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Abstract: This paper introduces a simple yet powerful algorithm for global human posture description based on 3D Point

Cloud data. The proposed algorithm preserves spatial contextual information about a 3D object in a video

sequence and can be used as an intermediate step in human-motion related Computer Vision applications

such as action recognition, gait analysis, human-computer interaction. The proposed descriptor captures a

point cloud structure by means of a modified 3D regular grid and a corresponding cells space occupancy

information. The performance of our method was evaluated on the task of posture recognition and automatic

action segmentation.

1 INTRODUCTION

3D pose estimation is a common task in Computer Vi-

sion applications. In the case of a rigid object, pose

estimation seeks to capture the appearance of an ob-

ject under certain viewing conditions. This task is

challenging for natural images due to the ambiguity

of an object representation in 2D, poor texture and va-

rying view-points. With the introduction of consumer

3D sensors, this problem has been revisited by rese-

archers developing a broad range of new descriptors.

They may be both handcrafted (Hinterstoisser et al.,

2012) or automatic (Wohlhart and Lepetit, 2015), and

capture information from both global and local scales.

Non-rigid object pose estimation is inherently

more complicated. A human body is an articulated

object, and its motion can be build up from rigid and

non-rigid motion parts. Articulated pose estimation

seeks to estimate the configuration of a human body

in a given image or video sequence. Recognition of

body postures is an important step towards the fully

automatic classification of human motion.

A canonical work on human posture estimation

using RGBD camera data is by Shotton et al. (Shot-

ton et al., 2013), which proposes a real-time algorithm

which segments a human body from a corresponding

depth map and locates skeleton joints. This algorithm

shows good results and its variations are widely used

today. However, it has certain limitations: in presence

of severe occlusions and noise, the positions of the

joints cannot be estimated correctly; it gives approxi-

mate joint positions and therefore coarse pose estima-

tion and is not able to capture very subtle variations

between postures. For this reason, joint-based posture

estimation methods, although simple and powerful,

will fail if the initial joints were estimated wrongly,

which gives the way to low-level attributes based met-

hods.

This paper proposes a simple yet effective descrip-

tor for pose recognition based directly on point cloud

data. The algorithm takes a holistic pose estima-

tion approach, capturing the slightest posture chan-

ges using accumulated point cloud features. Our des-

criptor is based on the space occupancy for cells of

a modified 3D regular grid, super-imposed on a point

cloud. It is translation, scale, and rotation invariant.

Originally, we aim at a descriptor which can be

used for a gait analysis. The proposed design should

be able to reliably detect different postures in human

gait, where the precision of skeleton data is not suf-

ficient (the Kinect reliability is evaluated by (Cippi-

telli et al., 2015) for the side and front (Mentiplay

et al., 2015) views). The second problem addressed

is the symmetry of the gait which should be evalua-

ted based on the point cloud data. However, resulting

descriptor is very general and can be used as an in-

termediate step in a great number of computer vision

applications such as action recognition, gait analysis,

smart homes, assessing the quality of sports actions,

human-computer interaction and others, where pos-

ture estimation is an essential intermediate step. This

work presents the descriptor in the context of action

recognition, and postures are estimated from frames

of video sequences from MSR Action3D database.
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The paper is organized as follows. Section II over-

views existing methods for human posture recogni-

tion. Section III introduces the descriptor and its pa-

rameters. Section IV describes the data used in ex-

periments proposed in section V. Section VI summa-

rizes the results, proposes possible applications and

outlines the future work.

2 RELATED WORK

Most methods for human pose estimation are ba-

sed on variations of a so called pictorial structu-

res model, which represents human body configura-

tion as a collection of connected rigid parts (Chen

and Yuille, 2014)(Jhuang et al., 2013)(Agarwal and

Triggs, 2006)(Pishchulin et al., 2013). To model an

articulation, parts of the structure are parameterized

by their spatial location and orientation.

Holistic approaches (Agarwal and Triggs,

2006)(Pishchulin et al., 2013)(Vieira et al., 2012)

and middle-part (Yang and Ramanan, 2011) based

methods form the other research direction in posture

recognition. Holistic approaches aim to directly

predict positions of body parts from image featu-

res without relying on an intermediate part-based

representation. Part-based approaches first detect

intermediate parts independently or with some

constraints on body joints spatial relations.

