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Abstract: Due to the sheer size of the input data, k-mer counting is a memory-intensive task. Existing methods to 

parallelize k-mer counting cannot guarantee equal block sizes. Consequently, when the largest block is too 

large for a processor’s local memory, the entire computation fails. This paper shows how to partition the 

input into approximately equal-sized blocks each of which can be processed independently. Initially, we 

consider how to map k-mers into a number of independent blocks such that block sizes follow a truncated 

normal distribution. Then, we show how to modify the mapping function to obtain an approximately 

uniform distribution. To prove the claimed statistical properties of block sizes, we refer to the central limit 

theorem, along with certain properties of Pascal’s quadrinomial triangle. This analysis yields a tight upper 

bound on block sizes, which can be controlled by changing certain parameters of the mapping function. 

Since the running time of the resulting algorithm is O(1) per k-mer, partitioning can be performed 

efficiently while reading the input data from the storage medium. 

1 INTRODUCTION 

A k-mer is a substring of length k in a DNA 

sequence. k-mer counting refers to creating a 

histogram of repetition counts for each k-mer in the 

input data. This paper presents a statistically robust 

method that divides the input into approximately 

equal-sized blocks so that multiple processors can 

count the k-mers in each block independently with 

equal effort.  

Recently, k-mer counting received a lot of 

attention from genomics researchers. It is a key step 

in DNA sequence assembly (Marçais and Kingsford, 

2011). It also found applications in alignment, 

annotation, error correction, coverage estimation, 

genome size estimation, barcoding, haplogroup 

classification, etc.  

Due to the sheer size of the input data, k-mer 

counting is a memory-intensive task. The size of a 

typical input varies in the range 100-300 GB. Earlier 

attempts to parallelize this task failed to produce 

robust methods that guarantee uniform block sizes, 

even in an approximate sense. These methods 

generate tens of thousands of blocks whose sizes 

vary from under 100 bytes to tens of Gigabytes (see 

figure 5 in (Li et al., 2013) or figure 6 in (Erbert et 

al., 2017) as examples). Billion-fold difference in 

block sizes is just not acceptable. Overheads 

involved in managing a large number of irregular 

blocks leads to poor utilization of computing 

resources. What is a worse, block sizes are input 

dependent and unpredictable. When the largest block 

is too large for a processor’s local memory, the 

entire computation fails. Every paper on k-mer 

counting contains example cases where the previous 

algorithms failed for a particular input. The fact is, 

all of them fail occasionally since these algorithms 

are unable to control the sizes of the largest blocks. 

This makes the earlier algorithms unusable in 

commercial software in which k-mer counting is a 

component. 

This paper initially considers how to map k-mers 

into a small number of blocks so that block sizes 

follow a truncated normal distribution. To prove the 

claimed statistical properties of this distribution, we 

refer to the central limit theorem along with certain 

properties of Pascal’s quadrinomial triangle. This 

analysis yields an equation that defines a fairly tight 

upper bound on the size of the largest block. 

Experiments with actual DNA sequences showed 

that the maximum block size never exceeded the 

theoretical upper bound. Drop from the theoretical 

upper bound was about 20-25%. We also show how 

to control this upper bound in a wide range by 

changing certain parameters of the mapping 

function. These parameters also allow changing the 
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number of blocks obtained. Then, we show how to 

modify the mapping function so that the resulting 

block size distribution is almost uniform instead of 

normal. Since the running time of the mapping 

computation is O(1) per k-mer, partitioning can be 

performed efficiently while data is being read from 

the storage medium. 

2 K-MER COUNTING BASICS 

A high-level sketch of a k-mer counting algorithm 

can be given as follows:  

Input: Multiple files containing reads. (A “read” is a 

string of characters A, C, G, T.) With the current 

technology, the length of each read is about 100-200 

characters. Each file contains several million reads.  

Output: A histogram of distinct k-mers found in all 

files of the input. 

Algorithm: 

1. Divide the input into N blocks. 

2. For each block, in parallel, count the number of 

times each k-mer is seen. 

