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Abstract: Image registration, the task of aligning two images, is a fundamental operation for applications like image 

stitching or image comparison. In our project in surveillance for route clearance operations, a drone will be 

used to detect suspicious people and vehicles. This paper presents an approach for real-time image 

alignment of video images acquired by a moving camera. The high correlation between successive images 

allows for relatively simple algorithms. We considered region segmentation as an alternative to the more 

classical corner or interest point detectors and evaluated the appropriateness of connected component 

labeling with a connectivity defined by the gray-level similarity between neighboring pixels. Real-time 

processing is intended thanks to a very fast segment-based (as opposed to pixel-based) connected 

component labeling. The regions, even if not always pleasing the human eye, proved stable enough to be 

linked across images by trivial features such as the area and the centroid. The vector shifts between 

matching regions were filtered and modeled by an affine transform. The paper discusses the execution time 

obtained by this feasibility study for all the steps needed for image registration and indicates the planned 

improvements to achieve real-time. 

1 INTRODUCTION 

Image registration, a very important field of image 

processing and computer vision, is the task of 

aligning pictures, a fundamental step for applications 

like image stitching, medical image alignment or 

camera motion compensation. 

Images are usually registered by intensity-based 

matching or feature-based pairing (Zitova and 

Flusser, 2003; Goshtasby, 2005). The common 

intensity-based matching consists in image patch 

cross-correlation to find corresponding areas in both 

images, a time consuming process due to the large 

space of search (image dimension and transform 

parameters). The feature-based approach consists in 

extracting in both images remarkable points, lines or 

contours and in pairing them. The small memory 

need and computational load of the latter approaches 

have given rise to many successful and efficient 

methods like SIFT (Lowe, 2004) and ORB (Rublee 

et al., 2011). 

We are currently active in a European Defence 

Agency project of the Research and Technology 

programme IEDDET for countering Improvised 

Explosive Devices (EDA, 2017). It addresses the 

topic of future route clearance operations for which 

an early warning phase is in charge of pre-screening 

the area to highlight any suspicious presence of 

people or vehicles. To realize this, a test area will be 

flown over by an Unmanned Aerial Vehicle 

equipped with visible and thermal infra-red cameras. 

The thermal camera has been selected for its 

capacity to detect individuals and vehicles thanks to 

its temperature sensitivity while the visible camera is 

more appropriate for image registration. 

For image registration, we propose to match 

uniform regions as an alternative to the more 

classical corners or interest points. Due to the 

similarity of images taken from a sequence, regions 

can provide for several simple and robust features, 

obtained with little development and for small 

computational effort. They can bring geometrical 

and radiometric information or mix local (contour) 

and regional characteristics. They also represent a 

useful description for object tracking, after image 

registration. 

Real-time responses in the context of security or 

rapid processing in the case of automatic detection 

in hours of video footage impose fast algorithms. 

For the sake of estimating local shift between 

images to be registered, most fast approaches detect 

interest points and match them across images (Lowe, 
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2004; Rublee et al., 2011). Many works preferred to 

optimize the image intensity comparison of local 

areas (blocks). For instance (Puglisi and Battiato, 

2011) relied on efficient integral projections while 

(Kim et al., 2008) limited the number of blocks and 

sub-blocks to be analyzed, and estimated the best 

correlation from the number of matching edge points 

in sub-blocks. A more recent trend for acceleration 

consists in exploiting parallel computing from the 

central or graphics processing unit (Zhi et al., 2016; 

Shamonin et al., 2014). In this work we planned to 

explore the region approach in terms of speed, 

registration potential and code simplicity. 

The rest of the paper first outlines the 

methodology in section 2, then details how images 

are segmented into regions in section 3, and how 

these are matched in order to model the image 

transform for registration, subject of section 4. 

Registration results are presented in Section 5 and 

time figures are discussed for this feasibility study 

and for the planned developments with the suggested 

improvements. Section 6 draws conclusions and 

outlines our future work. 

2 METHODOLOGY 

We were motivated to show that for image 

registration, region extraction and matching is a valid 

alternative to the traditional feature-based approaches 

in terms of speed and precision, and this for a 

software implementation easy to code and control. 

