
Self-describing Operations for Multi-level Meta-modeling

Dániel Urbán1, Zoltán Theisz2 and Gergely Mezei1
1Budapest University of Technology and Economics, Budapest, Hungary

2evopro systems engineering Ltd., Hauszmann Alajos str. 2, Budapest, Hungary

Keywords: Meta-modeling, Multi-level Modeling, Operation Language, Self-validation.

Abstract: Any meta-modeling discipline, similar to programming languages, will, sooner or later, feel the need for some

operational language in order to express constraints for model validation and/or action semantics for

executable modeling. Multi-level meta-modeling is no exception in this regard. However, it does provide the

facility to formalize the operation language within the meta-modeling framework, thus the language syntax

and semantics fits perfectly well the intended need of the modeling environment. Moreover, if the modeling

framework is flexible enough in the principles, the model validation can be specified and also applied to the

operation language as well. In this paper, we shortly introduce such a modeling formalism, DMLA, and then

describe in relative detail the design and the current realization of its operation language, DMLAScript, which

enables the multi-level meta-modeling framework to effectively tackle realistic domain models.

1 INTRODUCTION

Multi-level meta-modeling is enjoying a renaissance

after more than ten years of simmering. The paradigm

has been rediscovered in recent years due to various

factors: i) multi-level meta-modeling techniques for

describing data models have been evolving a lot since

the first introduction of potency notion, ii) research

quality tool support is widely available from

universities and research institutes, iii) mainstream

meta-modeling is facing increasingly challenging

problems as industry has started adopting research

solutions and tried to use them in real problem

settings. Indeed, contemporary meta-modeling is a

mature technology, that is, there exist no known

theoretical limits of its applicability to whatever

shape the particular application domains might come

up with and whatever complexity they present. The

only real practical headache nowadays is connected

to the forecasting of the adaptation and later

maintenance costs the candidate solutions will

require. In effect, it is only due to the additional cost

of accidental complexity, which derives from the

selection of a particular modeling technology,

provided the details and the scope of the problem

have been thoroughly investigated. Obviously, multi-

level meta-modeling is not a silver bullet either;

nevertheless, this paradigm aims to minimize that

accidental complexity by taking advantage of an

unlimited number of meta-levels in order to properly

allocate the right abstraction detail to each of them.

The rest is modeling as usual: instantiation plays

exactly the same role as in the case of state-of-the-art

modeling methods such as UML or EMF Ecore.

However, there is though a significant difference: the

leveling is not prescribed by a methodology, but it is

only encouraged and directly influenced by the aimed

solution(s) of the domain.

Although multi-level meta-modeling is a very

promising technique, it does have its own problems

and limitations. Currently, the most serious of those

issues are: 1) the general lack of customizable syntax

and precise semantics of operations acting on multi-

level models, 2) a self-contained and self-describing

multi-level meta-modeling framework that can

bootstrap without explicitly referring to any other

legacy modeling techniques, and 3) a semantically

correct validation framework for multi-level models

that is formally anchored in precise definition of the

underlying instantiation process. Our approach,

Dynamic Multi-Layer Algebra (DMLA), aims to

address these problem areas by a formal algebraic

foundation based on a novel precise conceptualiza-

tion of the instantiation process and a related flexible

tuple representation of multi-level model entities, all

within a totally self-contained bootstrapping

mechanism. A particularly important bootstrap of the

methodology is the self-describing validation

Urbán, D., Theisz, Z. and Mezei, G.
Self-describing Operations for Multi-level Meta-modeling.
DOI: 10.5220/0006656105190527
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 519-527
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

519

framework that also incorporates a full-fledged

operation language, which is entirely specified by

AST entities in DMLA. The language grammar is

used for formalizing the validation rules of the

bootstrap, including also those of such rules that are

to be applied to the AST entities per se. Without self-

circularity, this revolutionary validation approach

works flawlessly and facilitates a programming like

creation of multi-level models. Having the details of

the validation framework already published in

(Urbán, et al., 2017b), this paper concentrates only on

the details of the operation part of the bootstrap, by

describing the main design ideas of syntax and

semantics for the operation language and its direct

application within DMLA’s flexible auto-validation

mechanism.

