
Hardware-based Cyber Threats

Thiago Alves and Thomas Morris
Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, U.S.A.

Keywords: Cyber-security, Embedded Systems, Computer Hardware Security.

Abstract: During the last decade, cyber-security experts have been trying to mitigate attacks against computer networks

and software. After the internet, the proliferation of thousands of virus, worms and trojans became easier,

which then required enhancements for Operating Systems, browsers and anti-virus software in order to keep

their users safe. However, what happens when the threat comes from the hardware? The Operating System

trusts entirely in the hardware to perform its operations. If the hardware has been taken, it becomes much

harder to regain control of the system. This paper describes eight different approaches to hardware attacks

against software. It also demonstrates how to perform an attack using a USB device patched to behave like a

generic HID Input Device, in order to insert malicious code in the system.

1 INTRODUCTION

The first documented virus was written by Bob

Thomas at BBN Technologies in 1971. The virus,

known as Creeper Virus, was a self-replicating

program which propelled itself between nodes of the

ARPANET (Robert, 2004). Since then, the internet

has created a fertile environment for worms and

viruses that replicate themselves, potentially causing

harm to the system and its users.

In the effort of mitigating these threats, many

software packages were created focusing in network

defense and files contamination scanning. Defense

programs received significant improvements during

the last years, with the inclusion of different types of

Intrusion Detection System (IDS) and other tools that

can prevent the attack from happening.

However, these software packages focus mostly

in defending against outside attacks. In a continuous

effort to become more persistent and avoid detection,

malware infection is now shifting from software

towards more low-level components. Internal

malicious code can possible go undetected, because

the monitoring software rely on the Operating System

for data gathering, and once the machine’s hardware

becomes compromised, it becomes easy to subvert

the Operating System to deliver deceived data. There

is a catastrophic loss of security when hardware is not

trustworthy.

The implication of malware written for hardware

is that they are strictly dependent on the device

architecture. Different devices may require major

modifications in the code.

2 HARDWARE MALWARE

APPROACHES

This section describes eight different approaches to

subvert the system through hardware attacks.

Although these are just some examples of different

attack vectors, they all seem to be out of the scope of

most, if not every, protection software available.

2.1 A Chipset Level Backdoor

The chipset is a set of specialized electronic

components that manage data flow on a computer’s

motherboard or on an expansion card (Sparks, 2009).

Sparks et al. described a proof of concept chipset

rootkit backdoor for the Intel 8255x Ethernet

Controller. Since it lies in the Ethernet Controller

chipset driver, it can send and receive malicious

network packets without being identified by the

security software installed on the host computer.

The backdoor can remain invisible because it

resides below the Operating System’s network

interfaces. The two primary components of the

network subsystem on Microsoft Windows are TDI

(Transport Driver Interface) and NDIS (Network

Driver Interface Specification). Both components are

Alves, T. and Morris, T.
Hardware-based Cyber Threats.
DOI: 10.5220/0006577202590266
In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), pages 259-266
ISBN: 978-989-758-282-0
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259

also the most common target for malware and

security software authors since they are the deepest

layers in the Operating System for sending and

receiving network packets. The rule is that the deepest

one goes, the greater its power and stealth. Therefore,

a malware that goes deeper and can interface directly

with the hardware is capable of bypassing any

malicious code detection running at an abstracted

level above it.

The proposed rootkit backdoor is a modified

Windows kernel driver for the said Intel 8255x

Ethernet Controller. The driver is the layer right

below NDIS, responsible for bridging the

communication between the physical network

interface card and NDIS.

The Intel 8255x chipset consists of basically 2

primary components: The Command Unit (CU) and

the Receive Unit (RU). In order to send a packet, a

data structure containing the packet must be sent to

the CU. Finally, the transmission is performed after

sending a start command to the CU. On a normal

operation, the network packet is built in the Windows

network stack and delivered to the NIC (Network

Interface Card) driver. However, the chipset

backdoor bypasses the network stack and builds the

entire malicious packet to be sent. Since it doesn’t

rely on the Windows network stack to build the

packet, it can’t be detected by security software

neither by the Operating System. That is how data

exfiltration can be achieved.

The RU is responsible for handling incoming

packets on the network. When a valid packet arrives,

it informs the CPU by raising an interrupt. The

interrupt is handled by the windows NDIS and the

NIC driver. In order to bypass NDIS detection, the

driver can redirect the interrupt to a different address

where it can analyse the packet received and then, if

appropriate, send the interruption back to the NDIS

for a normal operation.