3. Merge the partial results obtained for different 

blocks into one global dataset for presentation to 

the user. 
 

Step 1 is the most critical step in this algorithm. This 

step must satisfy two requirements:  

a. All copies of a k-mer in all the input files must 

be mapped to the same block. This will ensure 

that k-mer counts obtained at the end of Step 2 

will be universally valid.  

b. Block sizes must be approximately equal. This 

will ensure that parallel threads will have equal 

work.  
 

As will be discussed in the next section the first 

requirement is easily satisfied by simple mapping 

schemes. However, none of the mapping methods in 

the literature guarantees the second requirement. 

3 EXISTING METHODS  

In the literature, there are three basic methods for k-

mer partitioning.  

1. Hash-based method, 

2. Prefix-based method, 

3. Minimizer-based method.  

The hash-based method is used in DSK algorithm 

(Rizk et al., 2013). In this method a hash 

function 𝐻(𝑆) maps each k-mer S to a number in the 

range 0, … , 264. If P is the desired number of blocks, 

S is sent to the block 𝐻(𝑆) 𝑀𝑜𝑑 𝑃. Obviously, all 

copies of a k-mer will fall into the same block. 

However, the maximum block size depends on the 

hash function. The paper contains no information 

about the hash function used, and provides no data 

about the block size distribution obtained. While 

hash functions generally do a good job in 

distributing data between different bins, their worst 

case performances can be quite bad. 

The prefix-based method is used in KMC1 

(Deorowicz et al., 2013). This method partitions k-

mers according to a fixed-length prefix. The prefix 

becomes the name of the block for a k-mer. The 

choice of prefix length depends on the desired 

number of blocks. If the length of prefix is p, the 

number of blocks will be 4𝑝. This method divides 

the theoretical k-mer space into equal sized sub-

spaces. However, the theoretical space is not 

uniformly populated by actual k-mers. The size of a 

block is sensitive to the probability distributions of 

symbols in the prefix. Since nucleotides A and T are 

more abundant than C and G, blocks containing A’s 

and T’s in their names can be much bigger than 

others. 

The Minimizer-based method was originally 

invented to save memory space when storing k-mers 

(Roberts et al., 2004). Later, it is used in k-mer 

counting to partition the input data in MSP (Li et al., 

2013; Li, 2015), in KMC2 (Deorowicz et al., 2015), 

and in Gerbil (Erbert et al., 2017). To explain, define 

a p-string as a substring of length p in a k-mer. A p-

string is a minimizer for a k-mer if no other p-string 

in the k-mer is lexicographically smaller than it.  
 

Example 1: 
Read: … 𝐺𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺𝐶 ….  
 

Consider the k-mers derived from this read. Assume 

k = 10, then the k-mers are 𝐺𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶, 

𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺, 𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴, 𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺, and 

𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺𝐶. If p=3, then the minimizer is 𝐴𝐴𝑇. 

All the k-mers in this example share this minimizer. 

Instead of mapping these k-mers separately, we can 

map the segment of the read that contains them. In 

this case, the unit of mapping is a segment of a read 

rather than a k-mer. The minimizer itself becomes 

the name of the block to which the segment is 

mapped. In this scheme, the number of blocks is 4𝑝. 

In algorithms, p is chosen in the range 4-10.  

In a recent paper, Erbert et al., (2017) set out to 

create the fastest possible k-mer counter by 

combining the “best ideas” in earlier papers. After 

extensively testing different methods, they selected 

the signatures method for partitioning the input data 
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originally used in KMC2. (This is a variant of the 

minimizers method designed to exclude certain p-

strings that lead to unacceptably large blocks). Even 

with this refinement, block sizes were highly 

irregular. The authors report that for one of the input 

datasets, the size of the largest block was about six 

times the size of the next largest block (see Figure 6 

in (Erbert et al., 2017)). 

In summary, earlier attempts to parallelize k-mer 

counting failed to produce robust methods that can 

control the sizes of blocks they generate. When the 

largest blocks were too large for the computers they 

used, their computations failed. 

