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Abstract: The recent development of microcomputers enables the execution of complex software in small embedded 

systems. Artificial intelligence is one form of software to be embedded into such devices. However, almost 

all embedded systems still have restricted storage space. One of the authors has already proposed an 

incremental learning method for regression, which works under a fixed storage space; however, this method 

cannot support the multivalued functions that usually appear in real-world problems. One way to support the 

multivalued function is to use the model regression method with a kernel density estimator. However, this 

method assumes that all sample points are recorded as kernel centroids, which is not suitable for small 

embedded systems. In this paper, we propose a minimum modal regression method that reduces the number 

of kernels using a projection method. The conditions required to maintain accuracy are derived through 

theoretical analysis. The experimental results show that our method reduces the number of kernels while 

maintaining a specified level of accuracy. 

1 INTRODUCTION 

The recent development of microcomputers enables 

the embedding of complex software into small 

devices. Machine learning algorithms are one 

example of such software. One of the authors has 

previously proposed a learning algorithm for kernel 

regression in embedded systems (Yamauchi, 2014), 

but this general regression method estimates the 

conditional expectation of the dependent variable (Y) 

given the independent variables (X=x). In contrast, 

modal regression (Einbeck et al, 2006) estimates the 

conditional modes of Y given X=x. This strategy 

enables the learning machine to predict a portion of 

the missing variables from the other known variables 

according to the given sample distribution. This 

property is quite different from that of other typical 

regression methods.  

To estimate the conditional modes, partial mean 

shift (PMS) is an assured method. At first, the PMS 

method attempts to obtain the joint kernel density and 

derives it using the gradient ascent. However, if the 

number of samples is increasing, minimum modal 

regression is proposed, which can estimate the joint 

kernel density by projecting the new sample, 

replacing the old kernel, or adding the new kernel to 

the sample. The equation for PMS is then modified 

accordingly. 

2 MODAL REGRESSION 

Modal regression approximates a multivalued 

function to search the local peaks of a given sample 

distribution. Modal regression consists of the kernel 

density estimator with a PMS method. 

2.1 Kernel Density Estimator 

The kernel density estimator (KDE) is a variation of 

the Parzen window (Parzen, 1962). 

Let  be the set of learning samples, and 

 Npn

p ,,2,1  x . The estimator 

approximates the probability density function by 

using a number of kernels, namely, the support set 
tS . 

The kernels used are Gaussian kernels, and  
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Normally, the same number of kernels as that of 

the dataset is required. However, if the storage 

capacity of a target device is small, the number of 

kernels must be restricted. There are several ways to 

realize the density estimation using a limited number 

of kernels. Traditionally, self-organizing feature 

maps or learning vector quantization methods 

approximate the distribution by using a fixed number 

of templates. 

As mentioned in (Sasaki et al., 2016), the KDE 

used in modal regression should approximate the 

peak points of the distribution, rather than the 

distribution itself. Let )(ˆ xp  be 
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then )(ˆ xp should satisfy the following condition. 
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where 
*

x denotes a local peak point of the 

distribution. 

2.2 Partial Mean Shift 

Modal regression searches the peaks of the 

distribution model represented by the KDE. The PMS 

method realizes quick convergence to the nearest 

peak from the initial point. Let us denote the initial 

point as
0x , representing the starting point for the 

search of the peak points. Thus, modal regression 

repeats the modification of the current y  as follows: 
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where X denotes  T
N

yxx ,1 X . Note 

that X includes y . 

3 MINIMUM MODAL 

REGRESSION  

To realize the minimum modal regression, a 

minimum KDE, which realizes the KDE with a 

minimum support set, is proposed. Moreover, the 

KDE should support incremental learning during its 

service. To this end, we modify an online learning 

method for kernel perceptrons on a budget and apply 

the modified method for online learning of the KDE. 

The existing kernel perceptron on a budget 

maintains a minimized or a constant support set by 

applying projection and pruning with replacement. In 

this study, we derivate some conditions to make an 

online learning algorithm for the KDE in order to be 

used in the modal regression. 