By these means, a malware infected driver can

manipulate network packets before the Operational

System and therefore remain undetected. The authors

of this proposal tested their solution against the

Windows XP Firewall, Zone Alarm and Snort. None

of them were capable of detecting the exfiltrated

neither the infiltrated packets.

2.2 Stealth Hard-Drive Backdoor

As most hardware malwares, hard-drive backdoors

are highly hardware dependent, and therefore requires

customization for each targeted device. Zaddach

claims that the hard-drive market has now shrunk to

only three major manufacturers, with Seagate and

Western Digital accounting for almost 90% of all

drives manufactured (Zaddach, 2013).

Most hard-drives are based on a custom System

on Chip (SoC) design. The SoC usually has a

microcontroller core with some RAM, ROM and

Flash memory to store the firmware for the

microcontroller. There is also a large DRAM memory

that serves as cache for the hard-disk requests. The

microcontroller is responsible for translating the data

requests coming over the SATA (or SCSI) interface

and storing them in cache memory. Specialized

hardware (usually DSP or FPGA) that also has access

to the data in cache, is responsible for physically

reading or writing on the disk.

Figure 1: Hard-drive firmware backdoor changing data on

a write operation.

An infected firmware can take advantage of the

privileged position of the microcontroller and

intentionally change data being read or write to the

disk plates. Figure 1 shows the implementation done

by Zaddach of a firmware backdoor that changes

blocks to be written on the disk based on a magic

number present in the block (Zaddach, 2013). Since

the backdoor lies in the hard-drive firmware, the

writing modification goes undetected by the

Operating System. Data exfiltration is also possible

since the modified firmware can also change the

sector to be read from and therefore read data from

anywhere in the disk. These techniques can be used

to, for instance, modify the password hash for the root

account written in the /etc/shadow file enabling a

remote user to login with root privileges. This

modification is persistent even after re-installing the

Operating System. Also, the hash for the root user can

be instead exfiltrated while a read operation is

performed anywhere on the disk.

The modified firmware doesn’t require physical

access to the hard-drive to be deployed. A single local

or remote access with root privilege is enough to re-

flash the hard-disk firmware using manufacturer’s

firmware update mechanisms. This can even be done

by a malware that temporarily infects the machine in

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

260

order to reprogram the hard-disk’s firmware and then

remove itself from the system to remain undetected.

2.3 Exploiting Intel Processor’s SMM

Mode

System Management Mode (SMM) is a relatively

obscure mode present on Intel processors made for

low-level hardware control and debug (Embleton,

2008). In this mode all normal execution (including

the Operating System) is suspended to give place for

a special software that is executed with high

privileges. According to Embleton, SMM code is

completely non-preemptible, runs below the

Operating System, and is immune to memory

protection mechanisms (Embleton, 2008).

A rootkit designed to run at the SMM mode is

capable of intercepting and emulating low level

system events without needing to modify any existing

OS code or data structures. Embleton developed a

proof of concept SMM rootkit that redirects keyboard

Interrupt Requests (IRQ) to SMM mode by changing

the Advanced Programmable Interrupt Controller

(APIC) table in order to create a chipset-level

keylogger. The logged keystrokes are then

encapsulated into UDP packets and sent out via the

chipset LAN interface. This is all accomplished

without making any visible changes to the target

Operating System.

The SMM has a completely separate address

space for executing programs called SMRAM. The

contents of SMRAM are only visible to code

executing in the SMM mode. In order to switch to

SMM mode, the processor must receive a System

Management Mode Interrupt (SMI). There are a

variety of events that can trigger an SMI. Some of

them are a power button press, real time clock (RTC)

alarm, USB wake events, Advanced Configuration

and Power Interface (ACPI) timer overflows, periodic

timer expiration, and a write to the Advanced Power

Management Control (APM) register, 0xB2.

Upon receiving an SMI, the processor saves the

current state into the SMRAM and start the execution

of the SMI handler. Code running in the SMM mode

is non-preemptible because the SMI has greater

priority than all other interrupts, even non-maskable

ones. In order to deliver the malware, its code must

be copied to the SMRAM area. However, this might

not be a straightforward task since this area is

normally not visible in processor modes other than

SMM.