Recently researchers significantly advanced pos-

ture recognition from natural images with the increa-

sing popularity of machine learning based approaches

(Tompson et al., 2014)(Chéron et al., 2015)(Chen and

Ramanan, 2017). Cheron et al (Chéron et al., 2015)

proposed a new Pose-based Convolutional Neural

Network descriptor (P-CNN) for 2D action recogni-

tion. A pre-trained CNN learns the features corre-

sponding to 5 pre-selected body parts based on quan-

tized motion flow data for each frame. Chen and Ra-

manan (Chen and Ramanan, 2017) extend an estima-

ted 2D model, using a neural network, to 3D using a

simple Nearest Neighbor pose matching algorithm. A

good review on recent advances in 3D articulated pose

estimation is proposed by Sarafianos et al. (Sarafianos

et al., 2016). Posture recognition is a part of action re-

cognition, since actions can be modeled as a postures

evaluation in time. Recent works on action recogni-

tion are based on CNNs (Han et al., 2017)(Lan et al.,

2017) and learn the the features atomically, which le-

ads to state-of-the-art results on available datasets.

Despite the significant progress made, full-body

pose estimation from natural images remains a diffi-

cult and a largely unsolved problem due to numerous

difficulties in real-life applications: the many degrees

of freedom of the human body model, the variance in

appearance, the changes in viewpoints, and lastly, an

absence of data about an objects’ shape. 3D data give

a new important information which allows for impro-

ving posture recognition results. Depth-based pose

estimation can be categorized into two classes.

Generative approaches (Ye and Yang, 2014)(Ga-

napathi et al., 2012) use a geometric or probabilistic

human body model and estimate a pose by minimi-

zing the distance between the human model and the

input depth map. Human pose estimation is perfor-

med by optimizing the objective function for geome-

tric model fitting by the means of variants of itera-

tive closest point (Ganapathi et al., 2012) and graphi-

cal models (Li et al., 2014) or pictorial structures

(Charles and Everingham, 2011). A recent method by

Wang et al. (Wang et al., 2016) uses several hand-

crafted descriptors to recognize 5 distinct postures

from the data obtained by a Kinect camera. Their al-

gorithm is based on a simple 3D-2D projection met-

hod and the star skeleton technique. The final posture

descriptor is composed of skeleton feature points to-

gether with a center of gravity. A pre-trained Learned

Vector Quantization (LVQ) neural network is used for

classification.

Discriminative approaches (Shotton et al.,

2013)(Yub Jung et al., 2015) perform classification

on a pixel level and attempt to detect instances of

body parts. Shotton et al. (Shotton et al., 2013)

trained a random forest classifier for body part

segmentation from a single depth image and used

Mean Shift (Comaniciu and Meer, 2002) to estimate

joint locations. Chang et al. (Chang and Nam, 2013)

propose a fast random-forest-based human pose esti-

mation method, where classifier is applied directly to

pixels of the segmented human depth image. Jung et

al. (Yub Jung et al., 2015) used randomized regres-

sion trees and made their algorithm even faster by

estimating the relative direction to each joint to avoid

computationally demanding aggregating pixel-wise

tree evaluations. The obtained skeleton data can later

be used as the base for action recognition in videos

as in recent Log-COV-Net method (Cavazza et al.,

2017).

Most of the work on 3D pose estimation uses

a single depth camera. The most successful ex-

amples of single view pose estimation are (Shotton

et al., 2013)(Ye and Yang, 2014)(Yub Jung et al.,

2015)(Chang and Nam, 2013) and most of them use

randomized trees and shape context features for pixel-

wise classification which leads to real-time solutions.

Lately, multi-view depth image based posture re-

cognition approaches acquired the attention of re-

searchers (Shafaei and Little, 2016)(Peng and Luo,
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2016). The recent framework proposed by (Shafaei

and Little, 2016) uses several Kinect sensors and a

deep CNN architecture. Multi-view scenarios allow

to reconstruct 3D point clouds in the reference space.

The authors use curriculum learning (Bengio et al.,

2009) to train the system on purely synthetic data.