In the following section, we use the following 

relationship to represent the pruning with 

replacement and a projection of kernels. Therefore, 

we choose Gaussian kernel for )(K , which is a kind 

of reproducing kernel. Thus, we have following 

relationship, referred to as the kernel trick: 
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where , denotes the dot product. 

3.1 Minimum KDE 

The KDE for modal regression should represent the 

peak points of the distribution within a certain 

number of kernels. Therefore, the modal regression 

finds the  TMP

T

MPMP yxX   which satisfies the 

following two conditions: 
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where )(ˆ Xp is defined in (3). Next, we describe 

)(ˆ Xp as a dot product of the corresponding vector 

in Hilbert space and the input: ),(,ˆ)(ˆ  XX kpp . 

As )(ˆ Xp is described by a linear combination of 

several Gaussian kernels, which is one of the 

reproducing kernels, we can apply the kernel trick to 

calculate it. Thus, the KDE is also described by using 

the kernel method. Therefore, the learning method of 

the KDE is described as follows. Let us assume that 
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the KDE used in this study tends to realize a sparse 

allocation of kernels. Therefore, the KDE normally 

adds a new kernel when a new sample  tt y,x is 

presented. Therefore,  

,),,(ˆˆ
11 tSSkwpp tttttt   X  (8) 

where
tS denotes the support set at the t th round, 

1tw , and
tp̂ is 

 ,),(ˆ  
j

jjt kwp X  (9) 
 

where jw is the extension coefficient for each kernel, 

whose default value is 1 and 0jw . The KDE is 

not for regression, so (9) does not contain
ty . Instead, 

ty is one element of the centroid of a kernel. 

Equation (8) represents the same procedure as that of 

the original kernel distribution estimator. This 

strategy, however, continues to increment the size of 

the support set tS forever if the number of datasets 

is infinite. This is not suitable for an environment in 

which storage space is limited.
tS should only 

contain some essential kernels to represent the 

distribution of inputs. 

To maintain a small value of tS , we apply an 

improved version of the kernel perceptron on a 

budget (Orabona et al., 2008) (He et al., 2012) 

(Yamauchi, 2013). If we apply their method to the 

KDE, the KDE attempts to apply the projection or 

replacement operation instead of appending a new 

kernel. Therefore, if a condition explained in the latter 

section is satisfied, the KDE applies the replacement 

or projection operation. The replacement operation is  
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On the other hand, the projection operation is 

),(ˆˆ *11 
 tttt kPpp X , (11) 

 

where ),( **1


 iit
kP X denotes the projected vector of 

the 
*i th kernel to the space spanned by the remaining 

kernels. The projected vector ),( **1


 iit
kP X  is 
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This means that the KDE removes the most 

ineffective 
*i th kernel after projecting the kernel to 

the space spanned by the remaining kernels. The most 

ineffective kernel is detected by estimating the 

approximated linear dependency. 
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The following two theorems derivate the 

condition to maintain the 
'

MPX s of the peak points, 

even after the replacement or projection operations. 

 

Theorem 1  

Let 
*i  be the most ineffective kernel in 1tS , 

which is determined by (13). Let 
'ˆ
tp be  
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Theorem 2  

Let tX be a new input at the t th round, and 

),(1  tt kP x  be the projected vector of ),( tk X  

to the space spanned by the kernels at round 1t

. Let 
'ˆ
tp  be  

),(ˆˆ
11

'   tttt kPpp X .  

Let MPx be a point that satisfies the following 

condition. 
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The proofs for the Theorems 1 and 2 are described 

in the appendix.  

Theorem 2 demonstrates that if MPX  is far from 

tX , 
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From these theorems, the minimum KDE can be 

described in Algorithm 1. 

Algorithm 1: Learning algorithm for the Minimum KDE. 

Receive ),( tt yX   

Detect the most ineffective kernel 
*i by using (13) (the 

lightweight version is (19)). 