4 PROPOSED METHOD  

4.1 Basic Idea 

Let A=0, C=1, G=2, T=3. Then, we can recode a 

string consisting of A, C, G, T by their numeric 

values. For example CGTTGTTCA = 123323310. 

We can represent a k-mer S as 𝑆𝐿 = 𝑠0, … , 𝑠𝑘−1 

if it is in the literal form (consisting of A,C,G,T) or 

equivalently as 𝑆𝑁 = 𝑛0, … , 𝑛𝑘−1 if it is written in 

the numeric form (consisting of 0,1,2,3). 

A first attempt to partition k-mers could be by 

mapping each k-mer to the block number obtained 

by adding up the numeric values of symbols in it. 

That is, the block number for 𝑝(𝑆𝑁) is given by 
 

𝑝(𝑆𝑁) =  ∑ 𝑛𝑖

𝑘−1

𝑖=0

 (1) 

Example: Consider a k-mer  
𝑆𝐿 = 𝐶𝐺𝑇𝑇𝐺𝑇𝑇𝐶𝐴𝐴𝑇𝑇𝑇𝐶𝐺𝐴𝐺𝐶𝐴𝐶𝐶𝑇𝐴𝐺𝐴𝑇𝑇𝐴𝑇𝑇𝑇.  

Then 𝑆𝑁 =
1233233100333120210113020330333. The 

value of summation is 55. Therefore, the block 

number for this k-mer is 55.  

This is a very simple way to map strings to 

integers. In various textbooks it is often used as an 

example of a bad hash function. They would say 

“eat” and “tea” would map to the same bin, and 

brush it away without further analysis.  

However, that summation has a remarkable 

property: the central limit theorem states that the 

sum of many random variables will have 

approximately normal distribution. Moreover, the 

normal approximation is guaranteed to hold even 

when the underlying terms don’t have the same 

distributions (i.e. if symbols A, C, G, T don’t appear 

with equal probability). Implications of this fact are 

so profound that it deserves to be stated as a 

theorem. 
 

Theorem: k-mer sums given by (1) approximate a 

truncated normal distribution in the range [0,3𝑘] 
with 

𝜇 =
3𝑘

2
 

And 

lim
𝑘→∞

𝜎2 = 1.25𝑘 

while for finite k, 
 𝜎2  > 1.25𝑘. 

 

Proof: The range of k-mer sums [0,3𝑘] follows 

from the fact that the characters {A,C,G,T} are 

mapped to {0,1,2,3}. When k random number from 

the set {0,1,2,3} are added up, the sum can be at 

least 0, and at most 3k.  

The claim about the normal approximation of the 

distribution is a fact stated by the central limit 

theorem. Consequently, the claimed value for µ also 

follows easily since the normal distribution is 

unimodal and symmetric about the mean. Therefore, 

the mean value must be in the middle of the range. 

Proof of the claimed values for 𝜎 requires some 

elaboration. We begin with asking: “how many 

different ways a particular sum can be obtained?” 

The answer lies in observing that frequency of the 

summation values follow the quotients in row k of 

Pascal’s quadrinomial triangle. To explain, consider 

the binomial equation 
 

(1 + 𝑥)𝑘 = 𝑎0 × 1 + 𝑎1𝑥 + ⋯ + 𝑎𝑘 × 𝑥𝑘 
 

The coefficients 𝑎0, … , 𝑎𝑘 are given by row k of the 

binomial triangle 

    1     

   1  1    

  1  2  1   

 1  3  3  1  

The first row corresponds to the case of k=0. An 

arbitrary term 𝑎𝑗 in row k represents how many 

different ways k numbers can be selected from the 

set {0, 1} so that their sum is equal to j.  