2 RELATED WORK

Meta-modeling usually focuses on the systematic

modeling of data of a particular application domain.

Although the modeling approaches are fully aware of

the need of operations within the data structure, MOF

and EMF Ecore standard modeling solutions only

allow signature modeling in EClass. Various research

techniques intended to rectify this situation, the most

notable of them being Kermeta (Muller, et al., 2005)

(KerMeta, 2017) and recently the GEMOC

(Combemale, et al., 2013a) (Combemale, et al.,

2013b) framework. Although their solution looks

promising, there are still some limitations remaining:

for example in the case of Kermeta, there is a need for

a complex model promotion due to restricted numbers

of ECore’s meta-modeling levels. In the case of the

GEMOC approach the beauty is fading by the

Xtend/Java semantics woven into the Ecore meta-

models in order to turn them executable.

Multi-level meta-modeling promises to simplify

many of the issues that originate from accidental

complexity. For example, its usage becomes very

instructive when solving the discordance between the

4-level nature of eMOF and Kermeta’s quest for a

language meta-model in Ecore. The effective

handling of accidental complexity relies on the

explicit differentiation between linguistic and

ontological meta-models (Lara, et al., 2014) (Gutheil,

et al., 2008) and the facility of deep or strict

instantiation (Atkinson & Kühne, 2001). For

example, potency notion (Atkinson & Kühne, 2001)

assigns a potency value to every class and attribute,

which clearly indicates the remaining levels they can

get through before getting fully instantiated. Melanee

(Atkinson & Gerbig, 2012) has further refined

potency notion by distinguishing the concepts of

durability and mutability. However, in essence, the

basic ideas of Orthogonal Classification Architecture

(OCA) (Atkinson, et al., 2009) remains in place, thus,

it is taken for granted that all meta-model

management facilities are fully and non-restrictively

operational on each meta-level. Hence, the

instantiation step is heavily simplified; it is controlled

by simple integer values and no sophisticated

constraint handling can be carried out.

More versatile multi-level meta-modeling approaches

are metaDepth (Lara & Guerra, 2010) and XModeler

(Clark, et al., 2015). Both include an operational

language to extend multi-level modeling with

operations. metaDepth uses EOL, a language of the

Epsilon family, for constraint and action

specification. Although it nicely complements

metaDepth, it also showcases the same problem

already mentioned in the case of GEMOC regarding

its reliance to an external language. XModeler has a

much more advanced solution for operation

integration: XMF’s meta-model facilitates higher-

order functions in order to process syntax and to

provide a basic executable language (XOCL), which

relies on OCL syntax and extends it semantics.

However, XOCL is fixed in its syntax and semantics;

thus, it is not easy to be extended by new features.

Also, being part of the XMF (Clark, et al., 2015)

modeling framework, every domain model must

express its semantics in XOCL. On the contrary, in

the approach presented in this paper, the operation

language mainly serves as a facilitator to efficiently

generate meta-model elements. As a result of this

design, the operations are defined and constrained

only by the entities found in the bootstrap of the

particular application domains.

3 THE DMLA APPROACH

Dynamic Multi-Layer Algebra (DMLA) is a multi-

level modeling framework that consists of two major

parts: (i) the Core, a formal definition of the modeling

structure and its management functions; (ii) the

Boostrap, an initial set of pre-defined modeling

entities. In DMLA, the model is represented as a

Labeled Directed Graph, where all model elements

have four labels: a unique ID of the element, a

reference to its meta, a list of concrete values, and a

list of contained attributes. Besides the 4-tuples

representing the model entities, there exist also

functions to manipulate the model graph, for example

to create new model entities. These definitions

(Urbán, et al., 2017a) form the Core of DMLA, which

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

520

is specified over an Abstract State Machine (ASM)

(Boerger & Stark, 2003). Thus, in DMLA, the states

of the state machine are snapshots of the dynamically

evolving models, while transitions (e.g. deleting a

node) represent modification actions between those

states.

The Bootstrap is an initial set of modeling

constructs and built-in model elements (e.g. built-in

primitive types) which are needed to adapt DMLA’s

abstract modeling structure to practical applications.

