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Abstract: Visualization of unlabeled multidimensional data is commonly performed using projections to a 2D visual 

space, which supports an investigative interactive analysis. However, static views obtained by a projection 

method like Principal Component Analysis (PCA) may not capture well all data features. Moreover. in case 

of large data with many samples, the scatterplots suffer from overplotting, which hinders analysis purposes. 

Clustering tools allow for aggregation of data to meaningful structures. Clustering methods like K-means, 

however, also suffer from drawbacks. We present a novel approach to visually encode aggregated data in 

projected views and to interactively explore the data. We make use of the benefits of PCA and K-means 

clustering, but overcome their main drawbacks. The sensitivity of K-means to outlier points is ameliorated, 

while the sensitivity of PCA to axis scaling is converted into a powerful flexibility, allowing the user to 

change observation perspective by rescaling the original axes. Analysis of both clusters and outliers is 

facilitated. Properties of clusters are visually encoded in aggregated form using color and size or examined 

in detail via local scatterplots or local circular parallel coordinate plots. The granularity of the data 

aggregation process can be adjusted interactively. A star coordinate interaction widget allows for modifying 

the projection matrix. To convey how much the projection maintains neighborhoods, we use a distance 

encoding. We evaluate our tool using synthetic and real-world data sets and perform a user study to evaluate 

its effectiveness. 

1 INTRODUCTION 

Raw representations of multidimensional data points 

are traditionally found in the form of large numerical 

matrices in which each column corresponds to an 

attribute or dimension (Bache and Liohman, 2013). 

In order to allow for an effective visual presentation 

of the data, however, a mapping from the original 

high-dimensional data space into a lower-

dimensional visual space needs to be discovered. 

The sufficient dimensionality reduction is generally 

accompanied by an equally significant loss of 

information. Dimensionality reduction mappings 

often aim at exploiting the intrinsic dimensionality 

of the set, which can be much smaller than that of 

the original data space (Bennett, 1965). The second, 

more user-oriented phase of the data visualization 

process is the production of an aesthetic and insight-

stimulating representation to display or interact with. 

Cognitive Psychology and Information Visualization 

research has demonstrated that representations of 

multidimensional data generated with the aid of 

computer-based visualization tools improve human 

cognition (Parsons and Sedig, 2013). In order to 

achieve that, many dynamic and static visualization 

techniques draw on aspects of human perception 

such as distance perception, shape identification, 

color recognition, size differentiation, motion 

detection (Healey, 1996). Although data attributes 

can in principle be mapped to various properties of 

representation glyphs (position, color, size, etc.), a 

typical cap is reached after the fifth or sixth 

dimension. Thus, for datasets of higher intrinsic 

dimensionality, it is important that adequate 

dimensionality-reduction and interactive-display 

techniques are employed in combination.  

Our goal was to design, implement, and evaluate 

an easy-to-use data visualization tool through which 

spatially-accurate representations of large, unlabeled 

multidimensional data sets can be interactively 

examined. The qualitative study of correlations, 

clusters and exceptional points is empowered. 
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For the development of the application, the best 

characteristics of Principal Component Analysis 

(PCA) and K-means clustering are drawn upon. The 

fact that both methods provide for rapid computation 

and process data in an unsupervised manner makes 

them highly suitable for our purposes. Our tool aims 

at enabling the user to investigate spatial relations 

between data points via a distance-preserving 

representation, so PCA is an adequate approach. 

Since the tool visualizes large amounts of data in a 

limited screen space, measures are taken to 

minimize visual clutter and maximize cluster 

definition. One half of this is achieved via the PCA  

projection matrix which is further modifiable 

through the star-coordinates widget and with which 

data points are projected in as much of a spread-out 

manner as possible.  

Regions where still many data points are 

accumulated then benefit from a summarization 

procedure developed on the basis of K-means 

clustering. By running this new adjustable-parameter 

clustering algorithm, small aggregations of data 

points can be unraveled and displayed at 

customizable levels of granularity. Important cluster 

properties, such as area, density and population 

profiles (in circular parallel coordinates) are visually   

encoded and displayed.  

