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Abstract: During the last decade, cyber-security experts have been trying to mitigate attacks against computer networks 

and software. After the internet, the proliferation of thousands of virus, worms and trojans became easier, 

which then required enhancements for Operating Systems, browsers and anti-virus software in order to keep 

their users safe. However, what happens when the threat comes from the hardware? The Operating System 

trusts entirely in the hardware to perform its operations. If the hardware has been taken, it becomes much 

harder to regain control of the system. This paper describes eight different approaches to hardware attacks 

against software. It also demonstrates how to perform an attack using a USB device patched to behave like a 

generic HID Input Device, in order to insert malicious code in the system. 

1 INTRODUCTION 

The first documented virus was written by Bob 

Thomas at BBN Technologies in 1971. The virus, 

known as Creeper Virus, was a self-replicating 

program which propelled itself between nodes of the 

ARPANET (Robert, 2004). Since then, the internet 

has created a fertile environment for worms and 

viruses that replicate themselves, potentially causing 

harm to the system and its users.  

In the effort of mitigating these threats, many 

software packages were created focusing in network 

defense and files contamination scanning. Defense 

programs received significant improvements during 

the last years, with the inclusion of different types of 

Intrusion Detection System (IDS) and other tools that 

can prevent the attack from happening.  

However, these software packages focus mostly 

in defending against outside attacks. In a continuous 

effort to become more persistent and avoid detection, 

malware infection is now shifting from software 

towards more low-level components. Internal 

malicious code can possible go undetected, because 

the monitoring software rely on the Operating System 

for data gathering, and once the machine’s hardware 

becomes compromised, it becomes easy to subvert 

the Operating System to deliver deceived data. There 

is a catastrophic loss of security when hardware is not 

trustworthy. 

The implication of malware written for hardware 

is that they are strictly dependent on the device 

architecture. Different devices may require major 

modifications in the code. 

2 HARDWARE MALWARE 

APPROACHES 

This section describes eight different approaches to 

subvert the system through hardware attacks. 

Although these are just some examples of different 

attack vectors, they all seem to be out of the scope of 

most, if not every, protection software available. 

2.1 A Chipset Level Backdoor 

The chipset is a set of specialized electronic 

components that manage data flow on a computer’s 

motherboard or on an expansion card (Sparks, 2009). 

Sparks et al. described a proof of concept chipset 

rootkit backdoor for the Intel 8255x Ethernet 

Controller. Since it lies in the Ethernet Controller 

chipset driver, it can send and receive malicious 

network packets without being identified by the 

security software installed on the host computer. 

The backdoor can remain invisible because it 

resides below the Operating System’s network 

interfaces. The two primary components of the 

network subsystem on Microsoft Windows are TDI 

(Transport Driver Interface) and NDIS (Network 

Driver Interface Specification). Both components are 
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also the most common target for malware and 

security software authors since they are the deepest 

layers in the Operating System for sending and 

receiving network packets. The rule is that the deepest 

one goes, the greater its power and stealth. Therefore, 

a malware that goes deeper and can interface directly 

with the hardware is capable of bypassing any 

malicious code detection running at an abstracted 

level above it. 

The proposed rootkit backdoor is a modified 

Windows kernel driver for the said Intel 8255x 

Ethernet Controller. The driver is the layer right 

below NDIS, responsible for bridging the 

communication between the physical network 

interface card and NDIS. 

The Intel 8255x chipset consists of basically 2 

primary components: The Command Unit (CU) and 

the Receive Unit (RU). In order to send a packet, a 

data structure containing the packet must be sent to 

the CU. Finally, the transmission is performed after 

sending a start command to the CU. On a normal 

operation, the network packet is built in the Windows 

network stack and delivered to the NIC (Network 

Interface Card) driver. However, the chipset 

backdoor bypasses the network stack and builds the 

entire malicious packet to be sent. Since it doesn’t 

rely on the Windows network stack to build the 

packet, it can’t be detected by security software 

neither by the Operating System. That is how data 

exfiltration can be achieved. 

The RU is responsible for handling incoming 

packets on the network. When a valid packet arrives, 

it informs the CPU by raising an interrupt. The 

interrupt is handled by the windows NDIS and the 

NIC driver. In order to bypass NDIS detection, the 

driver can redirect the interrupt to a different address 

where it can analyse the packet received and then, if 

appropriate, send the interruption back to the NDIS 

for a normal operation. 