The main idea behind separating the Core and the

Bootstrap is to improve flexibility, but also to keep

the approach formal. This way, the Bootstrap is

becomes swappable, thus even the semantics of valid

instantiation can be re-defined. Namely, each

particular bootstrap seeds the meta-modeling

facilities of the generic DMLA formalism.

Validation in DMLA is simple in theory:

whenever a model entity claims another entity to be

its meta, the framework automatically validates if

there is indeed a valid instantiation between the two.

The validation formulae can be modularized by

introducing them directly into the Bootstrap. Since

these formulae directly influence the actual semantics

of instantiation, every model validation gets

modularized and DMLA’s instantiation becomes

effectively self-defined by the model per se.

However, in practice, the key success factor to

achieve this self-validated, self-describing behavior

relied on the consistent introduction of operations. In

DMLA, operations are modeled internally within the

bootstrap by a self-contained operation language.

3.1 The Bootstrap

The ASM functions define the basic structure of the

algebra and they also allow to query and change the

model. However, relying only on these pure

mathematical constructs, it would be rather hard to

use the algebra in any practical modeling scenarios.

Hence, the concept of the Bootstrap was introduced,

which is a flexible and swappable layer for defining

any needed modeling entities. For example, the

modeling entities of the current bootstrap (Figure 1)

can be categorized into four groups: (i) basic types

(blue boxes) providing a basic structure for multi-

level meta-modeling, (ii) built-in types (purple boxes)

representing the primitive types available in DMLA,

(iii) entities facilitating the introduction of operations

into DMLA (green boxes), and (iv) validation related

entities (red boxes).

Basic entities are the enablers of multi-level meta-

modeling in DMLA. They create the root of the meta

hierarchy all other modelled entities rely on. The

exact definitions are available at (DMLA Website,

2017). The Base entity is at the very top of the

hierarchy, thus all other entities are instantiated from

it (directly or indirectly). Base defines that entities

can have slots (defined by SlotDefs) and

ConstraintContainers. Slots represent substitutable

properties, which are syntactically similar to class

members in OO languages. ConstraintContainers

(and the contained Constraints) are used to customize

the instantiation validation formulae. Moreover, Base

has two other slots, reserved for validation of those

formulae, which enforce the basic mechanisms of

instantiation validation for multi-level modeling as

explained later. The SlotDef entity is a direct

instantiation of Base. It is used to define slots. Slots

can contain ConstraintContainers, which grants them

the capability to attach constraints to the containment

relations defined by the slot. Moreover, SlotDef

overrides the validation slots inherited from Base.

The Entity entity is another direct instance of Base.

Entity is used as the common meta of all primitive and

user-defined types. Entity has two instances:

Figure 1: The elements of the Bootstrap.

Base

ConstrContainer SlotDef Entity

ComplexEntity

Statement

Expression

OpDefinition Constraint

Cardinality

TypeConstr

OpSignature

Primitive

Bool

Number

String

Self-describing Operations for Multi-level Meta-modeling

521

Primitive (for primitive types) and ComplexEntity

(for custom types). All domain relevant entities

further instantiate ComplexEntity.

The built-in types represent the universes of ASM

in the Bootstrap: Bool, Number and String. All these

types refer to sets of values in the corresponding

universes. For example, the entity Bool has been

created so that it could be used to represent Boolean

type values within the model. Built-in types are relied

on when a slot is filled with a concrete value and that

value is not a reference to another model entity, but it

is a primitive, atomic value. All built-in types are

instances of Primitive.

Operations are the primary focus of this paper. All

these entities, representing the grammar of the

operation language, are defined in the AST subpart of

the bootstrap below ComplexEntity. Moreover, there

are also some extra-grammar entities here, which deal

with ASM execution semantics of the operations by

specifying for example the invocation mechanism

and the handling of return values and variables. More

details are described in Section 4.

In DMLA, the validation logic relies on the

selection of two type specific formulae (referred to as

alpha and beta) based on the meta-hierarchy of the

element to be validated. The alpha type formulae is

constructed to validate an entity against one of its

instances, by checking whether the instantiation

relation between the two elements can be verified. In

contrast, the beta type formulae are in-context checks:

they are mainly needed in case an entity has to be

validated against multiple related entities, e.g. in case

of cardinality. The Base entity contains the default

alpha and beta formulae, which can be customized by

the instances, provided that they do not contradict the

standard validation rules imposed by the Base. The

validation aspect of the Bootstrap has been discussed

in detail in (Urbán, et al., 2017b).