The System Management RAM Control Register

(SMRAMC) can control SMRAM visibility. The two

relevant bits in this register are the D_LCK bit and the

D_OPEN bit. When D_OPEN is set, SMRAM can be

visible to other processor modes. D_LCK controls the

access to the SMRAMC. Therefore, when D_LCK is

set, SMRAMC register becomes read-only until a

reset occurs, preventing a program to change the

value of the D_OPEN bit. If the D_LCK hasn’t been

set by the BIOS or the Operating System, a kernel

driver can be used to install the rootkit into the

SMRAM area by setting the D_OPEN bit, copying

the malware to SMRAM, clearing D_OPEN and then

finally setting D_LCK to prevent further changes.

Once installed, the rootkit subverts the I/O APIC

interrupt table in order to redirect keyboard interrupts

to the SMI handler. Therefore, every time a key is

pressed, an SMI interrupt is triggered and the

processor enters in SMM mode. Once in SMM mode,

the malware logs the key into a buffer and then invoke

the normal keyboard handler to address the key press

as usual. When the buffer becomes full, the malware

builds an UDP packet with all the data in the buffer

and sends a Transmit Command Block (TCB) to the

LAN controller in order to send the UDP packet out

over the network.

2.4 Exploiting I/O MMU Vulnerability

All modern Operating Systems implements the

concept of virtual memory, which is having each

process running in a separate address space. This

enables memory isolation, so that multiple processes

running on the same machine can’t see each other

address space. The Memory Management Unit

(MMU) is a device responsible for making the

address translation from virtual memory to physical

memory.

Devices connected to the bus usually don’t have

memory virtualization. Instead, they all share the

same address space and access physical memory

using Direct Memory Access (DMA). DMA enables

I/O controllers to transfer data directly to or from the

main memory. This can become a great threat, since

malicious devices can take advantage of this

mechanism to tamper critical areas of memory such

as the Operating System kernel.

In order to increase security and enable device

address space isolation, a special MMU for devices

was created, called I/O MMU. Although an I/O MMU

can separate device’s address space, it may also

contain some vulnerabilities that can enable

malicious code to have access to protected resources.

Sang explores some vulnerabilities found in the Intel

VT-d, which is Intel’s implementation of an I/O

MMU (Sang, 2010).

Hardware-based Cyber Threats

261

Intel VT-d is composed of a set of DMA

Remapping Hardware Units (DRHU). Figure 2

illustrates how memory access originated from I/O

controllers are remapped at the DRHU in order to

access main memory. The DRHU can also verify

whether the access is legitimate or not in order to

either reject or forward the request.

Figure 2: DMA Remapping Hardware Units.

All DMA requests arriving at a DRHU contain a

BDF-Id (Bus/Device/Function Identifier) reported by

the device that originated the request. Based on the

BFD-Id, the DRHU can remap the memory access to

the correct region of the main memory. However, it

cannot be sure that the identity reported by the

controller in its access really corresponds to its BDF-

Id. Therefore, malicious devices still can access

protected regions of the main memory by spoofing its

BFD-Id.

In order to provide the correct memory remapping

for each I/O device, the DRHU relies on the DMAR

ACPI table. This table is loaded and configured by the

BIOS, before the Operating System is loaded.

According to Sang, if an attacker manages to hide

some DRHUs from the OS by modifying the DMAR

ACPI table, some I/O controllers should be able to

perform DMA requests freely: the DRHUs in charge

of restricting their access are not configured by the

Operating System (Sang, 2010).

I/O MMU can still be a good security resource for

malicious devices. However, these vulnerabilities,

although hard to be addressed, can represent a threat

once it enables malicious devices to still have access

to the entire memory address space.

2.5 Hardware Trojans in Embedded

Processors

Hardware Trojans are malicious modifications to the

circuitry of an Integrated Circuit (IC) made by

untrusted design houses or foundries. They are

generally designed to leak secure information from

inside the IC and to remain undetected during the post

fabrication test phase.

Figure 3 shows the hardware Trojan developed by

Wang et al. for their implementation of the 8051

microcontroller (Wang, 2012). In order to remain

undetected during normal operation, hardware

Trojans should be activated only in rare conditions.

One type of hardware Trojan is the sequential

Trojan, that only activates its payload after receiving

a specific sequence of commands that is considered

to be very rare to occur under normal circumstances.