By these means, a malware infected driver can 

manipulate network packets before the Operational 

System and therefore remain undetected. The authors 

of this proposal tested their solution against the 

Windows XP Firewall, Zone Alarm and Snort. None 

of them were capable of detecting the exfiltrated 

neither the infiltrated packets. 

 

2.2 Stealth Hard-Drive Backdoor 

As most hardware malwares, hard-drive backdoors 

are highly hardware dependent, and therefore requires 

customization for each targeted device. Zaddach 

claims that the hard-drive market has now shrunk to 

only three major manufacturers, with Seagate and 

Western Digital accounting for almost 90% of all 

drives manufactured (Zaddach, 2013). 

Most hard-drives are based on a custom System 

on Chip (SoC) design. The SoC usually has a 

microcontroller core with some RAM, ROM and 

Flash memory to store the firmware for the 

microcontroller. There is also a large DRAM memory 

that serves as cache for the hard-disk requests. The 

microcontroller is responsible for translating the data 

requests coming over the SATA (or SCSI) interface 

and storing them in cache memory. Specialized 

hardware (usually DSP or FPGA) that also has access 

to the data in cache, is responsible for physically 

reading or writing on the disk. 

 

Figure 1: Hard-drive firmware backdoor changing data on 

a write operation. 

An infected firmware can take advantage of the 

privileged position of the microcontroller and 

intentionally change data being read or write to the 

disk plates. Figure 1 shows the implementation done 

by Zaddach of a firmware backdoor that changes 

blocks to be written on the disk based on a magic 

number present in the block (Zaddach, 2013). Since 

the backdoor lies in the hard-drive firmware, the 

writing modification goes undetected by the 

Operating System. Data exfiltration is also possible 

since the modified firmware can also change the 

sector to be read from and therefore read data from 

anywhere in the disk. These techniques can be used 

to, for instance, modify the password hash for the root 

account written in the /etc/shadow file enabling a 

remote user to login with root privileges. This 

modification is persistent even after re-installing the 

Operating System. Also, the hash for the root user can 

be instead exfiltrated while a read operation is 

performed anywhere on the disk. 

The modified firmware doesn’t require physical 

access to the hard-drive to be deployed. A single local 

or remote access with root privilege is enough to re-

flash the hard-disk firmware using manufacturer’s 

firmware update mechanisms. This can even be done 

by a malware that temporarily infects the machine in 
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order to reprogram the hard-disk’s firmware and then 

remove itself from the system to remain undetected. 

2.3 Exploiting Intel Processor’s SMM 

Mode 

System Management Mode (SMM) is a relatively 

obscure mode present on Intel processors made for 

low-level hardware control and debug (Embleton, 

2008). In this mode all normal execution (including 

the Operating System) is suspended to give place for 

a special software that is executed with high 

privileges. According to Embleton, SMM code is 

completely non-preemptible, runs below the 

Operating System, and is immune to memory 

protection mechanisms (Embleton, 2008). 

A rootkit designed to run at the SMM mode is 

capable of intercepting and emulating low level 

system events without needing to modify any existing 

OS code or data structures. Embleton developed a 

proof of concept SMM rootkit that redirects keyboard 

Interrupt Requests (IRQ) to SMM mode by changing 

the Advanced Programmable Interrupt Controller 

(APIC) table in order to create a chipset-level 

keylogger. The logged keystrokes are then 

encapsulated into UDP packets and sent out via the 

chipset LAN interface. This is all accomplished 

without making any visible changes to the target 

Operating System. 

The SMM has a completely separate address 

space for executing programs called SMRAM. The 

contents of SMRAM are only visible to code 

executing in the SMM mode. In order to switch to 

SMM mode, the processor must receive a System 

Management Mode Interrupt (SMI). There are a 

variety of events that can trigger an SMI. Some of 

them are a power button press, real time clock (RTC) 

alarm, USB wake events, Advanced Configuration 

and Power Interface (ACPI) timer overflows, periodic 

timer expiration, and a write to the Advanced Power 

Management Control (APM) register, 0xB2. 