2 BACKGROUND 

Dimensionality reduction approaches can be 

separated into two big families. Supervised methods 

operate on labeled data sets in which all data points 

are preliminarily assigned to a class based on the 

objective truth or an expert’s opinion. In 

applications where vast amounts of unlabeled data  

need to be compressed into a lower-dimensional 

space unsupervised techniques are  preferred.  

With respect to distortion of relations within the 

original set, distance-preserving versus non- 

distance-preserving maps are differentiated between. 

Often distance-preserving projections aim at the 

arrangement of codomains whose local geometrical 

characteristics reflect the characteristics of the 

original set (Zhu et al., 2013). 

Moreover, computational complexity and ease of 

implementation can be considered. Linear as 

opposed to non-linear dimensionality reduction 

methods have notably low computational costs and 

can be effectively implemented by reductions to 

matrix factorization and/or multiplication. Nonlinear 

methods have been empirically established to 

produce better results on artificial tasks but in many 

real- life applications linear methods prove equally 

reliable (von der Maaten e´t al., 2008). Therefore, 

the advantage of their computational simplicity 

should not be discounted. 

Principal Component Analysis (Pearson, 1901) is 

an unsupervised, feature-transforming and linear 

dimensionality reduction procedure which maps an 

original data space with possibly correlated axes  

into a target space where no linear correlation 

between dimensions is observed. The basis of the 

new space is formed by the principal components of 

the data, which is a set of vectors existing in the 

original space, but along which the variance of the 

data is maximal. Geometrically, this corresponds to 

computing an n-dimensional ellipsoidal container for 

the data points, whose axes lie in the directions of 

optimal data variance. The eigenvectors of a 

symmetric matrix are by default pairwise 

orthogonal. Therefore, as the extraction of ellipsoid 

axes is based on eigen-decomposition of the data’s 

covariance matrix, the resulting vector set is also 

orthogonal. Three common approaches of centering, 

scaling and standardization are discussed in 

literature (Flury, 1997). Centering, the least intrusive 

of the three, refers to the shifting of data points to 

mean 0 along each axis before the eigen-

decomposition on the covariance matrix is 

computed, and is what the majority of advanced 

linear algebra programming libraries implement to 

ensure minimization of the mean squared error. 

Scaling divides the point entries along each axis by 

the standard deviations in the data-matrix columns 

representing the axes. This results in all attributes 

having unit variance and ensures that variables are 

treated with equal weight. Standardization is the 

application of first centering and then scaling and, 

like scaling alone, is recommended only when 

information about differences in measuring scales is 

available.  

An intuitive and computationally effective 

method of modifying the data projection matrix (and 

thus the observation perspective) is discussed by 

Kandogan in his work on Star Coordinates 

(Kandogan, 2000). In a star-coordinates system the 

position of a data point is computed as a vector sum 

of the unit vectors representing each axis, scaled by 

the point’s corresponding attribute-measurement. 

The unit vectors all lie in a 2D plane, distributed by 

the same angle and sharing a common origin.  

The objective of clustering is the partitioning of 

a dataset into groups such that intragroup variance is 

minimized. Traditionally used in data mining and 

statistical analysis, clustering has an alternative 

application as a partial summarization procedure of 
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data when visual clutter in graphical applications is 

to be avoided. A variety of clustering techniques 

exists, belonging to one out of four organizational 

branches, according to cluster model. Hierarchical 

cluster analysis is a greedy approach aiming at the 

establishment of a ranked sub-structure of the 

original data set. Hierarchical algorithms employ a 

predefined cluster-similarity measure according to 

which sub-clusters are merged or super-clusters are 

split. Decisions about cluster  treatment are based on 

the local optimization criterion entailed by the 

measure. Data set representations obtained through 

agglomerative or divisive clustering are especially 

appropriate when a dendrogram-based final 

depiction is required (Long and Linsen, 2009). 

When a distance-preserving representation of the 

data is required however, more suitable choices 

exist. 

Distribution clustering takes advantage of 

statistical knowledge of data distribution models. It 

assumes that objects generable under the same 

distribution parameters must share a deeper 

commonality. The arrival at suitable distribution-

based procedures can be guided by Expectation 

Maximization but it often demands the solution of a 

non-trivial maximization problem, presented by the 

M-step (Dempster, 1977).  