In general, the sequential Trojan can be triggered by

three different conditions: specific sequence of

instructions, specific sequence of data and

combinations of sequences of instructions and data.

Figure 3: Hardware Trojan infecting an 8051

Microcontroller.

In order to implement the sequential Trojan,

Wang developed a state machine in the combinational

logic for the 8051 microcontroller. Once all the

sequence of commands is achieved, the payload is

activated. The 8051 microcontroller was programmed

to perform RC5 encryption. Therefore, with the

Trojan activated, it starts to leak information about

the encryption algorithm and the encryption key, and

cause various system malfunctions.

It was verified by Wang that the hardware

overhead of the implemented Trojan was less than

3.1% on the FPGA platform (Wang, 2012). Also, it is

to be noted that hardware Trojans do not necessarily

mean extra logic. The Trojan can be included by

modifying the original design, creating even smaller

overheads.

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

262

2.6 Printer Firmware Modification

Firmware update is a ubiquitous feature found in

modern embedded devices, and most of them don’t

even require authentication to perform the update.

Firmware modification attack aim to inject malware

into the embedded device by modifying its firmware

through a simple firmware update process.

Cui et al. exploited a vulnerability in the HP

Remote Firmware Update (RFU) (Cui, 2013).

According to the authors, the update procedure is

coupled with the printing subsystem. Therefore, in

order to perform an update, the RFU file is printed to

the target device via the raw-print protocol over

standard channels like TCP/9100, LPD and USB.

This means that it is possible to pack arbitrary

executable code back into a legitimate RFU package

in a Printer Job Language (PJL) command. This

command can then be embedded into a malicious

document to be printed by unwitting users in the form

of, for example, a resume or an academic paper.

Cui demonstrated a creation of a malware for the

HP LaserJet P2055DN (Cui, 2013). By analysing an

original RFU packet is was revealed that the binary

payload was compressed. Therefore, it was necessary

to dump the firmware straight from the printer’s flash

memory in order to analyse it. Manual inspection of

the printer’s primary control board revealed that the

system is powered by a Marvell SoC with ARM

architecture. The Marvell SoC uses the Spansion

flash chip as a boot device. Analysis of the boot

loader code revealed the binary structure and

compression algorithm used in the RFU format.

The firmware for the P2055DN is based on the

VxWorks Operating System. The malware developed

was basically a root kit that was embedded into the

VxWorks image. According to the authors, the root

kit was capable of:

 Command and control via covert channel

 Print job snooping and exfiltration

 Autonomous and remote-controlled

reconnaissance

 Multiple device type infection and propagation

to the Windows operating system and other

embedded devices

 Reverse IP tunnel

With these information in place, it was possible to

create a tool that would automatically generate a valid

compressed PJL update packet from the

uncompressed ARM ELF image of the infected

firmware.

Once the malware is delivered to the victim

printer, the attacker can use it to gain access to the

secured internal network by establishing a reverse IP

tunnel through the printer. It can also be used for ARP

cache poisoning and even to infect other printers and

embedded systems connected to the network.

2.7 Malicious Hardware That Enables

Software Attacks

Previous attempts were made to create hardware

Trojans that would be hard-coded to the Integrated

Circuit (IC) design in order to leak data. Although

these Trojans are hard to detect, they are limited by

operating at the hardware-level abstractions only, and

by ignoring higher-levels of abstraction and system-

level aspects. Their malicious circuits are useful only

for the specific purpose for which they were made.

Therefore, if the higher-level data is not mapped to

hardware in the way the Trojan is expecting for, it

becomes hard or even impossible for it to be

collected.

While simple attacks, like stealing RSA

encryption keys on a RSA encryption circuit are

feasible to be done with hard-coded malicious

circuits, it is unclear how to realize semantically

richer attacks, like “execute the SQL query ‘DROP

TABLE *;’” using this technique.

For this reason, King et al. developed a malicious

processor that enables software-based attacks (King,

2008). They show that an attacker, rather than

designing one specific attack in hardware, can instead

design hardware to support software attacks. The

malicious CPU consisted of the Leon3 processor

(open source SPARC design) with two added

mechanisms: one for memory access and another for

invisible malicious code execution called shadow

mode.