Upon receiving an SMI, the processor saves the 

current state into the SMRAM and start the execution 

of the SMI handler. Code running in the SMM mode 

is non-preemptible because the SMI has greater 

priority than all other interrupts, even non-maskable 

ones. In order to deliver the malware, its code must 

be copied to the SMRAM area. However, this might 

not be a straightforward task since this area is 

normally not visible in processor modes other than 

SMM. 

The System Management RAM Control Register 

(SMRAMC) can control SMRAM visibility. The two 

relevant bits in this register are the D_LCK bit and the 

D_OPEN bit. When D_OPEN is set, SMRAM can be 

visible to other processor modes. D_LCK controls the 

access to the SMRAMC. Therefore, when D_LCK is 

set, SMRAMC register becomes read-only until a 

reset occurs, preventing a program to change the 

value of the D_OPEN bit. If the D_LCK hasn’t been 

set by the BIOS or the Operating System, a kernel 

driver can be used to install the rootkit into the 

SMRAM area by setting the D_OPEN bit, copying 

the malware to SMRAM, clearing D_OPEN and then 

finally setting D_LCK to prevent further changes. 

Once installed, the rootkit subverts the I/O APIC 

interrupt table in order to redirect keyboard interrupts 

to the SMI handler. Therefore, every time a key is 

pressed, an SMI interrupt is triggered and the 

processor enters in SMM mode. Once in SMM mode, 

the malware logs the key into a buffer and then invoke 

the normal keyboard handler to address the key press 

as usual. When the buffer becomes full, the malware 

builds an UDP packet with all the data in the buffer 

and sends a Transmit Command Block (TCB) to the 

LAN controller in order to send the UDP packet out 

over the network. 

2.4 Exploiting I/O MMU Vulnerability 

All modern Operating Systems implements the 

concept of virtual memory, which is having each 

process running in a separate address space. This 

enables memory isolation, so that multiple processes 

running on the same machine can’t see each other 

address space. The Memory Management Unit 

(MMU) is a device responsible for making the 

address translation from virtual memory to physical 

memory. 

Devices connected to the bus usually don’t have 

memory virtualization. Instead, they all share the 

same address space and access physical memory 

using Direct Memory Access (DMA). DMA enables 

I/O controllers to transfer data directly to or from the 

main memory. This can become a great threat, since 

malicious devices can take advantage of this 

mechanism to tamper critical areas of memory such 

as the Operating System kernel. 

In order to increase security and enable device 

address space isolation, a special MMU for devices 

was created, called I/O MMU. Although an I/O MMU 

can separate device’s address space, it may also 

contain some vulnerabilities that can enable 

malicious code to have access to protected resources. 

Sang explores some vulnerabilities found in the Intel 

VT-d, which is Intel’s implementation of an I/O 

MMU (Sang, 2010). 
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Intel VT-d is composed of a set of DMA 

Remapping Hardware Units (DRHU). Figure 2 

illustrates how memory access originated from I/O 

controllers are remapped at the DRHU in order to 

access main memory. The DRHU can also verify 

whether the access is legitimate or not in order to 

either reject or forward the request. 

 

Figure 2: DMA Remapping Hardware Units. 

All DMA requests arriving at a DRHU contain a 

BDF-Id (Bus/Device/Function Identifier) reported by 

the device that originated the request. Based on the 

BFD-Id, the DRHU can remap the memory access to 

the correct region of the main memory. However, it 

cannot be sure that the identity reported by the 

controller in its access really corresponds to its BDF-

Id. Therefore, malicious devices still can access 

protected regions of the main memory by spoofing its 

BFD-Id. 

In order to provide the correct memory remapping 

for each I/O device, the DRHU relies on the DMAR 

ACPI table. This table is loaded and configured by the 

BIOS, before the Operating System is loaded. 

According to Sang, if an attacker manages to hide 

some DRHUs from the OS by modifying the DMAR 

ACPI table, some I/O controllers should be able to 

perform DMA requests freely: the DRHUs in charge 

of restricting their access are not configured by the 

Operating System (Sang, 2010). 

I/O MMU can still be a good security resource for 

malicious devices. However, these vulnerabilities, 

although hard to be addressed, can represent a threat 

once it enables malicious devices to still have access 

to the entire memory address space. 