Density-based clustering defines a cluster as a 

regional density maximum in the original data space 

and uses density drops to delineate cluster 

boundaries. To identify a point as belonging to a 

cluster most density-based algorithms employ a 

reachability or a linkage relation whose asymmetry 

guarantees the termination of successive point 

inclusion (Dempster et al., 1977). The main 

advantage of density- based methods is the ability to 

recognize irregular cluster shapes. Disadvantages 

manifest in computational speed and with highly 

high-dimensional data sets where the Curse of 

Dimensionality (Bellman, 1957) interfers with the 

notion of density. 

In centroid-based clustering, convex formations 

of data points are sought such that each group is 

centered around a prototype, which may or may not 

be a member of the original set. Common choices of 

representative points are the cluster’s mean or 

median. Therefore, optimization of cluster center as 

opposed to cluster border is performed. Since the 

decision (simpler) version of this problem is already 

NP-complete, effort has been focused on the 

development of approximate solutions. Centroid- 

based clustering is straightforward and efficient to 

implement in an iterative fashion and has an 

empirically fast convergence rate. 

K-means clustering is an unsupervised centroid-

based clustering algorithm, developed in response to 

the cluster-center optimization problem. Random 

initialization of a predetermined-cardinality centroid 

set is performed and upon convergence a Voronoi 

partitioning of the data space is returned. Although 

there exist synthetic data sets for which convergence 

is exponential, empirical tests have established that 

runtime on real-life data is polynomial (Har-Paled 

and Sadri, 2005). A disadvantage of K-means is that 

due to its approximative nature, it is susceptible to 

local  solution optima. Also, while running the 

algorithm with the correct number of random 

prototypes might produce inconsistent results, an ill-

informed number of centroids will almost always 

result in under- or oversegmentation. Another 

concern is centroid-based algorithms’ sensitivity to 

outliers. One strategy to improve the reliability of K-

means is the removal of outliers (Hautamäki et al., 

2005). We argue though that outliers are of 

relevance for many application scenarios.  

3 APPROACH 

The main idea guiding the standard workflow of the 

developed visualization tool is to first lay the 

examined dataset out in a maximally distance-

preserving fashion and display a low-detail summary 

of it in the form of a small number of representation 

glyphs encoding point-group area and relative 

density. The user is then allowed to toggle the 

visibility of observation points belonging to each 

glyph or of the entire dataset and to further refine the 

level of presented detail by modifying the tool’s 

algorithm parameters. 

If the user wishes to recompute the projection by 

using different measurement units for a certain data 

attribute, he/she is allowed to rescale the attribute 

values in the original data matrix by operating one of 

the tool’s widgets. Additionally, the attribute values 

(in the currently used units) of points summarized by 

each glyph can be plotted in circular parallel 

coordinates upon request. 

Observation of the dataset from various 

perspectives is encouraged via an interactive 

application of translations and rotations. Animated 

transitions between layouts and detail-level states 

are  computed at interactive rates. Since viewing the 

dataset from a non-distance-preserving perspective 

can lead to the distortion of spatial information, a 

customizable number of helper links can be output 

between glyphs, encoding the represented group-

centers’ actual proximity.  
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In the following, the individual steps of our 

approach are detailed. 

3.1 Dimensionality Reduction 

In order to obtain a matrix with which to transform 

the data into a simpler (fewer-dimensional) 

representation, we perform a PCA. Correlations 

between axes indicate that the data set possesses a 

much lower intrinsic dimensionality than the space 

in which it was originally recorded. To describe it in 

terms of this lower-dimensional space, the tool 

multiplies its original representation by the PCA 

matrix. The resultant contains a sufficiently large 

amount of spatial information about the data, 

recorded in its first few columns (determined by the 

instrinsic dimensionalty). Principal components of 

lesser contribution are dismissed as the descriptive 

power they hold is typically negligible and a reduced 

matrix representation of the dataset is obtained. 

3.2 Density Maxima Localization 

The study of outliers finds various practical 

applications in performance, anomaly, and behavior 

monitoring. Therefore, an approach which not only 

preserves exceptional points in the dataset but also 

devotes equal attention to their handling as to the 

processing of other internal data-set structures, is 

advised. As an additional benefit, the 

undeterministic properties of the original K-means 

algorithm are ameliorated, since the number and the 

locations of initial centroids can be pre-informed.  