This concept generalizes in a straightforward 

way for the equation 

(1 + 𝑥 + 𝑥2 + … + 𝑥𝑠−1)𝑘 = 𝑎0 × 1 + 𝑎1𝑥 +
⋯ + 𝑎𝑘 × 𝑥𝑘(𝑠−1)  
 

For example, when 𝑠 = 4, we have the quadrinomial 

triangle 

BIOINFORMATICS 2018 - 9th International Conference on Bioinformatics Models, Methods and Algorithms

148



1 

 

1 1 1 1  

 

1 2 3 4 3 2 1 

 

 1 3 6 10 12 12 10 6 3 1 

In this case, term 𝑎𝑗 in row k represents how many 

different ways k numbers can be selected from the 

set {0, 1, 2, 3} so that their sum is equal to j.  

The following well known facts about row k are 

relevant here. See (Bondarenko, 1993) for details. 

1. There are (𝑠 − 1)𝑘 + 1 terms in row k. 

2. The values in row k sum to 𝑠𝑘. 

3. The values in row 𝑘 follow the normal 

distribution  

Let 𝑎𝑚𝑎𝑥
(𝑘)

 denote the biggest number in row k. There 

is no known closed form equation for this value 

(Smith and Hoggatt, 1979). However, equation 1.18 

in (Bondarenko, 1993) states that 

lim
𝑘→∞

𝑎𝑚𝑎𝑥
(𝑘)

 
√𝑘

𝑠𝑘
≤ √

6

𝜋(𝑠2 − 1)
 

Rearranging this equation, and using 𝑠 = 4,  
 

lim
𝑘→∞

(
𝑎𝑚𝑎𝑥

(𝑘)

4𝑘
)  ≤ √

6

15𝑘𝜋
 (2) 

For normal density, the peak value is given by  

𝑝𝑚𝑎𝑥 =  
1

√2𝜋𝜎2
 (3) 

Considering the fact 2 above, for any row k, the left 

hand side of (2) represents the 𝑝𝑚𝑎𝑥 value for the 

corresponding normal density. Hence, together, 

equations (2) and (3) imply that 
 

𝜎2  ≥ 1.25𝑘 

as claimed. QED. 

The central limit theorem already states that k-

mer sums must follow the normal distribution. The 

theorem above gives the parameters of this 

distribution.  

The most remarkable implication of this theorem 

is the fact that both the mean and the standard 

deviation depend on k alone, and not the input data. 

This means, if we map k-mers into blocks by their 

sums, regardless of the input data, we obtain the 

same distribution shape defined by the value of 𝑘. 

The following corollary gives the maximum 

block size as a percent of the total data size for all 

blocks. 

Corollary: When mapping k-mers into independent 

blocks by equation (1), the maximum block size is 

given by  

𝑝𝑚𝑎𝑥 ≤ √
6

15𝑘𝜋
 (4) 

This fact trivially follows from equation (2). For 

large k, the equation is exact. For realistic values of 

k, this formula gives a good upper bound for the size 

of the largest block.  
 

Example 2: Let k=18. Then above corollary assures 

us that no more than 8.4% of data will be in the 

biggest block. The corresponding variance is 𝜎2 ≥
22.5 and the mean value is 𝜇 = 27.  
 

 

Figure 1: Block size distribution for soybean data, k=18. 

To see how closely these equations represent the 

actual DNA data, we tested several dataset from 

public domain repositories. As an example, Figure 1 

illustrates the distribution of block sizes for the 

Soybean data for k=18, compared with the 

theoretical distribution predicted by the above 

theorem. A normal fit matched the observed values 

almost perfectly. Parameters for the normal fit was 

𝜇 = 27 and  𝜎2 = 39. This yielded a peak value of 

6.4%, which is close to, but less than the theoretical 

upper bound of 8.4% as claimed. 

For every dataset that we tested, the bell shape 

has been invariant, and the peak value was around 

20-25% below the theoretical value given by (4). 

Looking at Figure 1, the reader can immediately 

see three problems: 

a. The largest block can be as big as 6.4% of the 

total data size. This means that for a large data 
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set, the largest blocks can be too large for the 

available memory.  

b. The smallest block sizes are close to zero. This 

means that there is a big difference between the 

sizes of the largest and the smallest blocks.  

c. When k-mers are individually mapped to blocks, 

the sum of block sizes will reach approximately 

𝑘 times the size of the input data. This is because 

each input line with length 𝑙 contains 𝑙 − 𝑘 + 1 

k-mers. 
 