 

 

2.5 Hardware Trojans in Embedded 

Processors 

Hardware Trojans are malicious modifications to the 

circuitry of an Integrated Circuit (IC) made by 

untrusted design houses or foundries. They are 

generally designed to leak secure information from 

inside the IC and to remain undetected during the post 

fabrication test phase. 

Figure 3 shows the hardware Trojan developed by 

Wang et al. for their implementation of the 8051 

microcontroller (Wang, 2012). In order to remain 

undetected during normal operation, hardware 

Trojans should be activated only in rare conditions. 

One type of hardware Trojan is the sequential 

Trojan, that only activates its payload after receiving 

a specific sequence of commands that is considered 

to be very rare to occur under normal circumstances. 

In general, the sequential Trojan can be triggered by 

three different conditions: specific sequence of 

instructions, specific sequence of data and 

combinations of sequences of instructions and data. 

 

Figure 3: Hardware Trojan infecting an 8051 

Microcontroller. 

In order to implement the sequential Trojan, 

Wang developed a state machine in the combinational 

logic for the 8051 microcontroller. Once all the 

sequence of commands is achieved, the payload is 

activated. The 8051 microcontroller was programmed 

to perform RC5 encryption. Therefore, with the 

Trojan activated, it starts to leak information about 

the encryption algorithm and the encryption key, and 

cause various system malfunctions.  

It was verified by Wang that the hardware 

overhead of the implemented Trojan was less than 

3.1% on the FPGA platform (Wang, 2012). Also, it is 

to be noted that hardware Trojans do not necessarily 

mean extra logic. The Trojan can be included by 

modifying the original design, creating even smaller 

overheads. 
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2.6 Printer Firmware Modification 

Firmware update is a ubiquitous feature found in 

modern embedded devices, and most of them don’t 

even require authentication to perform the update. 

Firmware modification attack aim to inject malware 

into the embedded device by modifying its firmware 

through a simple firmware update process. 

Cui et al. exploited a vulnerability in the HP 

Remote Firmware Update (RFU) (Cui, 2013). 

According to the authors, the update procedure is 

coupled with the printing subsystem. Therefore, in 

order to perform an update, the RFU file is printed to 

the target device via the raw-print protocol over 

standard channels like TCP/9100, LPD and USB. 

This means that it is possible to pack arbitrary 

executable code back into a legitimate RFU package 

in a Printer Job Language (PJL) command. This 

command can then be embedded into a malicious 

document to be printed by unwitting users in the form 

of, for example, a resume or an academic paper. 

Cui demonstrated a creation of a malware for the 

HP LaserJet P2055DN (Cui, 2013). By analysing an 

original RFU packet is was revealed that the binary 

payload was compressed. Therefore, it was necessary 

to dump the firmware straight from the printer’s flash 

memory in order to analyse it. Manual inspection of 

the printer’s primary control board revealed that the 

system is powered by a Marvell SoC with ARM 

architecture. The Marvell SoC uses the Spansion 

flash chip as a boot device. Analysis of the boot 

loader code revealed the binary structure and 

compression algorithm used in the RFU format. 

The firmware for the P2055DN is based on the 

VxWorks Operating System. The malware developed 

was basically a root kit that was embedded into the 

VxWorks image. According to the authors, the root 

kit was capable of: 

 Command and control via covert channel 

 Print job snooping and exfiltration 

 Autonomous and remote-controlled 

reconnaissance 

 Multiple device type infection and propagation 

to the Windows operating system and other 

embedded devices 

 Reverse IP tunnel 

With these information in place, it was possible to 

create a tool that would automatically generate a valid 

compressed PJL update packet from the 

uncompressed ARM ELF image of the infected 

firmware. 

Once the malware is delivered to the victim 

printer, the attacker can use it to gain access to the 

secured internal network by establishing a reverse IP 

tunnel through the printer. It can also be used for ARP 

cache poisoning and even to infect other printers and 

embedded systems connected to the network. 

2.7 Malicious Hardware That Enables 

Software Attacks 

Previous attempts were made to create hardware 

Trojans that would be hard-coded to the Integrated 

Circuit (IC) design in order to leak data. Although 

these Trojans are hard to detect, they are limited by 

operating at the hardware-level abstractions only, and 

by ignoring higher-levels of abstraction and system-

level aspects. Their malicious circuits are useful only 

for the specific purpose for which they were made. 