If  
2

t  

111 ),,(ˆˆ
  tttttt SSkPpp X  

else if  
2

*i
 

 ),(),(ˆˆ ** 11   itiitt kPkwpp XX  

  tiSS tt   \1  

else  

tSSkpp ttttt   11 ),,(ˆˆ X  

Endif 

For all i 

 if 0iw  // To maintain 0iw  

      0iw  

endif 

endfor 

1 tt  

Return 
tp̂  

3.2 Modified Partial Mean Shift 

The minimum KED described in the previous 

section maintains the minimum size of the support 

set by applying a projection or pruning with a 

replacement. Through these processes, the 

expansion parameter of each kernel 
iw  has a 

certain value to represent the target distribution. 

For example, if 2iw , the ith kernel shares the 

duty of two kernels. Therefore, we have also 

improved the PMS method to adjust the solution 

according to the expansion parameters, as follows. 
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(17) 

 

3.3 Lightweight Learning Algorithm 

In Section 3.1, we have already presented the 

minimum KDE. The algorithm includes the 

calculation of the approximated linear dependency 

(ALD) to detect the most ineffective kernel, which 

has a wasteful computational cost of )(
3

tSO . The 

computational cost is too large to execute the 

minimum KDE. To overcome this difficulty, we need 

a lightweight version of the minimum KDE.  

The lightweight KDE does not use (13) to detect 

the most ineffective kernel. Instead, the proposed 

algorithm uses a slightly improved version of a 

lightweight algorithm from our previous study 

(Yamauchi, 2014). Therefore, the proposed method 

chooses the most ineffective kernel, which has the 

largest value, defined as 
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Note that if the kernel is located in the 

neighborhood of other kernels, jV becomes large. 

There is a high possibility that such a kernel can be 

represented by a linear combination of the other 

kernels. Therefore, instead of applying (13), (19) is 

used.  

jj Vi maxarg*   (19) 
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Algorithm 2: Minimum modal regression. 

If a new learning sample  Tttt yxX   is given, 

Learn the minimum KDE by Algorithm 1 
endif 

If a new query px is given, 

For (i=0; i<M; i++) 

Select one of a kernel index )( pk xΝ (see 

(20))  randomly. 

set the initial y  as NkXy  . 

  Set initial X as  yT

pxX  . 

For (r=0; r<R; r++)  

Update y by using (17) 

Reset X  as  yT

pxX   

endfor 

 yAnsAns   

 endfor 

endif 

return .Ans  

 

where )( pxΝ denotes a set of kernels defined below 

equation. 
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where s  denotes a threshold and we set .1.0s  

4 EXPERIMENT 

In this section, some preliminary results of the 

proposed method are shown.  

4.1 Performance for Synthetic Dataset 

We tested the proposed method with two synthetic 

datasets and evaluated its performance. 

4.1.1 Third-Order Function 

The first dataset is generated by  

nyyx  43
,  

where n is a uniform random value in the interval of 

]1,1[ . With a changing y in the interval [-3, 3], 

8000 datasets were generated. The dataset was 

presented to the minimum KDE, and the minimal 

modal regression predicted the values for you from 

the value of each x. The number of repeats for the 

prediction (the parameter R in Algorithm 2) was 10. 

The hyper parameters used were 25.0xh  and 

25.0yh . The evaluation should be made using the 

mean square error between the desired and predicted 

values of y. 

However, the evaluation of multi-valued output is 

complex, so we evaluated the proposed method as 

follows. Instead of making a direct comparison of the 

resultant and predicted values of y, we calculated the 

corresponding yyx 4ˆ 3   and compare the 

actual x with x̂ . The difference was evaluated by the 

averaged square error:   ]ˆ[
2

xxE  .  

Figure 1, 2 and 3 show the results of y predicted by 

the proposed method with 9.0,5.0,1.0 , 

respectively. From these figures, we can see that the 

threshold value   is small, and the predicted values 

show a smooth curve. The estimated errors and 

number of kernels are listed in Table 1. From this table, 

the estimated error of the modal regression is reduced 

when the threshold value is small. However, the 

number of kernels is increased when the threshold 

value is small. Therefore, there are tradeoff 

relationships between the error and number of kernels. 