Our development is based on the segmentation of 

images into regions thanks to a very fast detection of 

connected components. Instead of considering pixel 

connectivity, horizontal segments are first detected 

thanks to a fast horizontal connectivity check. Then 

the vertical connectivity is used to link segments. 

The representation of regions exploits directly the 

segments and is coded as a list of segment leftmost 

and rightmost x coordinates. This representation 

allows for memory compactness and very fast 

computation of classical geometrical features. 

With such a speed for region segmentation, the 

difficulty for choosing a threshold can be alleviated 

by testing several threshold values for the reference 

image (done once) and for the images to be 

registered. The number of regions can be used as 

selection criterion but some applications may prefer 

to use all detected regions (for all thresholds tested). 

In this feasibility study, only one threshold was 

necessary, due to the high correlation of images 

taken from a short sequence. 

The regions extracted in images are matched by 

features so that provisional shift vectors (Dx,Dy) are 

collected all over the image. These vectors are 

filtered and modeled by an affine transform. This 

image transform made of 6 coefficients is used to 

align the image to the reference so that image 

differencing can highlight objects in motion. 

3 IMAGE SEGMENTATION 

The segmentation of images follows the approach of 

connected component labeling, with a connectivity 

rule based on the gray-level difference of 

neighboring pixels. The implementation employs an 

efficient representation of regions by segments to 

offer speed and to optimize memory accesses and 

size. 

3.1 Connected Component Labeling 

Connected Component Labeling, the process of 

assigning a unique label to each group of connected 

pixels, is usually applied to binary images. Refer to 

(Grana et al., 2010) and (Lacassagne and 

Zavidovique, 2011) for a detailed review of 

pioneering and recent approaches. 

Most algorithms use a 2-pass procedure that first 

finds connected pixels and marks them with a 

provisional label, storing possible equivalence of 

labels when branches with different labels meet. 

They then scan the image a second time to give a 

final label, result of equivalence resolution. 

The improvements brought to this general 

approach concern the way the equivalence of labels 

is resolved, how memory accesses are optimized to 

reduce memory cache misses and how much 

conditional statements are minimized to avoid 

stalling the processing pipeline in RISC computers. 

One of the fastest published methods on RISC 

architectures is called LSL (Light Speed Labeling, 

Lacassagne and Zavidovique, 2011) and consists in 

the storage of foreground regions (in a binary image) 

as run length codes (RLC) and not as an image. It is 

exactly the way we improved our pixel-based 

segmentation by connected component. The very 

good results and thorough evaluation of LSL make 

us confident that once our development for segment-

based (RLC) image segmentation will be finalized, it 

will offer a fast and valid solution, as preliminary 

tests already showed. 
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3.2 Pixel Connectivity 

Two pixels are considered connected if they touch 

(in 4- or 8-Neighbor connectivity) and if their gray-

level difference complies to some rule. We adopted 

a constant threshold. This definition for connectivity 

allows regions to climb or descend hills of limited 

slopes to form large areas that are bordered by edges 

with a minimum contrast. 

The choice for the threshold is crucial to avoid a 

myriad of useless small regions or a reduced set of 

very large areas. For speed reasons, we did not 

choose for an adaptive solution with varying 

threshold, such as the Maximally Stable Extremal 

Regions (Matas et al., 2002). Region growing 

methods usually perform non-contiguous memory 

accesses that may result in cache misses. Instead, we 

observed that 256-level images are well segmented 

with a fixed threshold value between 2 to 8, 

depending on the edge strengths. Values 3 or 4 are 

often appropriate values. 

One good threshold value can be obtained 

automatically from a rough estimation of the 

gradient histogram. Alternatively our fast 

segmentation algorithm can be run several times to 

select the best threshold when matching two images, 

or even to use all obtained regions (for all 

thresholds) if more candidates are needed. Mention 

that the images in the sequences are captured within 

a short time interval and from a similar point of 

view. A threshold good for one image is likely to be 

fine for the others. 