Therefore, if the higher-level data is not mapped to 

hardware in the way the Trojan is expecting for, it 

becomes hard or even impossible for it to be 

collected. 

While simple attacks, like stealing RSA 

encryption keys on a RSA encryption circuit are 

feasible to be done with hard-coded malicious 

circuits, it is unclear how to realize semantically 

richer attacks, like “execute the SQL query ‘DROP 

TABLE *;’” using this technique. 

For this reason, King et al. developed a malicious 

processor that enables software-based attacks (King, 

2008). They show that an attacker, rather than 

designing one specific attack in hardware, can instead 

design hardware to support software attacks. The 

malicious CPU consisted of the Leon3 processor 

(open source SPARC design) with two added 

mechanisms: one for memory access and another for 

invisible malicious code execution called shadow 

mode. 

The memory access mechanism gets triggered by 

a specific sequence of bytes on the data bus. Once 

activated, the mechanism disables the MMU privilege 

levels for memory accesses, thus granting 

unprivileged software access to all memory, 

including privileged memory regions like the 

operating system kernel. The authors wrote a program 

that performed privilege escalation by using the 

memory access mechanism. Once it was activated, 

the program searched the kernel memory for its own 

process structure and then changed its effective user 

ID to root, thus granting super user permission for 

itself. The memory access mechanism allows the 

attacker to violate directly OS assumptions about 

memory protection, giving him a powerful attack 

vector into the system. 
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Figure 4: Shadow Mode inside the Processor. 

The shadow mode is similar to Intel System 

Management Mode (SMM) because shadow mode 

instructions have full processor privilege and are 

invisible to software. Figure 4 illustrates how the 

shadow mode integrates into the processor. It gets 

activated by a predetermined bootstrap trigger, which 

is a set of conditions to tell the IMP to load some code 

(firmware) from nearby data and execute it in shadow 

mode. The attack can happen even remotely by, for 

instance, an UDP packet that has the bootstrap 

trigger. Even if the OS decides to drop the UDP 

packet, the mechanism is activated, because for the 

OS to drop a network packet it must first inspect it, 

and the act of inspecting the network packet gives the 

bootstrap mechanism sufficient opportunity to look 

for a trigger. Once the trigger is found, it silently loads 

data within the dropped network packet as a 

malicious firmware and runs that within shadow 

mode. 

2.8 Stealing Data with an L3 Cache 

Side Channel Attack 

In order to reduce the memory footprint of the system, 

modern operating systems implement the concept of 

shared pages. The shared pages are identical portions 

of memory among two or more processes. Usually the 

Operating System creates shared pages based on the 

location, which is the case for shared libraries. 

However, shared pages can also be created by 

actively searching and coalescing identical contents. 

This technique is called page deduplication. To 

enforce isolation, the OS sets the pages to be read 

only or copy-on-write. However, it doesn’t prevent 

some forms of inter-process interference.  

Once a shared page is touched, it gets copied to 

the processor’s cache. Therefore, a side channel 

attack technique can utilize this cache behavior to 

extract information on access to shared memory 

pages. The technique uses the processor’s clflush 

instruction to evict the monitored memory locations 

from the cache, and then tests whether the data in 

these locations is back in the cache after allowing the 

victim program to execute a small number of 

instructions.  

Based on this side channel attack, Yarom 

developed a new technique called Flush+Reload 

(Yarom, 2014). The idea behind it is to flush data out 

of the processor’s internal cache, so that it will be 

loaded at the L3 level cache. This enables side 

channel attacks between different cores, and even 

between different Virtual Machines (VM). 

Yarom demonstrated the use of the Flush+Reload 

algorithm by attacking the RSA implementation of 

GnuPG. The attack was tested in two different 

scenarios: same-OS, where both the victim and the 

attacker runs at the same OS, and cross-VM, where 

each application runs on a separate VM. 

The authors were able to extract 98.7% of the 

RSA key bits on average in the same-OS scenario and 

96.7% in the cross-VM scenario, with a worst case of 

95% and 90%, respectively. 

3 IMPLEMENTING A 

MALICIOUS USB DEVICE 

The USB standard was created in order to improve 

the connection of plug-and-play devices to PCs. Due 

to its ease of use, it became an instant success. 