4 OPERATIONS

For any practical modeling technique, having a

consistent and powerful operation language is more

than a desired feature. Such a feature enables models

to be truly self-contained by incorporating the

semantics and the dynamic nature of the models as

their integral part, instead of relying on an externally

provided substitute. However, in most current

modeling approaches, this is achieved by importing

an external language into the modeling universe, thus

they deal with black box semantics. While it is an

improvement compared to inflexible static solutions,

it still may not be enough: (i) since the language is an

external asset, so the self-describing nature of the

technique is violated; (ii) the main concepts of the

technique - such as instantiation or validation – are

not available in the imported language in a genuine

way, or they may even have a different interpretation

unbeknownst to the modeler.

While the desire to include an operation language

within a modeling technique is well understood,

another important aspect is if and how such languages

can be integrated. In this section, we present our

process of how intrinsically modeling a full-fledged

operation language and augmenting the original

DMLA framework with it, all within the frame of the

original DMLA concept domain.

As a result, our approach has clearly separated the

various concerns and issues of such a language, and

tackled them head-on one by one: (1) Evaluated the

different possibilities of modeling the AST (NB:

DMLA’s bootstrap enables such design by itself), (2)

Chose the abstraction level of the language, (3)

Created the specification and the model entities of the

AST, (4) Evaluated the need of a DSL, (5) Integrated

the language into the framework, (6) Analysed the

execution methods of the modeled code.

4.1 Modeling an AST

Since most modeling frameworks claim to have a

universal foundation to describe models – and this is

even more prevalent in multi-level modeling –

technically the issue is not be a problem at all.

Essentially, code is only data at another meta-level,

that is, instances of an AST meta-model. Since the

static aspects of DMLA and the selected bootstrap are

well formed (Urbán, et al., 2017a), it is relatively

simple to create model elements for a programming

language as nodes of an AST.

4.2 Abstraction Level

It is an important challenge to choose the abstraction

level of the language adequately. In DMLA,

accessing and manipulating entities of the model can

be achieved at two levels: (i) at the level of the tuples,

or (ii) at the level of the bootstrap.

Since everything in DMLA is a tuple, a language

can be easily created that operates on the tuples of the

model. It also means that the type system and other

semantic concepts introduced in the bootstrap cannot

become part of the language. Hence, this solution

results in a low-level, though universal solution,

which is independent of the bootstrap and not

automatically reflected in the semantics of the

language.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

522

Another solution is to operate on the bootstrap

level. This means that the type system and all

concepts of the bootstrap are tightly integrated into

the language itself, for example, one could use the

constraints of the bootstrap for declaring variables..

This solution results in a high-level, yet rather

complex language.

We have selected the first option. It may look less

elegant, but it results in an efficient low-level

language, operating directly over the tuples of the

underlying DMLA mechanism. Also, for reasons of

practicality, we chose an imperative approach.

4.3 Modeling the AST

We collected some requirements to be imposed: (i)

the language shall be bootstrap-agnostic, thus the type

system shall mirror the ASM prescribed one, i.e.

primitives, IDs and Any. Multi-dimensional arrays of

types shall be allowed as well. (ii) The built-in

functions of the ASM are to be made available to

enable operations with tuples. (iii) Usual

programming language constructs, i.e. conditionals,

loops and functions must to be supported.

In order to satisfy the above requirements, we

implemented the following language constructs: (i)

types: Any, ID, string, number and bool (and their

multi-dimensional arrays); (ii) variables; (iii)

sequences (block); (iv) conditionals (if); (v) loops

(while, for, foreach); (vi) type check and cast (is, as);

(vii) arithmetical and logical operators (+ - * / || &&);

(viii) index operator; (ix) functions and function calls

– preferably with the concept of “this”, a dedicated

parameter; (x) return.

