating the User Acceptance Testing for Multi-tenant Cloud Applications

55

count an increasing number of variant applications.
Despite the growing popularity of the MTA, there

are still very few empirical studies on the techniques
and testing criteria employed in the cloud domain. We
believe that an essential requirement for more targeted
testing techniques in this field, is to evaluate the test-
ing strategies applied in other contexts.

ACKNOWLEDGEMENTS

The authors are grateful to CAPES, ICMC/USP and
Federal Institute of Education, Science and Tecnology
of South of Minas Gerais - IFSULDEMINAS, Poços
de Caldas campus, for supporting this work.

REFERENCES

Arora, V., Bhatia, R., and Singh, M. (2016). A systematic
review of approaches for testing concurrent programs.
Concurr. Comput. : Pract. Exper., 28(5):1572–1611.

Bai, X., Li, M., Chen, B., Tsai, W.-T., and Gao, J. (2011).
Cloud testing tools. In Service Oriented System Engi-
neering (SOSE), 2011 IEEE 6th International Sympo-
sium on, pages 1–12. IEEE.

Balci, O. (1994). Validation, verification, and testing tech-
niques throughout the life cycle of a simulation study.
Annals of operations research, 53(1):121–173.

Buxton, A. (2015). The reasons why SaaS will
remain the dominant cloud model - Techradar.
https://tinyurl.com/yc7ktewl. [Online; accessed 10-
April-2017].

Chong, F. and Carraro, G. (2006). Architecture strategies
for catching the long tail. In Microsoft Corporation,
page 910. MSDN Library.

Copeland, L. (2004). A practitioner’s guide to software test
design. Artech House.

Gao, J., Bai, X., and Tsai, W.-T. (2011). Cloud testing-
issues, challenges, needs and practice. Software Engi-
neering: An International Journal, 1(1):9–23.

Garg, D. and Datta, A. (2013). Parallel execution of prior-
itized test cases for regression testing of web applica-
tions. In Proceedings of the Thirty-Sixth Australasian
Computer Science Conference-Volume 135, pages 61–
68. Australian Computer Society, Inc.

Hoffman, D. (2001). Using oracles in test automation.
In Proceedings of Pacific Northwest Software Quality
Conference, pages 90–117.

Kabbedijk, J., Bezemer, C.-P., Jansen, S., and Zaidman, A.
(2015). Defining multi-tenancy: A systematic map-
ping study on the academic and the industrial perspec-
tive. Journal of Systems and Software, 100(0):139 –
148.

Krebs, R., Momm, C., and Kounev, S. (2012). Architectural
concerns in multi-tenant saas applications. CLOSER,
12:426–431.

Lewis, B. and Berg, D. J. (1995). Threads Primer: A Guide
to Multithreaded Programming. Prentice Hall Press,
Upper Saddle River, NJ, USA.

Manduca, A. M., Munson, E. V., Fortes, R. P., and Pimentel,
M. G. C. (2014). A nonintrusive approach for im-
plementing single database, multitenant services from
web applications. In Proc. of the 29th Annual ACM
Symposium on Applied Computing, pages 751–756.

Mell, P. and Grance, T. (2011). The NIST definition of
cloud computing - recommendations of the national
institute of standards and technology. Technical re-
port, National Institute of Standartization.

Myers, G. J. and Sandler, C. (2004). The Art of Software
Testing. John Wiley & Sons.

Ostrand, T. J. and Balcer, M. J. (1988). The category-
partition method for specifying and generating fuc-
tional tests. Commun. ACM, 31(6):676–686.

Pinto, V. H. S. C., Luz, H. J. F., Oliveira, R. R., Souza, P.
S. L., and Souza, S. R. S. (2016). A Systematic Map-
ping Study on the Multi-tenant Architecture of SaaS
Systems. In 28th Int. Conf. on Software Engineering
& Knowledge Engineering (SEKE), pages 396–401.

Pusuluri, N. R. (2006). Software Testing Concepts And
Tools. Dreamtech Press.

Roper, M. (1994). Software Testing. McGraw-Hill Book
Company Europe.

Ru, J., Grundy, J., and Keung, J. (2014). Software engi-
neering for multi-tenancy computing challenges and
implications. In Proc. of the Int. Workshop on Innova-
tive Software Development Methodologies and Prac-
tices, pages 1–10. ACM.

Ru, J. and Keung, J. (2013). An empirical investiga-
tion on the simulation of priority and shortest-job-first
scheduling for cloud-based software systems. In Soft-
ware Engineering Conference (ASWEC), 2013 22nd
Australian, pages 78–87. IEEE.

SalesForce (2008). The Force.com Multitenant Ar-
chitecture - Understanding the Design of Sales-
force.com’s Internet Application Development Plat-
form. https://goo.gl/zxYywi. [Online; accessed 3-
September-2017].

Subashini, S. and Kavitha, V. (2011). A survey on security
issues in service delivery models of cloud comput-
ing. Journal of network and computer applications,
34(1):1–11.

Vashistha, A. and Ahmed, P. (2012). Saas multi-tenancy
isolation testing challenges and issues. International
Journal of Soft Computing and Engineering.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

56