Curriculum learning modifies the order of the training

procedure, gradually increasing the complexity of the

instances, which hypothetically improves the conver-

gence speed and the quality of the final local minima.

It is clear that the currently prevailing strategy is

to use Machine Learning methods, specifically rand-

omized trees (Shotton et al., 2013)(Yub Jung et al.,

2015)(Tang et al., 2014), and a huge amount of

training data. Modern posture recognition methods

(Shotton et al., 2013)(Shafaei and Little, 2016) have

shown to be both effective and efficient in real-time

posture estimation. Similar, for the following action

recognition from videos, hand-crafted methods were

overshadowed by deep learning based methods (Lan

et al., 2017).

This work introduces a new descriptor that estima-

tes 3D human pose from a single point cloud. We are

not attempting to out perform machine-learning ba-

sed algorithms (Shotton et al., 2013)(Yub Jung et al.,

2015), but mostly propose a simple alternative, which

does not require a priori human body model. In con-

trast to (Wang et al., 2016), we do not use a des-

criptor for a given posture but aim to use a general

3D point cloud structure. Unlike other popular des-

criptors (Shotton et al., 2013)(Yub Jung et al., 2015)

which use depth image features, our descriptor is ba-

sed on a 3D structure and therefore can be used in a

multi-camera scenario.

3 DESCRIPTOR

We propose a handcrafted compact and discriminative

descriptor for a single point cloud. The most similar

descriptor to ours is the Space-Time Occupancy Pat-

terns method proposed by Vieira et al. (Vieira et al.,

2012) for the task of action recognition. Similar to

this work, we propose to divide the 3D space by a

regular grid and base our descriptor on spatial occu-

pancy information. However, in (Vieira et al., 2012)

researchers compute the final descriptor vector by re-

assigning weights based on cells where motion occur-

red. We are concentrated on a description of each sta-

tic frame in order to recognize the posture in it. Other

differences include the method of 3D space partitio-

ning and descriptor cell initialization. Our partitio-

ning is inspired by the 3D partitioning for human re-

cognition from 3D point clouds proposed in (Essma-

eel et al., 2016). Vieira et al. specifically design their

method for video sequences, taking the time dimen-

sion into account. We assume that every initial frame

posture is more important and temporal information

can be encoded later in the process depending on the

specific application. For the gait analysis and action

recognition, a Hidden Markov Model can be coupled

with a descriptor to capture the temporal information.

To construct our descriptor for each depth map vi-

deo frame, we perform the following steps. First, the

2D-3D transformation is done to obtain a point cloud

in 3D space from a depth map. We use a standard

equation for basic geometric transformations:

X = Z ∗ ( j− cx)

fx
; Y = Z ∗ (i− cy)

fy
; Z = z

(1)

where X, Y, Z are the point coordinates in 3D, j and i

are the pixel coordinates, and cx, cy, fx and fy are the

intrinsic matrix parameters obtained by a calibration

of the Kinect camera. Then the 3D spatial partitioning

is performed. The center of gravity in 3D is calculated

and projected to the ground plane:

C(X ,Y,Z) =
∑n

1 (X ,Y,Z)

n
(2)

where n is the total number of points in the point

cloud. A 3D cylinder of varying dimensions with a

base center in the computed centroid projection defi-

nes the space partitioning limits. The height and ra-

dius of the cylinder are varying to adjust for the height

Figure 1: 3D spatial partitioning in 12 sections. Projected
center of gravity is shown in red, fixed point view direction
is shown by a green arrow.
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Figure 2: Descriptor spatial partitioning: 3 circles, 8 sec-
tors, 3 sections. Projected center of gravity is shown in red.

of a person. The data about human body proportions

ratio is used. A height of a person is estimated, sim-

ply via the minimum and maximum value calculated

for the first static point cloud of a video sequence. To

have an equal grid for all frames of a video sequence,

the normal is fixed based on the viewing point. The

partitioning in sectors starts from the same position

for each video frame.