With this list of constructs established, modeling

of the AST could be properly carried out. The

constructs are defined as bootstrap entities. For

example, the If construct is defined as follows: (i) the

construct is the instance of Statement, (ii) it has a

Condition slot with Expression type and [1..1]

cardinality, (iii) it has a Then slot with Statement type

and [1..1] cardinality, (iv) it has an Else slot with a

Statement type and [0..1] cardinality.

All constructs could be modeled in similar ways

in the bootstrap. In the end, we implemented an

operation language that now exists as a static

specification within the model. Using this language,

programs can be created to indirectly manipulate

tuple representations, and any code written in this

language will be stored in the bootstrap.

4.4 DSL for Operations

4.4.1 Evaluating the Need for a DSL

At this point, model representation of “code” is

provided in the Bootstrap. Integration of the language

into the framework (e.g. migrating the validation

logic of the Bootstrap) has no obstacles in its way. But

the task looks difficult, to say the least.

It is important to emphasize that the AST

representation of code is effusive. Comparing the

textual representation of code snippets of any

programming language to its equivalent AST

representation shows clear gap in terseness.

Let us take the below code example that results in

9 tightly connected tuples when written in the

operation language of DMLA as follows:

if(true) return 1;

This factor of flatulence indicates that writing real

“code” would be nearly impossible for any modeller.

Constructing nodes of an AST is a very cumbersome

low-level method of “coding”: in a sense, when 4-

tuples are being produced in DMLA, it would look

like programming in an assembly language or even

directly producing byte-code. This is why the

question of creating a DSL is relevant in this context:

it helps turn any theoretical solutions to practical

implementation. Since our goal was not only to define

the language, but we also wanted to tightly integrate

it into the already existing modelling framework. To

achieve this goal, we had to produce real code, thus

we decided to create a DSL for the abstract language

syntax: DMLAScript was born.

DMLAScript had to be a practically applicable

operation language over DMLA. Therefore, it must

be able to effective produce 4-tuple entities. Thus, the

most important aspect of DMLAScript’s language

design is maximal efficiency of tuple production.

However, there are other design constraints imposed

on it so that DMLAScript could become genuinely

part of the DMLA framework: 1) the structure of

entities shall be expressed as “data definitions”, 2)

operational logic shall be programmed as “code”, and

finally 3) validation logic of the bootstrap must be

given by the DSL.

In order to better appreciate the task of an optimal

operation language design, it is important to re-

emphasize that DMLAScript is not a necessity out of

DMLA per se, nonetheless without it we cannot

imagine that any practical modelling scenarios can be

tackled adeptly. Hence, DMLAScript is effectively a

Self-describing Operations for Multi-level Meta-modeling

523

facilitator of efficient entity modelling, which creates

the illusion of a programming language over DMLA.

With DMLAScript, we simply provided a textual

DSL over the constructs of the operation language

already defined in the Bootstrap. We borrowed most

of the syntax ideas from Java. We implemented the

DSL and its mapping onto Bootstrap entities (tuples)

within Xtext. With DMLAScript, the previous “code”

example is as simple as it was written there.

This style of coding looks much more natural and

it is easier to use for the modeler than to create the

corresponding tuples manually and hook them

together along their IDs. Since the syntax of

DMLAScript follows modern imperative languages,

it is both easy to use for programming and to get

parsed for execution. Our current DSL tool relies on

transforming the above code snippet into instances of

AST nodes, in the end producing the 9 tuples.

4.4.2 Syntax of DMLAScript

Before proceeding to any further in the process of

language design, we will show a few simple code

examples to introduce the syntax of DMLAScript.

Entity1 : Entity2 {

 slot E1Slot : Entity2.E2Slot = 1;

 AnotherSlot;

}

In the first example, we declare an entity with the

ID Entity1. The meta of Entity1 is Entity2. Between

the braces, we have the attributes of Entity1, namely,

there is a slot with the ID E1Slot. E1Slot is defined

inline, nested in Entity1. The meta of E1Slot is

Entity2.E2Slot. The constant value 1 is assigned to the

value of E1Slot. Entity1 also has a second slot with

the ID AnotherSlot. AnotherSlot is not defined inline:

it must already be defined somewhere else in the

code, and it is only referenced here to be included as

attribute of Entity1.