Table 1: Number of kernels and the averaged error for the 

corresponding x for each threshold value. 

Threshold ( ) 0.9 0.5 0.1 

No. of kernels 124 188 292 

  ]ˆ[
2

xxE   
0.018 0.010 0.0063 

 

Figure 1: The predicted values from the proposed method 

with 1.0 .The x-axis denotes x and the y-axis denotes 

the predicted value. 
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Figure 2: The predicted values from the proposed method 

with 5.0 . The x-axis denotes x and the y-axis denotes 

the predicted value. 

 

Figure 3: The predicted values from the proposed method 

with 9.0 . The x-axis denotes x and the y-axis 

denotes the predicted value. 

4.1.2 Helix Function 

The second dataset is a helix dataset. By using this 

dataset, we have checked whether our method 

approximates more complex outputs. The dataset is 

described as follows. 

ttttttttt bzayax   ,sin,cos , 

where tt  2 . We set tt na  2 , where tn  

denotes a uniform random value in the interval [-0.1, 

0.1], and 
tt nb  3 . By increasing t  gradually 

from 0 to 9, 3000 instances were generated. The 

dataset has a spiral shape. The used hyper parameters 

were .0.2,0.2  yx hh  Figure 4 and Figure 5 

show the results for a threshold of  = 0.1 and 0.95. 

In the case of threshold  = 0.1, 157 kernels were 

generated. On the other hand, in the case of threshold 

 = 0.95, 45 kernels were generated. In the both cases, 

the proposed system regenerated almost the same 

correct multivalued outputs. 

 

Figure 4: The output of the proposed method of Helix data 

for a threshold .1.0  

 

Figure 5: The output of the proposed method of Helix data 

for a threshold .95.0  

4.2 Performance for Real Dataset 

We also tested the proposed method with a real-

dataset: Data from the network journey time and 

traffic flow on highways in England1. We used the 

traffic flow data on January 2006 MIDIAS Site 1030 

(LM205) and made the proposed system learn the 

pairwise data between total carriageway flow versus 

total flow vehicles above 11.6m. The dataset records 

the data at every 15 minutes. The four total carriage 

flows and corresponding speed flow between every 

45 minutes are almost the same. Therefore, we picked 

up the first data of the four data set for the 

corresponding 45 minutes. By this procedure, we 

reduced the dataset size to 1/4 (8580 instances).  

Moreover, each speed data and flow data was 

normalized by dividing them by 140 and 1400, 

respectively. The used hyper-parameters are 

2.0,15.0  yx hh . From the data plotted in  
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Figure 6 The predicted outputs from the proposed method 

with 1.0 . The generated kernel size was 57. 

 

Figure 7: The predicted outputs from the proposed method 

with 5.0 . The generated kernel size was 29. 

The predicted outputs from the proposed method with 

1.0 and 0.5 are shown in Figure 6 and Figure 7. 

The kernel sizes were 57 and 29, respectively.  

 We can see the proposed method predicted more than 

two distributions in the speed flow. 

5 CONCLUSION 

In this paper, we proposed a new method for modal 

regression. While forming the KDE when a new 

sample is given, it may be projected onto the existing 

kernel space, it may replace the existing kernel, or a 

new kernel may be generated with a given sample as 

the center. This depends on the threshold and the 

dependencies of each kernel in the existing kernel 

space. The equation for the PMS method is also 

modified according to this method by adding weights 

to the kernels. The experimental results show that the 

proposed method can approximate the multivalued 

functions properly, and it also reduces the complexity 

greatly compared to the case where a kernel is 

allocated to each sample.  
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APPENDIX 

The proof of Theorem 1 is 

 

Proof 1.  
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2
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From the pruning and replacement operation, 
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This concludes the proof. 
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This concludes the proof. 
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