A method for capturing both compact groups and 

outliers while minimizing distortions in the data 

representation and stabilizing the K-means 

clustering output, is developed, based on the analysis 

of local density maxima. Therefore, the discovery of 

high-density regions as a procedure prerequisite is 

performed. 

Firstly, the columns of the reduced matrix are 

rescaled to the interval [0,1]. This is equivalent to 

fitting the transformed and simplified data points 

into a multi-dimensional hypercube, which is 

rasterized according to the number of desired 

dimensions and a fixed cell-size along each of the 

considered axes. This leads to a raster with Nc = S-d 

cells, where S is the cell size and d is the number of 

considered dimensions. The exponential growth in 

the number of raster cells with increasing the 

number of dimensions (cf. Curse of Dimensionality 

(Bellman, 1957)) justifies the decision to keep only 

the leading principal components. 

Secondly, data points lying in each cell are 

counted with the purpose of identifying cells of 

high-density levels as compared to others in their d-

dimensional neighbourhood (equivalent to a 3D 8-

neighborhood). In Figure 1, a two-dimensional data 

set containing two natural clusters and one outlier 

point is presented with the purpose of illustrating the 

process of density-maxima discovery and the way in 

which the K-means centroid number/placement 

decision is taken. 

Note that we only store non-empty cells during 

the processing to avoid exploding memory space. 
 

a)  b)  

Figure 1: Example computation of local density maxima in 

an 8-neighbourhood comparison area, performed on a 

small two-dimensional dataset. The cell raster has been 

created by using 2 considered dimensions and cell size = 

1/10. a)  A color-coding of cells based on the number of 

points they contain. b) Density-maximum (centroid-

placement) cells emphasized by keeping their original 

color. All non-maximum cells have been colored in gray. 

3.3 Aggregation 

If thousands of points from a data set are projected 

to the screen individually, perceptual overload might 

ensue. In order to reduce visual clutter in the final 

visual representation, points with similar 

characteristics are grouped and displayed as a single 

appropriate-characteristics entity.  

To form observation groups, a small number of 

pre-informed-centroid K-means clustering iterations 

are executed. This summarization procedure aims to 

capture small regions of stable or radially-decreasing 

concentration, reducing the discretization effects 

induced by the rasterization. Due to the local rise in 

density they constitute, outlier points are assigned to 

their own centroids and are later on separately 

projected. In this manner, outliers are prevented 

from distorting the representations of more compact 

structures, yet an in-depth exception analysis is 

facilitated. 

At the level of granularity defined in Figure 1, 

the 2D dataset is summarized on the screen as 

follows: one glyph for the single-point group 

containing the outlier, two glyphs for two multipoint 
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groups of close relatedness, arisen by the left cluster, 

and three more glyphs for the multipoint groups 

comprising the core, the upper tail, and the lower tail 

of the right cluster, respectively. Each of the pre-

informed prototypes typically result in a group 

unless no points have remained in its closest 

proximity due to the iteration. The segmentation 

level in cluster representations depends on the raster-

cell size / the number of considered dimensions and 

is customizable by the user. 

3.4 Intra-group Properties 

In order to encode characteristic information about 

each of the delineated groups into the visual 

properties of its representation glyph the following 

two measures are computed:  group spread and 

group relative density.  

The multidimensional area equivalent of each 

group (the group’s spread) is estimated by an 

intragroup measure β, similar to a statistical 

variance. First, the divergence δij is the divergence 

of point j in group i is computed by: 

𝛿𝑖𝑗 =  √∑(𝑒𝑖𝑗𝑘 − 𝜇𝑖𝑗𝑘)
2

𝑑

𝑘=1

 

where eijk is the kth entry of point j in group i, 

µijk is the analogous entry in the representation of the 

group’s centroid, and d is the number of considered 

dimensions. The measure β of a group is then 

defined by 

𝛽𝑖 =  
∑ 𝛿𝑖𝑗

3𝑛𝑖
𝑗=1

𝑛𝑖
 

where ni is the number of points assigned to group i. 

For display and comparative purposes, the area 

of each group is converted to a percentage of total 

groups area and is proportional to the size of the 

group’s representation glyph to be output to the 

screen. Thus, the total area Ai of the representation 

glyph of group i is given by: 

𝐴𝑖 =  𝜔 
𝛽𝑖

∑ 𝛽𝑗
𝑛
𝑗=1

 

where n is the total number of groups computed 

by the K-means-like summarization procedure and ω 

is a scaling factor which can differ depending on the 

size of the screen. 