It is important to keep in mind that in

DMLAScript, the indexing feature of Xtext is heavily

used. Entities in the code have fully qualified names

using their parent packages and entities. It means that

the produced ID of the tuple generated from the

definition of E1Slot will look like “Entity1.E1Slot”.

This is important to keep in mind because there are a

lot of apparently colliding IDs in the code of the

Bootstrap (DMLA Website, 2017), while in reality

IDs are affected by the index and the imports, and will

be fully unfolded in the tuple generation step.

Entity1 : Entity2 {

 @ConstrContainer1

 @ConstrContainer2: MContainer1 =

 $SomeConstraint1;

 @ConstrContainer3: MContainer2 =

 SomeConstraint2: MConstraint {

 slot ConstraintSlot:

 MConstraint.Slot = true;

 };

 slot SomeSlot: Entity2.E2Slot =

 $SomeEntity;

}

In the second example, not only an entity is

declared with slots, but there are also constraint

containers defined on the slot. Entity1 is the instance

of Entity2, and has a single slot, SomeSlot. SomeSlot

is the instance of Entity2.E2Slot, and its value is a

reference to the entity SomeEntity. SomeSlot has three

attributes, all of them indicated above the slot:

ConstrContainer1, ConstrContainer2 and

ConstrContainer3. ConstrContainer1 is an already

defined entity. ConstrContainer2 is an entity, which

is defined inline, its meta is MContainer1, and its

value is set to the entity SomeConstraint1.

ConstrContainer3 is also defined inline, its meta is

MContainer2, and its value is set to a constraint entity

defined inline. This constraint entity is called

SomeConstraint2, its meta is MConstraint. It has one

attribute, namely the slot ConstraintSlot, which is the

instance of MConstraint.Slot, and its value is set to

true.

This example shows how the basic entities of the

bootstrap are used in the language. Most entities

defined in the DSL are instances of ComplexEntity;

they contain SlotDef instances as attributes; SlotDef

instances have values; and SlotDef instances contain

ConstraintContainer instances as attributes; finally,

ConstraintContainer instances contain Constraint

instances as values.

operation void Method1();

operation Bool Method2(Number p1);

operation String ID::Method3(Bool[] p1);
In the third example, we have three operation

signatures. The operation Method1 has a void return

type, and no parameters. Method2 has a Bool return

type (this refers to the primitive entity Bool) and one

parameter called p1 with the type Number (primitive).

Method3 has a String return type (primitive), has a

context with the type ID – which will be the type of

“this” inside the operation - and also has a single

parameter called p1 with the type of one dimensional

Bool array.

operation String Example(Number p1){

 if(p1 < 0) return "negative";

 while(p1 > 0) --p1;

 call $SomeMethod();

 return "something";

}

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

524

In the fourth example, we define an operation

with its body. The operation has the ID Example, has

a String return type, and has a single Number

parameter called p1. If p1 is less than 0, the operation

returns the string “negative”, otherwise, it decrements

p1 to 0 in a while loop. After that, it invokes another

method with the ID SomeMethod, and then returns the

string “something”. Note that modifying operation

parameters (such as decrementing p1) has no effect

on the caller site, since parameters are all passed by

value in DMLA.

operation void OpToContain() { }

EntityWithOperation : MetaEntity {

 slot MethodSlot : MetaEntity.Slot =

 $OpToContain;

}
In the final, fifth example, we define an operation

with the ID OpToContain. Then, we define an entity

called EntityWithOperation. This entity has a single

slot called MethodSlot, which has its value set to

OpToContain. As it can be seen, it is very

straightforward to reference operations.

4.4.3 Design of DMLAScript

Let us describe now the generic design ideas behind

DMLAScript in order to show how the language has

coped with the original requirements.

Firstly, DMLAScript rebalances the very pointer

like nature of the 4-tuple representation of related

DMLA entities. Namely, instead of manually dealing

with all the IDs, which weave the model entities

together along the meta, the attribute, and even the

value references, the model designer can simply rely

on a local context around the entities when he carries

out his modeling task. Also, when describing the

structure of the entities, DMLAScript applies

annotation-like constructs to attribute slots in order to

simplify the specification of the constraints defined

on the slots. These two features create the feeling of

a high level entity definition language that enables

efficient production of the corresponding 4-tuples.