Figure 1 shows an example of 3D partitioning for

one of the frames from MSR3D dataset. The only pa-

rameters of the descriptor are the number of sections,

the number of sectors and the number of circles. An

visualization of the descriptor parameters is shown in

Figure 2. For this work, we use only a uniform space

subdividing scheme and the cylinder volume partitio-

ning is then performed as:

V = 2πRH (3)

rn =
R

nc
; hn =

H

nh

; sangle =
360

ns
(4)

where R and H are the fixed radius and height, rn,

hn and sangle are the circle and height intervals and the

angle corresponding to each sector.

The final descriptor is obtained by calculating the

number of points in each formed 3D cell i.e. the cell

occupancy. The descriptor is normalized by the total

number of points in the point cloud in order to com-

pensate for possible noise or shape differences.

The OpenNI Framework (Consortium et al., ) is

used by many 3D cameras and provides the user with

automatic body recognition and skeleton joints ex-

traction functionality. Therefore, we are not addres-

sing the task of background subtraction in our work

and assume that it is a prior step. For this paper, the

data from an RGBD camera, where the human is lo-

cated and the background is subtracted, were used to

test the proposed descriptor.

Our descriptor design allows it to be used in a

multiple camera views scenario to grant a more relia-

ble and accurate pose description. For example, such

partitioning was successfully employed earlier for hu-

man recognition from complete point clouds (Essma-

eel et al., 2016) based on histograms of normal orien-

tations.

4 TRAINING AND TESTING

DATA

MSR Action3D Dataset (Li et al., 2010) was selected

to perform the experiments and evaluate the proposed

descriptor. This is one of the most used RGBD hu-

man action-detection and recognition datasets. It is

also one of the first RGBD datasets capturing moti-

ons (dated 2010) and it contains a big amount of dif-

ferent actions performed by different persons. It con-

sists of 20 action types performed by 10 subjects 2 or

3 times. The actions are: high arm wave, horizontal

arm wave, hammer, hand catch, forward punch, high

throw, draw an x, draw tick, draw circle, hand clap,

two hand wave, side-boxing, bend, forward kick, side

kick, jogging, tennis swing, tennis serve, golf swing,

pick up & throw. The resolution of the video is not

very high, namely 320x240 and so is the frame rate,

namely 15 fps. The data was recorded with a depth

sensor similar to the Kinect device and contains color

and depth video sequences. The sequences are pre-

segmented for the background and foreground. An

example of superimposed point clouds corresponding

to 3 actions from MSR Action 3D dataset is shown

in Figure 3. Skeleton joints data are also provided

with a higher framerate than the depth maps. Ho-

wever, many joints are wrongly estimated, as can be

seen in Figure 4. For our experiments, we had to furt-

Figure 3: Three actions from MSR Action 3D dataset
shown as point clouds: high arm wave, horizontal wave,
golf swing.

her manually segment the dataset into key postures in

3D. There is no accurate database with full body hu-

man poses as depth maps publicly available, despite

several works where the features which represent the

posture are learned from real and synthetic examples

(Shotton et al., 2013)(Ganapathi et al., 2010), neither

the data nor the implementation of these methods are

available. Recently a new multi-kinect posture data-

set was published (Shafaei and Little, 2016), however,

this one is huge and is not dedicated to the global pose

estimation but body parts segmentation. Since we are

not using any deep learning and proposing a hand-

crafted descriptor, we considered that a well-known

and widely used MSR Action 3D will be sufficient to

perform the test and training to show the capabilities
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Figure 4: Examples of wrong skeleton estimation for MSR
3D dataset, actions ’High Arm Wave’, ’Horizontal Arm
Wave’, ’Hammer’. A person is always facing the camera
straight and his legs are not crossed.

Table 1: Postures selected from the MSR3D dataset.

Posture Training Test

1 Staying relaxed 160 54

2 Forward Kick 102 50

3 Hand lifted 45◦ 29 13

4 Right hand up 137 64

5 Right hand to the left 80 71

6 Clap 59 25

7 Hands wide open 35 13

8 Pick from the ground 33 34

9 Half bend 80 53

10 Full bend 65 69

11 Right leg kick 60 40

12 Right leg kick on side 49 34

13 Throw from the back 134 78

14 Right hand up 42 28

15 Both hands left half bend 62 30

16 Both hands to the left half bend 62 30

17 Both hands to the right half bend 88 37

18 Throw from the front 54 33

and limitations of our method. In this work, we are

aiming to perform a pose recognition without a skele-

ton aligning or human-body parts segmentation. The

number of sequences for each action in MSR Action

3D dataset is between 27 and 30. We separated the

data in a training and testing set, and selected bet-

ween 3 to 7 key poses for each action. For the posture

recognition test, 18 well distinguishable poses were

selected. The resulting dataset structure is explained

in Table 1. All the data acquired from person 3 were

excluded from the dataset because half of the depth

information was missing. Subjects 1-7 from the da-

taset are used for training and 8-10 for testing. The

resulting dataset is not very big but corresponds to

our goal to evaluate the descriptive capacities of the

proposed solution.