The second important property encoded in a 

group’s glyph representation is group density, as 

compared to the densities of other dataset structures 

presented on the screen. A straightforward 

computation of group density by the formula Di =  

ni/Ai, where Di is the density of group i, is bound to 

result in division-by-zero errors, due to the fact that 

the standard deviation of 1-point groups is equal to 

0, i.e., the point’s position in space coincides with 

that of the centroid. To avoid this caveat and any 

arbitrary threshold numerically delimiting zero and 

non-zero values, the relative density of group i is 

computed by 

∆𝑖 =  1 −  
𝐷𝑖

−1

𝑚𝑎𝑥𝑗=1
𝑛  𝐷𝑗

−1 

3.5 Inter-group Distances 

Since the large number of small groups output by the 

summarization procedure at higher levels of 

granularity can be perceived as broad-structures 

oversegmentation, it is important to keep track of 

which glyphs encode detail in a more complicated 

formation and which should indeed be considered as 

separate. To achieve this, the distance between each 

pair of groups is computed and the option to display 

links between logically-connected groups is 

provided to the user. Moreover, encoding these 

distances provides information that is important, if 

the data are projected to a 2D layout that cannot 

fully preserve distances. 

We compute the distance between the closest 

two points belonging to different groups as a 

measure of the groups’ logical connectedness 

(similar to the procedure in single linkage 

clustering). Since we have to compute pairwise 

distances of n groups and need to consider in each 

pairwise test all samples of both groups, which can 

each be O(N) samples, if N is the number of all 

samples, the time complexity is O(n2N2), which is 

rather expensive for large N. We approximate the 

result by finding for a group the point with minimal 

distance to the centroid of the other group and vice 

versa. Since centroid computations are expensive in 

a high-dimensional space, we operate in the 

dimensionality-reduce space (cf. Section 3.1). The 

final distance is computed in the original data space 

though. Time complexity drops to O(n2N). 

3.6. Visual Encoding 

For generating the layout of our visual encoding, the 

locations of group centroids in the reduced data 

space are projected to a 2D visual space, where the 

circular glyphs are placed. 
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Group spread as a percentage of total groups 

spread is encoded via the size of the circular glyphs, 

where the total screen area covered by glyphs sums 

up to scaling factor ω introduced in Section 3.4. 

 

Figure 2: (a) Color map for group-relative density and 

intergroup-relation strength. (b) Color of outlier glyphs. 

To encode relative group density a glyph color 

along the linear-interpolation gradient (Figure 2a) 

between the two RGB colors (210, 230, 250) and 

(75, 0, 110) is selected. The choice of the two colors 

is considered appropriate due to the fact that 

differences in all three HSV components of the 

colors are present (dH = 71, dS = 84, dV = 55), yet 

the location of an intermediate color on the resultant 

gradient can be easily estimated. Additionally, 

tritan-related anomalies in the general population 

have the lowest documented incidences of all color- 

related vision disorders (Rigden, 1999), giving 

color-shades in the blue-violet end of the spectrum 

the highest chance of being recognized by the 

average human individual. 

As possessing a maximum comparative density 

of 100%, single-point groups, likely containing an 

outlier, are encoded with a distinct blue color 

(Figure 2b), combined with a hollow-circle 

appearance of their representation glyphs. In 

contrast, multi-point groups exhibiting the same 

density (i.e., all points lie exactly at the group’s 

centroid), are encoded as normally – by a small-size 

filled-circle glyph drawn with the darkest color of 

the density-encoding gradient. 

There are two less aggregated views for each 

group available when hovering over or clicking at a 

glyph, respectively. When hovering over a glyph, a 

planar plot of the points belonging to its 

corresponding group according to the current 

projection is rendered. The number of assigned 

points, the group’s area, and relative density are 

output in textural form in the lower left corner of the 

screen. If the glyph is clicked, a circular parallel 

coordinates plot of all points belonging to the cluster 

is rendered. 