Secondly, DMLAScript follows the imperative

semantics of Java-like notations. We introduced a

special syntax for direct referencing of entities, which

enables us to connect seamlessly the entity definition

part to the operational part of DMLAScript. Taken

into account that operations are also represented as

entities in DMLA, entity referencing works both

ways: from entity definition to operation logic and

back. Hence, the modeller should not be aware of

those two aspects, DMLAScript looks like an integral

language for multi-level meta-modeling, which also

happens to be used to define itself in the bootstrap.

Thirdly, DMLAScript also provides a language to

express DMLA’s validation logic for multi-level

meta-modelling. It is established by a pre-set naviga-

tion scheme of validation logic invocations that is

seamlessly embedded into the basic entities of the

bootstrap, via their alpha and beta slots. In effect, the

bootstrap has been set up by DMLAScript in such a

way that it can carry out its own validity check. The

default validation behaviours can be constrained via

instantiation, for example, cardinality logic and/or

type validation logic can be added to entities via alpha

and beta operations written in DMLAScript.

4.5 Integration of the Language

With the syntax and general design and its embedding

being detailed, it is obvious that any operation logic

can be produced and efficiently stored as tuples in

DMLA models. All that thanks to DMLAScript and

its parsing module. The next goal was to express the

already existing (validation) semantics and dynamic

logic with DMLAScript.

Our aim was to migrate the validation logic,

which had been previously residing at the level of the

Core and the ASM formalism. Moreover, we

recognized that the new operation language would

enable not only the migration of the validation

formulae, but also the full modularization of the

underlying evaluation logic. Since operations are

handled as data in DMLA, data structures can also

contain references to operations as the design

required it. This feature allowed us to create truly

self-contained entities in the bootstrap, which are not

only containing their structure and data, but they can

also prescribe their own custom validation logic at

ease (Urbán, et al., 2017b).

4.6 Execution of DMLAScript

With DMLAScript genuinely integrated into

DMLA’s modeling fabric, the only open issue to be

solved was how to tackle the dynamics of the

language, that is, how to execute, for example, the

validation logic represented in 4-tuples. Essentially,

there are three ways to answer this challenge: (i) rely

on an interpreter, (ii) generate executable code in

another language, or (iii) generate a directly

executable binary. The third option results in a rigid,

platform dependent solution that is more complex

than the first two, thus we dropped this idea. While

running the language within an interpreter is a rather

flexible solution, it though requires a well-established

infrastructure, such as some kind of a virtual machine.

On the contrary, generated executable code is again

Self-describing Operations for Multi-level Meta-modeling

525

quite a rigid solution, but, at least, it does not require

complex a runtime framework.

Since the current technical solution is our first

implementation drop, mostly we aimed to validate

our assumptions in practice; hence we decided to

provide a quick prototypical execution framework, by

generating Java code from the AST instances stored

in the DMLA models.

The framework itself has been programmed in

Java and it consists of a model repository, which

contains the tuples of the model and a symbol table

for built-in and custom operations. The runtime can

generate code from the tuples, compile it, and load the

compiled code dynamically. It is important to note

that the generated code currently takes into account

only the Core and the Bootstrap, so it is independent

of DMLAScript syntax and its Xtext module. Hence,

the syntax of DMLAScript is currently handled by an

external tool, and thus should be thought of only as

syntactic sugar over DMLA’s operation language.

5 CONCLUSIONS

Model-driven development has become a feasible

option to create and maintain complex systems.

However, static modeling solutions are not always

sufficient any longer in the modern era of industrial

applications. Thus, the demand for dynamic modeling

techniques became a natural tendency in many fields.

Although extending static models with external

operation languages and execution frameworks can

sometimes meet the requirements, it would be more

elegant, and also due to its design more verifiable and

customizable, to build the mechanism of operations

directly into the modeling framework. From the

theoretical perspective, representing operations as

modeled entities has been already researched and well

understood in detail, but a seamless, self-describing

and non-circular integration of these ideas into a fully

functional modeling framework has not been

implemented up till now.