The USB Flash Drive is one of the most used USB 

devices in the world. It consists of a flash memory 

with an integrated USB interface. Due to its 

widespread use, it also became a huge attack vector 

for malicious code. Many malwares were developed 

targeting the USB Flash Drive. These malwares are 

automatically deployed once the USB Flash Drive is 

inserted into the computer. After infection, the 

malware also copies itself to every USB Flash Drive 

that is inserted in the infected computer. In order to 

mitigate this type of attack, most anti-malware 

software prevent USB Mass Storage Devices to 

automatically execute code when inserted. 

However, there is another category of attack that 

can exploit USB devices and does not rely on 

malicious software stored inside a USB Flash Drive. 

The USB specification (Universal Serial Bus, 2001) 

declares a class of devices called Human Interface 

Devices (HID). A device that declares itself in this 

category and follow the HID specification, can be 

accepted and recognized immediately by the 

Operating System without the need for installing 
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drivers. That is the case, for example, of keyboards, 

mice and game controllers. A malicious USB HID 

device can perform operations without user’s 

knowledge or intervention. 

In order to illustrate the capability of malicious 

USB devices, this paper describes an approach of 

reprogramming the USB interface of an Arduino 

Mega to act as an USB HID Keyboard. 

The Arduino Mega is a development board based 

around the ATmega2560 microcontroller running at 

16MHz. It has 54 digital input/output pins (of which 

15 can be used as PWM outputs), 16 analog inputs, 4 

UARTs (hardware serial ports), a USB connection, a 

power jack, an ICSP header, and a reset button.  

In order to provide the USB interface for the 

ATmega2560 microcontroller, the Arduino board 

uses an auxiliary controller, the ATmega16U2, which 

converts USB signals coming from the computer to 

the first serial port of the ATmega2560. Similarly to 

the Atmega2560, the ATmega16U2 is also an AVR 

RISC-based microcontroller, but with USB 

capabilities. It has 16KB of ISP flash memory and is 

factory configured with a USB bootloader located in 

the on-chip flash boot section of the controller to 

support Device Firmware Upgrade (DFU). 

DFU mode can be enabled by sending a special 

USB stream to the controller. Once activated, it 

allows In-System Programming from its USB 

interface without any external programming device. 

Therefore, by just connecting the Arduino to a host 

computer, it is possible to reprogram the firmware of 

the ATmega16U2 controller. 

To create the malicious USB device mentioned, 

the ATmega16U2 was reprogrammed with an USB 

Keyboard firmware. This firmware allows the 

ATmega16U2 to act as an HID Keyboard and send 

keystrokes based on strings stored in the 

ATmega16U2’s flash. The strings activate special 

functions on the Operating System, and if carefully 

designed, can cause great harm. The keystrokes are 

sent so fast that each command is executed in less 

than a second. The strings created to demonstrate the 

device targets Windows machines, and by sending 

key combinations it is able to open the Windows run 

dialog and write a batch script to disk. It then executes 

the batch script and finally opens notepad and writes 

continuously: “You have been hacked!”. 

This conceptual approach illustrates how easily an 

USB device can be reprogrammed to execute 

malicious code. Since the code is embedded into 

device’s flash memory, the Operating System does 

not recognize it as a threat. From the OS perspective, 

it is extremely difficult to analyse and remove 

malicious code embedded in a USB device.  

There is not any simple solution to this. Any 

protection attempt from the OS would basically 

interfere with the usefulness of USB, which makes it 

so popular. Apparently, the only working solution 

would be to convince manufacturers to disable 

firmware update at the factory, so that the device 

cannot be reprogrammed. 

4 CONCLUSIONS 

This paper described in total eight different 

approaches of hardware attacks targeting software. 

Although the hardware and firmware modifications 

demonstrated in this paper are very specific to each 

device, they have proven very efficient against 

software protections. After all, the software must trust 

entirely in the hardware to perform its operations, 

therefore, if the hardware has been tampered, it 

becomes really challenging to regain control of the 

system. 

This paper also demonstrated how to create a 

quick hardware attack by modifying the firmware of 

an USB device via DFU. By completely replacing the 

firmware of the USB device, it was possible to make 

it behave as a HID keyboard and therefore send 

malicious key strokes to the Operating System. 
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