To reduce overplotting in groups with large 

number of members, the color of each line is chosen 

according to the point’s entry value along the 

original dataset axis with maximum variance. The 

examination of the circular-parallel-coordinates 

signature of each group can provide qualitative 

information on the group’s homogeneity, the 

intragroup ranges along axes, and the presence of 

outstanding points, which at a higher level of 

granularity may have been captured as outliers. 

The option of visualizing intergroup 

connectedness is provided via the concept of 

neighborhood links, which improves the coherent 

interpretation of larger structures presented as 

multiple glyphs and will convey truthful information 

on group-pairs’ proximity, regardless of chosen 

projection. When hovering over a glyph, 

connections in the form of colored straight lines to 

the centers of other groups’ glyphs are depicted. The 

neighborhood criterion according to which the links 

are drawn is of a k-closest nature, where k is 

between 0 and 10 and is modifiable via a slider in 

the visualization tool’s interface. Furthermore, the 

visibility of a user-defined maximum number of 

links, in the same interval, can be permanently 

enabled, while the links are additionally interactively 

filtered  by the strength of the relation they 

represent. 

For color-computation purposes the strength of 

each connection is expressed in relative terms. 

Naturally, links of close-to-0 lengths encode the 

strongest relations among groups in the dataset and 

are drawn in the darkest possible intergroup-

connectedness-encoding color. Conversely, 

neighboring groups possessing closest points further 

apart are paired by a less visually salient connection, 

using again the color map in Figure 2a.  

 

Figure 3. Visual encodings: (a) Large-spread low-density 

group. (b) Group scatterplot appearing when the group’s 

glyph is hovered over. (c) Hint reporting number of points 

(426), area (10.161), and relative density (87.97) of 

hoevered-over group. (d) Smaller-spread, high-density 

group. (e) Circular parallel coordinates plot of the group in 

(d). (f) Outlier. (g,h) High-relation-strength intergroup 

links, produced by a 2-closest criterion applied on the 

group in (b). 
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Figure 3 provides an example image showcasing 

the visual encodings. To produce this image, the 

visualization tool was run on a synthetically- 

generated six-dimensional dataset containing three 

easily-distinguishable clusters, polluted with 

approximately 1% of noise objects each, and one 

outlier point marked with blue in f). The clusters, 

each of which has been captured as a single group at 

the current low level of granularity, have different 

equivalents of multidimensional area, as encoded in 

their glyphs’ colors. The cluster in b) is currently the 

densest multipoint object presented on screen, 

having a relative density value of 87.97 (the outlier 

has 100.0) and a color towards the right end of the 

density-encoding gradient, which would have been 

visible if the glyph had not been hovered over. The 

circular-parallel-coordinates plot of the points 

assigned to the group in e) reveals a homogeneous 

cluster nature. Similar ranges along all axes are 

observed, alluding to the almost hyper-spherical 

shape of the cluster. The signatures of three foreign 

(noise) points can be seen as one line crossing 

through Axis 3 (green) and two lines crossing 

through Axis 4 (pink) closer to the center of the plot 

compared to the majority of intersections. 

3.7 Interaction Mechanisms 

When the visualization tool is initially launched on a 

dataset, the default observation perspective provided 

to the user is based on the data points’ 

transformation by the PCA eigenvector matrix. The 

first two principal components of data are used to 

arrange observation points, i.e., they define the 

projection matrix to the 2D visual space.   

In case relevant features of the examined 

structures are not immediately visible in the default 

projection plane, an opportunity to dynamically 

apply transformations to data points and centroids 

alike is enabled via the manipulation of the star-

coordinates widget included in the visualization 

tool’s interface. The columns of the projection 

matrix represent the tips of the dimension axes in the 

star-coordinates plot. One operates on the star-

coordinate widget by translating the tips of the 

coordinate axes. When changing the tip’s position of 

the ith dimension, the projection matrix is updated by 

replacing the ith column with the new coordinates of 

the tip. The same projection matrix is used for both 

the global layout and the layout of group as in 

Figure 3(b). In the global layout the glyphs are 

placed at the centroid of the projected group rather 

than the projection of the group’s centroid. Figure 4 

shows the interaction widget. 