Our approach, the Dynamic Multi-Layer Algebra

(DMLA) provides such a practical solution for the

challenge. DMLA features a highly customizable,

multi-layer modeling and validation structure that

allowed us to build a fully modeled operation

language into it. In general, this language enables

programming with operations over modeling entities,

but its real strength only gets to the surface when it

comes to specifying the validation formulae of multi-

level instantiation in particular. That ability results in

a fully self-describing, self-validation modeling

framework, which can validate even its own language

definition. Moreover, since the operation language

can be part of any modeled domain, it may be further

extended or customized.

Currently, the DMLA environment provides as

default a high level, Java-like operation language,

DMLAScript, which is suitable to keep the

specification of the operation logic within

manageable size. In the future, we are investigating

ways to speed up the current validation process by

parallel execution. We are evaluating the possibilities

for optimizing the core operations of the validation by

parallelizing them with GPU support, which could

strike a balance between the flexibility of the

bootstrap and the performance of its execution.

REFERENCES

Atkinson, C. & Gerbig, R., 2012. Melanie: Multi-level

modeling and ontology engineering environment.

Proceedings of the 2Nd International Master Class

 on Model-Driven Engineering: Modeling Wizards,

pp. 7:1 - 7:2.
Atkinson, C., Gutheil, M. & Kennel, B., 2009. A Flexible

Infrastructure for Multilevel Language Engineering.

IEEE Transactions on Software Engineering, 35(6), pp.

742 - 755.
Atkinson, C. & Kühne, T., 2001. The Essence of Multilevel

Metamodeling. The Unified Modeling Language.

Modeling Languages, Concepts, and Tools, Volume

2185, pp. 19-33.
Boerger, E. & Stark, R., 2003. Abstract State Machines: A

Method for High-Level System Design and Analysis.

s.l.:Springer-Verlag Berlin and Heidelberg GmbH &

Co. KG.
Clark, T., Sammut, P. & Willans, J., 2015. Super-

Languages: Developing Languages and Applications

with XMF.
Combemale, B. et al., 2013b. Reifying Concurrency for

Executable Metamodeling. Software Language

Engineering. SLE 2013. Lecture Notes in Computer

Science, Volume 8225, pp. 184-203.
Combemale, B. et al., 2013a. Bridging the Chasm between

Executable Metamodeling and Models of Computation.

Software Language Engineering. SLE 2012, Lecture

Notes in Computer Science, Volume 7745, pp. 184-203.
DMLA Website [Online] https://www.aut.bme.hu/Pages/

Research/VMTS/DMLA [Accessed 23 04 2017].
Gutheil, M., Bastian, K. & Atkinson, C., 2008. A systematic

approach to connectors in a Multi-level Modeling

Environment. Proceedings of the 11th International

Conference on Model Driven Engineering Languages

and Systems, Volume 5301, pp. 843-857.
Kermeta Website [Online] http://diverse-project.github.io/

k3/ [Accessed 23 04 2017].
Lara, J. d. & Guerra, E., 2010. Deep Meta-modelling with

MetaDepth. Objects, Models, Components, Patterns,

Volume 6141, pp. 1-20.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

526

Lara, J. D., Guerra, E. & Cuadrado, J. S., 2014. When and

How to Use Multilevel Modelling. Journal ACM

Transactions on Software Engineering and

Methodology, 24(3), pp. 12:1-12:46.

Muller, P.-A., Fleurey, F. & Jézéquel, J.-M., 2005.

Weaving Executability into Object-Oriented Meta-

Languages. Lecture Notes in Computer Science,

Volume 3713, pp. 264 - 278.

Urbán, D., Theisz, Z. & Mezei, G., 2017a. Formalism for

Static Aspects of Dynamic Metamodeling. Periodica

Polytechnica Electrical Engineering and Computer

Science, 61(1), pp. 34-47.

Urbán, D., Theisz, Z. & Mezei, G., 2017b. Validated Multi-

Layer Meta-modeling via Intrinsically Modeled

Operations. 4th International Workshop on Multi-Level

Modelling, 2017, https://www.wi-inf.uni-duisburg-

essen.de/MULTI2017/#program (Accepted, presented,

publication in progress).

Self-describing Operations for Multi-level Meta-modeling

527