3.3 Region Detection 

As soon as two pixels are connected horizontally, a 

segment is initiated by storing the first x position 

into the array of segments xT. The x position of the 

last horizontally connected pixel of this segment is 

stored in the next value of xT. The array xT is filled 

progressively during the image scan from top to 

bottom. Thanks to the increasing addresses of the 

accesses to the image and xT, memory cache misses 

are minimized.  

At the beginning of each row during the scan 

process, the index of the first free value in xT is 

stored in a small table yT that contains h (image 

height) elements. This table offers a simple way to 

access the segments of any image line and in 

particular the line preceding the currently processed 

one. yT also gives a compact and inexpensive way 

to keep the y position of a segment without 

explicitly storing y values for each segment. 

3.4 Region Labeling 

Subsection 3.3 explained horizontal connectivity. 

The vertical connectivity is checked with stored 

segments (xT) of the previous image line. Again, 

memory accesses are efficient as xT values of the 

previous line are probably still in the cache. As 

shown in Figure 1, a new segment S may link 

segments with different labels Li, when for instance 

two or more branches get connected. This calls for 

label equivalence and its resolution. 

All segments of the first image line receive a 

unique label assigned in increasing order. From the 

second line, a comparison is made between segment 

ends of the current line and the previous one to see if 

a label can be propagated. Since xT values are 

increasing along each image line, the comparison 

between segments of two consecutive lines is done 

efficiently. For a label to be propagated from 

segment L on line y-1 to segment S freshly detected 

on line y, there must exist at least one pixel from L 

touching one pixel of S, with a gray-level difference 

under the threshold. 

 

Figure 1: Segment labeling for new segment S with 

equivalences for L1, L2 and L3. 

Several label propagation cases may happen. If 

there is no segment L touching S, a new (increasing) 

label is given to S. If there is just one, its label is 

assigned to S. If there are several segments L, all the 

corresponding labels Li have to be connected in an 

equivalence table. 

The equivalence table contains the provisional 

final label (called parent) for each label. Each table 

entry (label) is initialized with its table index. Once 

equivalences are found, the minimum value (so, the 

oldest assigned one) of the parent labels of all labels 

connected by segment S is used as new parent label 

for all connected labels. 

At the end of the image scan, all segments are 

found and compactly stored in the xT array and 

easily accessed line by line thanks to the yT array. A 

label array called labT (indexed by simplicity the 

same way as xT, or half its index to gain some 

memory) contains the segment provisional label 

values. To resolve equivalences, the table values are 

replaced by their parent label and compacted since 

non-parent labels become useless. labT values are 

updated accordingly so that at the end, the remaining 
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regions have the minimum number of labels from 1 

(0 is reserved for no_region) to the number of 

regions, by order of appearance when scanning the 

image. 

 

Figure 3 shows the result of image segmentation 

into regions for two images of the sequence 

separated by 4 seconds of Figure 2. 

 

Figure 2: Two images of a sequence separated by 4 

seconds. 

 

Figure 3: Region extraction and labeling for the reference 

image and the image to register. 

 

 

 

 

4 IMAGE REGISTRATION 

Image registration is realized by a 4-step procedure. 

First, features are extracted for the regions detected 

during image segmentation. Secondly, region 

features of an image pair are compared to identify 

possible matches. Each match defines a shift vector 

(Dx,Dy), probable displacement of a region. Thirdly, 

shift values are used to fit an affine transform 

modeling the local shift all over the image. Finally, 

the image to register is warped by the affine 

transform to be aligned to the reference. 

4.1 Region Features 

Several region features are easily and efficiently 

extracted from the way regions are stored as a 

collection of segments. The most direct feature is the 

area in pixels, computed very quickly for all regions 

by scanning once xT, and summing the segment 

lengths for each region. Region x and y value 

averages, also accelerated by the segment-oriented 

representation with xT and yT, give the centroid 

coordinates Cx, Cy and offer a robust localization 

for regions. 

Like the first order moment Cx and Cy, the 2nd 

order moments Mxx, Mxy, Myy, physically related 

to inertia, can be efficiently computed. They also 

directly lead to the maximum and minimum inertia 

axes, and give a hint to the region orientation.  Other 

easy geometrical features are the bounding box and 

the region contour, with possible corner detection. 