Statistically, rescaling one of the original data 

axes  results in an increase/decrease of relative 

variance as considered by PCA. This can be used to 

redefine attribute relevance or reduce the 

undesirable effects of inappropriate unit selection or 

PCA’s outliers sensitivity. In order to regroup 

points, based on his/her personal understanding of 

property importance, an axis-rescale widget is 

provided to the user. The widget is similar in 

appearance to the projection-modification star-

coordinates widget. However, variations in the 

length of a ray resulting from changing its tip’s on-

screen position leads to proportionate rescales along 

the corresponding original data axis. Manipulation 

of the angles at which widget rays are presented has 

no effect on axis-scaling but is supported such that 

rays can be closely placed to each other and the 

relationships among scaling factors visually 

assessed. When the scaling of an original data axis is 

altered, the PCA, summarization, and display 

procedures are re- executed and the axis’ 

representation in groups’ circular parallel-

coordinates plots is adjusted accordingly. 

 

Figure 4: Star coordinate interaction widget for a 7-

dimensional data set (here showing PCA outcome). 

Other interaction mechanisms are concerned 

with changing the granularity of the clustering 

mainly by adjusting the cell size of the density-based 

clustering. To maintain the mental map and observe 

changes of assigned samples to clusters, we provide 

an animated transition that first splits the groups into 

fractions, which then move and reassemble 

themselves to the new clusters. Figure 5 shows an 

example. 

 

Figure 5: Animation for tracking cluster changes when 

modifying level of granularity: original clusters (a) are 

split to fractions (b), which translate (c), and re-assemble 

(d) to form the modified clustering result (e). 
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4 RESULTS AND DISCUSSION 

To have a known ground truth, we first apply our 

data to a synthetic data set. The Fake Clover data set 

(Ilies, 2010) contains 1,211 samples in 7 dimensions 

that has been labeled to 6 similarly sized clusters 

plus 7 outliers. Figure 6 shows the outcome of the 

PCA algorithm without our visual encodings. We 

observe that the clusters overlap pairwise such that 3 

instead of 6 clusters are observed when not color-

coding the labeled classes.  

 

Figure 6: PCA of Fake Clover dataset leads to non-

separated cluster pairs (a,b), (c,d), and (e,f). 

Figure 7 shows our visual encoding of the PCA 

view with data aggregation using two iterations of 

the K-means-like procedure and density-estimation 

cell size 1/49. We show the 2-nearest neighborhoods 

with edges. The 7 outliers stay as separate clusters 

and the other samples merge to three groups of 

somewhat close clusters.    

 

Figure 7: Aggregated visual encoding of PCA view on 

Fake Clover data set with 2-nearest neighborhoods. 

In Figure 8, we use the circular parallel 

coordinate plots to examine an outlier and its 2-

nearest neighbors. It can be observed that the outlier 

is close to one of the clusters (the lower one) in all 

dimensions except for one (the 6th dimension when 

counting clockwise from top). 

 

 

Figure 8: Circular parallel coordinate plots to examine the 

properties of an outlier in comparison to the 2 nearest 

clusters. 

 

Figure 9: Neighborhood of a selected cluster is maintained 

well by one projection (left) and not so well by another 

projection (right) can be visually retrieved by linking to 

nearest neighbors. 

Figure 9 documents how the edges can help to 

understand whether the projection is maintaining 

well distances. It shows the 6-nearest neighbors of a 

selected cluster. While the projection on the left 

maintained neighborhoods well, the projection on 

the right did not maintain it well, which becomes 

obvious with our visual encoding. 

Our tool also allows for top-down and bottom-up 

analyses. In Figure 10, we follow the top-down 

strategy by starting with a highly aggregated view 

(left) that identifies three clusters in the PCA view, 

which correspond to the cluster pairs (a,b), (c,d), and 

(e,f) in Figure 6. When refining the aggregation 

level by changing the cell size from 1/15 to 1/25, we 

observe that the clusters split into two subclusters. 

When changing the projection with the star 

coordinate interaction widget, we obtain views that 

the subclusters are indeed separate structures. The 

projection in Figure 11 (left) shows that the upper 

left cluster in the PCA view actually consists of two 

clusters (corresponding to clusters a and b in Figure 

6).  The projection in Figure 11 (right) shows that 

the bottom cluster in the PCA view also consists of 

two clusters (corresponding to clusters e and f in 

Figure 6).   
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Figure 10: Top-down strategy starting with a highly 

aggregated view using cell size 1/15 (left) and refining the 

clusters using cell size 1/25 (right). 