The memory access mechanism gets triggered by

a specific sequence of bytes on the data bus. Once

activated, the mechanism disables the MMU privilege

levels for memory accesses, thus granting

unprivileged software access to all memory,

including privileged memory regions like the

operating system kernel. The authors wrote a program

that performed privilege escalation by using the

memory access mechanism. Once it was activated,

the program searched the kernel memory for its own

process structure and then changed its effective user

ID to root, thus granting super user permission for

itself. The memory access mechanism allows the

attacker to violate directly OS assumptions about

memory protection, giving him a powerful attack

vector into the system.

Hardware-based Cyber Threats

263

Figure 4: Shadow Mode inside the Processor.

The shadow mode is similar to Intel System

Management Mode (SMM) because shadow mode

instructions have full processor privilege and are

invisible to software. Figure 4 illustrates how the

shadow mode integrates into the processor. It gets

activated by a predetermined bootstrap trigger, which

is a set of conditions to tell the IMP to load some code

(firmware) from nearby data and execute it in shadow

mode. The attack can happen even remotely by, for

instance, an UDP packet that has the bootstrap

trigger. Even if the OS decides to drop the UDP

packet, the mechanism is activated, because for the

OS to drop a network packet it must first inspect it,

and the act of inspecting the network packet gives the

bootstrap mechanism sufficient opportunity to look

for a trigger. Once the trigger is found, it silently loads

data within the dropped network packet as a

malicious firmware and runs that within shadow

mode.

2.8 Stealing Data with an L3 Cache

Side Channel Attack

In order to reduce the memory footprint of the system,

modern operating systems implement the concept of

shared pages. The shared pages are identical portions

of memory among two or more processes. Usually the

Operating System creates shared pages based on the

location, which is the case for shared libraries.

However, shared pages can also be created by

actively searching and coalescing identical contents.

This technique is called page deduplication. To

enforce isolation, the OS sets the pages to be read

only or copy-on-write. However, it doesn’t prevent

some forms of inter-process interference.

Once a shared page is touched, it gets copied to

the processor’s cache. Therefore, a side channel

attack technique can utilize this cache behavior to

extract information on access to shared memory

pages. The technique uses the processor’s clflush

instruction to evict the monitored memory locations

from the cache, and then tests whether the data in

these locations is back in the cache after allowing the

victim program to execute a small number of

instructions.

Based on this side channel attack, Yarom

developed a new technique called Flush+Reload

(Yarom, 2014). The idea behind it is to flush data out

of the processor’s internal cache, so that it will be

loaded at the L3 level cache. This enables side

channel attacks between different cores, and even

between different Virtual Machines (VM).

Yarom demonstrated the use of the Flush+Reload

algorithm by attacking the RSA implementation of

GnuPG. The attack was tested in two different

scenarios: same-OS, where both the victim and the

attacker runs at the same OS, and cross-VM, where

each application runs on a separate VM.

The authors were able to extract 98.7% of the

RSA key bits on average in the same-OS scenario and

96.7% in the cross-VM scenario, with a worst case of

95% and 90%, respectively.

3 IMPLEMENTING A

MALICIOUS USB DEVICE

The USB standard was created in order to improve

the connection of plug-and-play devices to PCs. Due

to its ease of use, it became an instant success.

The USB Flash Drive is one of the most used USB

devices in the world. It consists of a flash memory

with an integrated USB interface. Due to its

widespread use, it also became a huge attack vector

for malicious code. Many malwares were developed

targeting the USB Flash Drive. These malwares are

automatically deployed once the USB Flash Drive is

inserted into the computer. After infection, the

malware also copies itself to every USB Flash Drive

that is inserted in the infected computer. In order to

mitigate this type of attack, most anti-malware

software prevent USB Mass Storage Devices to

automatically execute code when inserted.

However, there is another category of attack that

can exploit USB devices and does not rely on

malicious software stored inside a USB Flash Drive.

The USB specification (Universal Serial Bus, 2001)

declares a class of devices called Human Interface

Devices (HID). A device that declares itself in this

category and follow the HID specification, can be

accepted and recognized immediately by the

Operating System without the need for installing

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

264

drivers. That is the case, for example, of keyboards,

mice and game controllers. A malicious USB HID

device can perform operations without user’s

knowledge or intervention.

In order to illustrate the capability of malicious

USB devices, this paper describes an approach of

reprogramming the USB interface of an Arduino

Mega to act as an USB HID Keyboard.

The Arduino Mega is a development board based

around the ATmega2560 microcontroller running at

16MHz. It has 54 digital input/output pins (of which

15 can be used as PWM outputs), 16 analog inputs, 4

UARTs (hardware serial ports), a USB connection, a

power jack, an ICSP header, and a reset button.