These last features should be included when regions 

are not numerous or when the centroids are not 

sufficiently precise, usually for medium or large size 

regions. 

Aside from these geometrical characteristics, 

some obvious radiometric values can be rapidly 

evaluated (e.g. minimal and maximal gray values, 

average, standard deviation). 

4.2 Region Matching 

In this feasibility study, we implemented feature 

matching by a direct comparison of only two 

features (area, centroid position) with quite a large 

tolerance. The first image of a sequence is taken as 

reference to register any of the following images, 

one at a time. 

Two regions of similar area (up to 10% 

difference) constitute a matching pair if their 

centroid lies within a distance D, by default set to 

1/10 of the image largest dimension. 

 

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

442



 

Figure 4: Selected shift vectors. 

The shift vectors (Dx,Dy) between matching 

regions centroids are collected to later derive a 

motion vector field. Even with the current 

elementary region matching with two features, a 

dominant peak clearly appears in the 2-D histogram 

of (Dx,Dy). The distribution around this peak 

corresponds to the dependence of the local shift 

values with image position since the camera 

movement may induce a perspective transformation 

or rotation. In our tests, the false candidates due to 

wrong matches were distributed sparsely in the 

histogram and did not challenge the dominant peak. 

The selected shift vectors after histogram peak 

selection are shown in Figure 4. A majority of 

vectors are coherent in size and direction. 

We will have to evaluate in practice, for limited 

movements corresponding to fast frame rates (10 or 

25 Hz), and depending on drone motion patterns, if 

we need to consider multiple peaks, for instance for 

the case of a strong rotation. One possible 

implementation then consists in dividing the frames 

into tiles in which the local apparent motion is closer 

to a translation, resulting in a dominant peak if there 

are enough matching regions in the tile and few 

moving objects. 

If the precision of Dx or Dy from the centroids is 

not sufficient, other points may be searched for, 

either from the region contours, or from the gradient 

peaks near region borders. 

4.3 Shift Modeling 

The candidate list of (Dx,Dy) values was restricted 

in the previous subsection to the histogram peak 

since the area feature (and the maximal centroid 

distance D) was not constraining enough to filter out 

most of the false matches. To further fight against 

erroneous shift estimations but also to compensate 

for the possible lack of shift values in some image 

area and to capture the dependence of shift values 

with image position, a global model for (Dx,Dy) is 

looked for in terms of the image coordinates. We 

opted for an affine transform: 

X = Ax+By+C (1) 

Y = Dx+Ey+F (2) 

where x,y are the coordinates of the image to be 

registered and X,Y are the reference image 

coordinates. 

The coefficients of (1) and (2) are currently 

estimated by least mean squares with the function 

getAffineTransform from the openCV library. As 

this function is called from our C program with a 

process launching Python, shift modeling represents 

a slow step in the current implementation of this 

feasibility study. 

4.4 Image Warping 

An image warping operation is applied to register an 

image of the sequence to the reference image. This 

operation typically scans the result frame to write 

the bilinear interpolation of 4 pixels from the source 

surrounding the coordinates projected by the inverse 

transformation of equations (1) and (2). 

Although easy in concept, this operation is slow 

(40 msec for a 2 Mpixel image) since all image 

pixels are considered. 

5 RESULTS AND DISCUSSION 

The main goal of the presented research is to offer 

camera motion compensation. Figure 5 shows the 

difference between a registered image and the 

reference. We see that the correction is globally fine. 
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A residual error of 2 or 3 pixels exists in some areas. 

This is mainly due to the approximated localization 

of regions by their centroid. An approach based on 

region contours would be more precise but is not 

necessarily needed as for the detection of large and 

fast moving objects. 

 

Figure 5: Difference between the reference and the 

registered images. 

A second objective of our development is to 

offer fast processing. We intend to analyze the video 

flow in real-time or to process stored sequences as 

fast as possible. This is less of a challenge with 

nowadays computers, but the standard image 

resolution has increased. 