  

Figure 11: Changing the projection with the star 

coordinate widget allows us to separate clusters a and b 

from Figure 6 (left) as well as clusters e and f (right).  

In a bottom-up analysis, we would start with 

each data sample being its own cluster and 

aggregate. In Figure 12, we show a projection where 

the neighbourhood structures at a barely aggregated 

level exhibit that the clusters c and d from Figure 6 

are also separated structures. We reduce overplotting 

here by just showing the edges without the clusters. 

 

Figure 12: Bottom-up strategy starting with each sample 

forming its own cluster and merging them. Here the 

clusters c and d from Figure 6 could be separated. 

All the results presented so far were on the 

synthetic Fake Clover dataset. We also applied out 

methods to non-synthetic data like the well-known 

Iris (Bache and Lichman, 2013) and Out5D datasets 

[23]. Figure 13 shows the result on the Iris dataset 

revealing the known three clusters. Figure 14 shows 

the results on the Out5D data set with various 

distinct subclusters.  

 

Figure 13: When applied to the Iris dataset we identified 

the three well-known clusters. 

 

Figure 14: When applied to the Out5D dataset, we observe 

many distinct subclusters. 

   

Figure 15: Example of a clustering result with a 

heterogeneous cluster and a more homogeneous cluster, 

which can be verified by switching to scatterplot 

visualizations of the clusters. 

The main parameter to be chosen is the cell size. 

The perfect value cannot be known a priori and 

should be adjusted interactively. In fact in case of 

different cluster densities and sizes, it may have to 

be chosen differently when analyzing different 

regions of the data. However, our visual encoding 

supports the analysis, as homogeneous clusters 

typically do not need further refinement, while 

heterogeneous might do. In Figure 15 (left), we 

observe two clusters, but the left one is 

heterogeneous and may consist of further 

subclusters, which here can be easily confirmed by 

switching to the scatterplot views for selected 
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clusters (middle), while the cluster on the right is 

more homogeneous (right). Another issue with the 

cell size parameter is that clusters are not necessarily 

changing smoothly when smoothly varying the cell 

size parameter. To alleviate this issue we introduced 

an animation as in Figure 5. 

5 EVALUATION 

To evaluate the effectiveness of our tool, we 

performed a user study with 10 subjects with 

different professional background, gender, and age. 

We gave a short tutorial and subsequently asked 8 

easy questions that should familiarize the subjects 

with the functionality of the tool. We asked about 

the number of dimensions, number of samples, the 

dimension with the broadest range, the dimension 

contributing most to the variance, the number of 

outliers in one dimension, the number of visible 

structures in the PCA view, a comparison between 

clusters in terms of size, are, and density, and 

correctness of an aggregated view. Afterwards, we 

asked them to perform actual analysis tasks like 

identifying the correct number of clusters, testing 

clusters on homogeneity, and finding the most 

similar observations to an outlier. All tasks were 

conducted on the Fake Clover dataset. The outcome 

was evaluated by computing the correctness of the 

answers. Time was not part of the investigation, but 

the study took on average 66 minutes (ranging 

between 29 and 98 minutes) per participant.   

The outcome of the user study was that subjects 

were able to fulfil the tasks  with a high average 

correctness rate of 90.0% (92.5% for easy questions 

and 83.3% for actual analysis tasks). There was no 

difference in performance between groups of 

different professional background. 

6 CONCLUSIONS 

We presented an interactive visual tool for 

effectively analysing unlabeled multi-dimensional 

data using data aggregation and distance encoding. 

Data aggregation is based on K-means clustering 

and a cell-based density clustering. The cell size 

allowed us to modify the granularity of the data 

aggregation. Cluster properties are visually encoded 

in aggregated form using color and size or in 

detailed form using circular parallel plots and 

scatterplots in a local layout. Distances are 

computed in an efficient way and conveyed by 

ending k-nearest neighborhoods with edges, which 

allows for analysing the neighbourhood preservation 

property of the chosen projection. Projections are 

based on PCA, but a dimension-scaling widget 

allows for interactive weighting of axes and a star-

coordinate widget allows for changing the projection 

matrix. We have shown that our tool can be 

effectively applied to analyze multi-dimensional 

data. 
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