In order to provide the USB interface for the

ATmega2560 microcontroller, the Arduino board

uses an auxiliary controller, the ATmega16U2, which

converts USB signals coming from the computer to

the first serial port of the ATmega2560. Similarly to

the Atmega2560, the ATmega16U2 is also an AVR

RISC-based microcontroller, but with USB

capabilities. It has 16KB of ISP flash memory and is

factory configured with a USB bootloader located in

the on-chip flash boot section of the controller to

support Device Firmware Upgrade (DFU).

DFU mode can be enabled by sending a special

USB stream to the controller. Once activated, it

allows In-System Programming from its USB

interface without any external programming device.

Therefore, by just connecting the Arduino to a host

computer, it is possible to reprogram the firmware of

the ATmega16U2 controller.

To create the malicious USB device mentioned,

the ATmega16U2 was reprogrammed with an USB

Keyboard firmware. This firmware allows the

ATmega16U2 to act as an HID Keyboard and send

keystrokes based on strings stored in the

ATmega16U2’s flash. The strings activate special

functions on the Operating System, and if carefully

designed, can cause great harm. The keystrokes are

sent so fast that each command is executed in less

than a second. The strings created to demonstrate the

device targets Windows machines, and by sending

key combinations it is able to open the Windows run

dialog and write a batch script to disk. It then executes

the batch script and finally opens notepad and writes

continuously: “You have been hacked!”.

This conceptual approach illustrates how easily an

USB device can be reprogrammed to execute

malicious code. Since the code is embedded into

device’s flash memory, the Operating System does

not recognize it as a threat. From the OS perspective,

it is extremely difficult to analyse and remove

malicious code embedded in a USB device.

There is not any simple solution to this. Any

protection attempt from the OS would basically

interfere with the usefulness of USB, which makes it

so popular. Apparently, the only working solution

would be to convince manufacturers to disable

firmware update at the factory, so that the device

cannot be reprogrammed.

4 CONCLUSIONS

This paper described in total eight different

approaches of hardware attacks targeting software.

Although the hardware and firmware modifications

demonstrated in this paper are very specific to each

device, they have proven very efficient against

software protections. After all, the software must trust

entirely in the hardware to perform its operations,

therefore, if the hardware has been tampered, it

becomes really challenging to regain control of the

system.

This paper also demonstrated how to create a

quick hardware attack by modifying the firmware of

an USB device via DFU. By completely replacing the

firmware of the USB device, it was possible to make

it behave as a HID keyboard and therefore send

malicious key strokes to the Operating System.

REFERENCES

Robert, J. and Chen, T. 2004. The Evolution of Viruses and

Worms. Statistics: A Series of Textbooks and

Monographs. (2004), 265-285.

Sparks S. et al. 2009. A chipset level network backdoor.

Proceedings of the 4th International Symposium on

Information, Computer, and Communications Security

- ASIACCS '09. (2009).

Zaddach, J. et al. 2013. Implementation and implications of

a stealth hard-drive backdoor. Proceedings of the 29th

Annual Computer Security Applications Conference on

- ACSAC '13. (2013).

Embleton, S. et al. 2008. SMM rootkits. Proceedings of the

4th international conference on Security and privacy in

communication networks - SecureComm '08. (2008).

Sang, F. et al. 2010. Exploiting an I/OMMU vulnerability.

2010 5th International Conference on Malicious and

Unwanted Software. (2010).

Wang, X. et al. 2012. Software exploitable hardware

Trojans in embedded processor. 2012 IEEE

International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFT).

(2012).

A. Cui. et al. 2013. When firmware modifications attack: A

case study of embedded exploitation. 2013 The

Hardware-based Cyber Threats

265

Network and Distributed System Security Symposium

(NDSS). (2013).

King, S. et al. 2008. Designing and implementing malicious

hardware. Proceedings of the 13th international

conference on Architectural support for programming

languages and operating systems. (2008).

Yarom, Y. et al. 2014. FLUSH+RELOAD: a High

Resolution, Low Noise, L3 Cache Side-Channel

Attack. Proceedings of the 23rd USENIX Security

Symposium. (2014), 719-732.

Universal Serial Bus, 2001. Device Class Definition for

Human Interface Devices v1.11. (2001).

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

266