For this feasibility study we recorded sequences 

with a Samsung A5 (2016) in the MPEG 1080p 

format. Each image has 1920 x 1080 pixels (2 

Mpixel). The given execution times were obtained 

by a computer equipped with an Intel i5-4590 at 3.3 

GHz (27 Gb of RAM), using a single core. 

Table 1 gives an overview of the current and 

prospected execution time for the different steps of 

the proposed registration approach in the case of 2 

Mpixel images. 

Table 1: Timing figures for a 2 Mpixel image. 

Processing Current [ms] Prospected [ms] 
(Pre-processing) (20) (20) 

Segmentation 140 15 
Region Features 1 5 
Region Matching 2 10 
Shift Modeling 100 10 
Image Warping 40 20 

Total 283 (+20) 60 (+20) 

Some pre-processing might be needed, for 

instance in the case of noisy images. We have 

indicated an optional time of 20 ms to account for 

simple low-pass filtering or equivalent processing. 

Our implementation for this feasibility study 

used a pixel-based region segmentation that runs in 

about 140 ms. The segment-based version, not yet 

finalized, currently detect similar regions in less than 

15 ms. This impressive timing is comparable to 

published works about connected component 

labeling from binary images (Grana et al., 2010), 

considering that gray-level comparison needs extra 

work. Only the regions with a pixel count in the 

range of 50 to 5000 pixels were kept. For the 

considered sequence, this represents more than 500 

regions. 

The computation of features used in section 4 

(area and centroid) is really fast (less than 1 ms) 

thanks to the storage of regions as a list of segments. 

We will explore additional features to increase the 

region discriminative power. Some extra time has 

been foreseen in Table 1 for possibly more 

computationally demanding features. 

Feature matching is also very fast (about 2 ms in 

our tests). About 3000 matching candidates were 

reduced to roughly 200 ones by the histogram peak 

selection. The impact on time for increasing the 

number of features is quite difficult to estimate since 

more discrimination will speedup histogram 

processing. 

The estimation of the affine transform is a 

bottleneck in the current implementation because it 

relies on a Python library called as a separate 

process from a C program. About 100 ms are 

required to find the model coefficients thanks to 

roughly 200 vectors (Dx,Dy), from which about half 

will be rejected during refinement. Due to the large 

proportion of valid region pairs, the solution can 

benefit in execution time from a RANSAC 

procedure (Fischler and Bolles, 1981). From 

preliminary tests we believe in a 10 times speedup 

compared to the current implementation. 

The current warping operation by the affine 

transform is also a heavy step (about 40 ms), since 

all pixels are processed and require the access of 4 
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neighbors for bilinear interpolation. A possible 

speedup for motion detection applications consists in 

warping first at a lower resolution, and/or with the 

nearest neighbor pixel, and to apply warping at full 

resolution only where differences with the reference 

are significant at low resolution. 

According to Table 1, if we target an application 

with 2 Mpixel image sequences, 60 ms (or 80 with 

pre-processing) are likely to be needed for all the 

processing steps. At a rate of 10 images per second, 

40 ms (or 20) are left to handle moving object 

detection and tracking, a task possibly helped by the 

available regions extracted for image registration. 

6 CONCLUSIONS 

We presented a feasibility study for real-time image 

registration that exploits fast image segmentation 

into regions based on pixel connectivity along and 

across horizontal segments. These segments form a 

compact representation of the regions, appropriate 

for the fast extraction of classical features such as 

the area, the centroids and the 2nd order moments. 

According to preliminary tests, video sequences 

of 2 Mpixel images can be registered at 3 Hz. Based 

on the discussion about identified slow operations, 

the same sequences are likely to be registered and 

analyzed for object tracking at 10 Hz. 

Some refinements and improvements mentioned 

in the discussion of section 5 are our future concern. 

We will first finalize the segment-based region 

extraction algorithm. We will then analyze the 

potential of additional region features and adapt 

region matching accordingly. We will look for 

another model fitting algorithm, directly callable 

from C. And finally, we will test other sequences, 

and evaluate the influence of parameters. 
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