The next three subsections show how to circumvent 

all of these problems. 

4.2 Controlling the Upper Bound 

Equation (3) says that the size of the largest block is 

inversely proportional to the standard deviation. 

Therefore, increasing 𝜎 by a factor of f should 

reduce 𝑝𝑚𝑎𝑥 by the same factor.  

One way to achieve this is by using a different 

set of weights for the symbols {A, C, G, T}. For 

example, instead of {0, 1, 2, 3}, use {1, 5, 10, 16}. 

For this example, the range of block numbers will be 

[k, 16k] instead of [0, 3k]. Consequently, 𝜎 will 

grow by a factor of 16/3=5.33 and 𝑝𝑚𝑎𝑥 will reduce 

by a factor of 5.33.  
 

 

Figure 2: Block size distributions for 31-mers in human 

chromosome-14 for different sets of nucleotide weights. 

Data has been translated to line up their mean values to aid 

in visual comparison.  

Actual DNA data follows this mathematical 

reasoning almost precisely. As an example, Figure 2 

shows the distributions of block sizes obtained from 

human chromosome-14 for different sets of 

nucleotide weights. In this example, k=31. For the 

weight set {1, 5, 10, 16} the peak block size reduced 

from 6.3% down to 1.19%. This is small enough 

even for the biggest data sets encountered in 

practice. In implementation, different weight sets 

can be chosen depending on the amount of required 

reduction for the peak value.  

4.3 Converting Normal Distribution to 
Uniform 

The basic idea is to merge smaller blocks with larger 

blocks. Thanks to the central limit theorem, we 

know which blocks will be small and which blocks 

will be large. If a k-mer is going to be in a small 

black, re-compute its block number so that it is 

mapped to a different block. In doing so, we 

basically fold the tail regions of the distribution on 

top of the middle region.  

Let 𝑖 be the k-mer sum, and 𝑃(𝑖) be the block 

number for that k-mer.  
 

Folding rule: 
 

𝑃(𝑖) = { 
2(µ − 𝛿) − 𝑖 + 1;  𝑖 < µ − 𝛿 

2(µ + 𝛿) − 𝑖 − 1;  𝑖 > µ + 𝛿
𝑖;  µ − 𝛿 ≤ 𝑖 ≤ 𝜇 + 𝛿 

 

 

This rule will be applied to a k-mer iteratively as 

explained below. 

Here, 𝛿 is a positive number representing the 

distance from the mean. After folding, the new block 

numbers will be in the range [µ − 𝛿, µ + 𝛿]. In 

discussions below, this range will be referred to as 

the “target range.” Folding rule says that, if the 

initially computed k-mer sum is already in the target 

range, no remapping is done (third line of the 

mapping rule). In this case, the k-mer sum becomes 

the block number. If the k-mer sum is outside the 

target range, it is mapped back into the target range, 

perhaps after a few iterations.  

Selection of 𝛿 determines the shape of the final 

distribution as well as the number of iterations 

needed. If 𝛿 is too big, there may not be enough data 

in the tail regions to level up the blocks in the target 

range. If 𝛿 is too small, tails may be too long. In 

such case, a block that originally fell outside the 

target range on one side may be mapped still outside 

the target range on the other side. When this 

happens, the folding rule will be applied again for 

the new block number, and this will be repeated 

until a block number inside the target range is 

reached.  

Figure 3 illustrates this process schematically. In 

this figure the green bell shape represents the 

distribution of block sizes that would be obtained 

without folding. The two red bars represent the 

target range. In the scenario represented in Figure 3, 

the sum 𝑖 initially obtained for the k-mer falls 

outside the target range on the left. The first time the 

folding rule is applied, the computed block number 
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falls still outside the target range on the right. When 

the folding rule is applied to this new value, the final 

block number falls inside the target range. 
 

 

Figure 3: Iterations of the folding rule. 

Note that larger blocks outside the target range 

must be close to the edge of the target range, so they 

will fall near the edge inside the target range the first 

time the folding rule is applied. The folding rule will 

be repeated only if a block initially falls far enough 

outside the target range. Since such blocks are small, 

they don’t affect the shape of the final distribution. 

Instead of using an iterative algorithm, it is 

possible to obtain an equivalent result by using the 

mod function applied to 𝑖 with divisor chosen as 2δ 

(width of the target range). For example, the 

function 

𝑃(𝑖) = µ − 𝛿 + |µ − 𝛿 − 𝑖|𝑚𝑜𝑑 2𝛿 

maps the k-mer sum 𝑖 to a number in the target range 

if 𝑖 was initially outside the target range on the left. 

Similarly, the function  

𝑃(𝑖) = µ + 𝛿 − |𝑖 − (µ + 𝛿)|𝑚𝑜𝑑 2𝛿 

maps the k-mer sum 𝑖 to a number in the target range 

if 𝑖 was initially outside the target range on the right.  

To select 𝛿, consider the fact that normal 

distribution reaches 50% of its peak value at 

distance 𝜎√2 ln 2 from the mean. Therefore, by 

selecting 𝛿 = 𝜎√2 ln 2 we can guarantee that, after 

folding, blocks at the two ends of the target range 

will be about the same size as the largest block in the 

middle. Bigger blocks in the target range will be 

combined with smaller blocks outside the target 

range. In the end, all the blocks in the target range 

will have approximately equal sizes. As an example, 

Figure 4 shows the result from the folding operation 

for human chromosome-14 with k=75. For 

comparison, distributions corresponding to weight 

sets {0, 1, 2, 3} and {1, 5, 10, 16} are also shown. 

The folding operation has been applied to the later 

with δ computed as discussed above.  
 

 

Figure 4: Block sizes obtained by the folding operation 

applied to human chromosome-14. 

4.4 Reducing the Total Data Size 

When individual k-mers are used as the basic unit of 

mapping, total data size in all the blocks blow up 

from Θ(n) to Θ(kn), where 𝑛 is the number of lines 

in the input. Without some method of compression, 

this data expansion can cause a major problem when 

communicating the k-mer data between processors 

or when storing k-mers. The minimizers method 

alleviates this problem significantly by storing line 

segments instead of k-mers. If a line segment 

contains 𝑚 k-mers sharing the same minimizer, it 

must have length 𝑚 + 𝑘 − 1. We can store that line 

segment instead of storing 𝑚 k-mers separately. 

Analyses in Li et al (2013) showed that for realistic 

values of 𝑘 and 𝑝, this scheme reduces the size of k-

mer data down to Θ(n). With additional compression 

techniques such as packing four nucleotides into one 

byte, total data size can be reduced further.  

This basic idea can be used when mapping k-mer 

data into blocks. In this case, the unit of mapping 

becomes the line segment instead of a k-mer. When 

computing the summation formula (1), we use the p-

strings that glue together the k-mers inside line 

segments. Since p-strings have fixed length, the 

theoretical analysis in Section 4.1 apply without 

change for the number of line segments mapped to 

each block. The only modification needed is to use 𝑝 

as 𝑘 in Theorem 1. 

Example 3: For the k-mers in the line segment 

of Example 1, the p-string is AAT. Applying 

equation (1) to this p-string, we obtain the 

summation 𝑖 = 1 + 1 + 16 = 18 (assuming the 

weight set {1,5,10,16}). Therefore, the block 

number for this line segment is 18. 

When applying this idea to p-strings, it is 

important to ensure that 𝑝 is big enough for the 

Central Limit theorem to take effect. To guarantee 

the bell-shape, the Central Limit Theorem requires 

summation of many numbers. In experiments, we 
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found that at around 𝑝 = 10, the bell shape appears 

clearly. Bigger 𝑝 values serve to further smooth this 

shape. This is illustrated for the soybean data in 

Figure 5.  

 

 

Figure 5: Distribution of the number of line segments 

mapped to different blocks for Soybean data with weight 

set {0,1,2,3}, k=30 and different values of p. 

Once the bell shape is secured, it can be 

converted to a uniform distribution as described in 

previous sections. 

4.5 A MapReduce Algorithm for 
K-Mer Counting 

Various parallel counting algorithms can be 

developed based on the proposed method. As an 

example, a MapReduce algorithm is sketched here:  
 

Input: Normally, input data comes in 10-15 files. 

For higher parallelism divide these into hundreds of 

smaller files with equal size. Each file becomes the 

input for a mapper process selected at random.  

Map: Each mapper process computes block 

numbers and sends each line segment to its 

corresponding reducer process 𝑃(𝑖). 

Reduce Each reducer process counts the k-mers in 

the block sent to it. 

5 COMPARISON WITH OTHER 

METHODS  

Figures 6 and 7 show the distribution of block sizes 

generated by the prefix-based method, and the 

minimizer-based method. A comparison with the 

hash-based method is not possible, because the 

authors provided no information about the hash 

function used. 

For the prefix-based method, we created a 

computer program to generate the resulting 

distributions. Figure 6 shows the case for the 

soybean data. For the minimizer-based method, Li et 

al., (2013) provided a histogram of block sizes for a 

number of different datasets (Figure5 in their paper). 

Figure 7 shows this figure. As can be seen, the 

smallest block size is about 100 bytes while the 

largest block size is bigger the 10 GB. The authors 

suggest that increasing 𝑝 and then using a 

“wrapping” technique will reduce the spread of 

block sizes. To explain, let 𝑡 represent the desired 

number of blocks. Wrapping here consists of 

hashing the p-string that represents the name of a 

block to obtain a number 𝐻, and then computing 

𝐻 𝑚𝑜𝑑 𝑡. Figure 10 in the cited paper shows the 

improvement made by this method. However, the 

resulting distribution still shows nearly 100-fold 

difference between the sizes of the largest and the 

smallest blocks. 
 

 

Figure 6: Block size distribution for soybean data by the 

prefix-based method: prefix length = 5, k=18. The red line 

shows the median value. 

 

Figure 7: Block size distributions by the minimizer-based 

method, with p=4. (Figure reproduced with permission 

from (Li et al., 2013)). 

It is noted in (Erbert et al., 2017) that a variant of 

the minimizer-based method generally performed 

better than the original minimizer-based method 

except for the FVesca dataset with k=28. For this 

dataset, the method generated one very big block 

about six times bigger than the next biggest block. 

To see if there was some peculiar property of this 

dataset which might also cause our method to fail, 

we tested the proposed method on the FVesca 

dataset. Figure 8 shows the result. The resulting 
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distribution did contain random spikes, but the sizes 

of these spikes were small.  
 

 

Figure 8: Block size distribution obtained from FVesca 

dataset by the proposed method with k=28. 

6 CONCLUSIONS 

Due to the sheer size of the input data, k-mer 

counting is a memory intensive task. Equal sized 

partitioning of input data is essential in order to 

ensure that algorithms complete without running out 

of memory. In this paper, a robust method for 

partitioning input data into approximately equal 

sized independent blocks has been presented. 

Robustness of the proposed method follows from the 

fact that distribution of k-mer sums depends on k 

alone, and not the input data, as proven in Theorem 

1. The mapping formulas are simple enough that 

partitioning can be performed while reading the 

input data from the storage medium. 

Commercial software cannot be built on 

algorithms that might fail occasionally. Since earlier 

algorithms cannot guarantee equal block sizes, the 

proposed algorithm is probably the only viable 

algorithm for commercial applications.  
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APPENDIX 

Sources for the datasets mentioned in this paper: 
 

Soybean:  

http://public.genomics.org.cn/BGI/soybean_resequencing/

fastq/ 
 

Human chromosome-14: 

http://gage.cbcb.umd.edu/data/ 
 

FVesca: 

http://sra.dbcls.jp/search/view/SRP004241 
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