5 EXPERIMENTS

We perform 3 series of experiments: unsupervised

clustering of frames into k-postures in a video se-

quence, posture recognition in one action sequence

and posture recognition for a set of postures. The

average estimated time for the descriptor calculation

(with the 2D-3D transformation performed before-

hand) is 0.2 µs on a Intel C602 machine, which is

compatible to the time of the extraction of feature vec-

tors in (Wang et al., 2016).

5.1 Unsupervised K-means Clustering

A simplistic way to compare any two pose descriptors

is to calculate a Euclidean distance between them. At

first, we observed the dynamics of the distance chan-

ges on all the frames of a single video sequence from

the dataset. Figure 5 visualizes the distance compu-

tations for the sequence ’Horizontal Wave’ of MSR

Action 3D dataset. There are 5 distinctive postures in

this action. The result shows that there is a small dis-

tance between similar postures (i.e. consequent fra-

mes, frames in the beginning and the end of the se-

quence corresponding to the same ’neutral’ posture).

To exploit this trend further, a simple test with K-

means is performed, which shows that the descriptor

captures the posture difference well. Automatic key

positions were obtained by performing the K-means

clustering for 3 video sequences when one person is

performing an action 3 times. The optimal number of

basis K was estimated using the elbow method. Fi-

gure 6 shows the results of this experiment. Qualita-

tive visual analysis shows that automatically detected

poses correspond well with the 5 most different po-

ses in the action ’Horizontal Wave’ selected manu-

ally. These tests work well for each person perfor-

ming a single action multiple times, but the test for the

whole data gives worse results, probably due to the

fact that the neutral posture is dominant in the dataset

and people tend to perform similar actions differently.

Hence, we obtain more intermediate clusters which

do not correspond precisely to key-postures. Nevert-

heless, the obtained results are interesting enough to

continue the tests and try to evaluate complete posture

recognition based on the proposed descriptor.

Figure 5: Pairwise descriptor distance. The video sequence
starts and finishes by the same posture. The distance bet-
ween consequent frames is smaller and distinct ’key’ posi-
tions can be viewed as peaks of the graph.

3D Point Cloud Descriptor for Posture Recognition

165



Table 2: Classification results for 5 postures of the action
’Horizontal Wave’ show good results in terms of precision.

Posture initial arm 45◦ kick arm front left arm right

Precision 0.94 0.81 1 1 1

Recall 1 0.8 0.76 1 0.71

F-measure 0.97 0.82 0.86 1 0.83

5.2 Single Performance Action

A Support Vector Machine (SVM) classifier was trai-

ned, One vs All, in order to classify the postures, fol-

lowed by 3-fold cross validation.

Figure 6: a) Three video sequences are shown as a succes-
sion of cluster centers. In first sequence person is starts to
perform the action faster than in sequence 2 and 3; b) 5 key
postures of the action ’Horizontal Wave’ (selected manu-
ally); c) 5 clusters obtained automatically. Pixel values are
averaged: the darker the color is, the more is the occurrence.

The F-measure, recall and precision were used to

evaluate the performance of the classifier. The main

criteria for our task is precision, but we included re-

call and F-measure parameters in order to evaluate a

possibility to use the descriptor in a scenario where

accurate retrieval of all postures is essential.

The results for each posture recognition for the

action ’Horizontal Wave’ are summarized in Table 2.

Train and test data for this sequence were segmented

manually according to the scheme introduced in the

previous section. This simple test shows excellent re-

sults in terms of precision for all but one posture.

Figure 7: Confusion matrix for the SVM-based classifica-
tion shows good results for all postures but one.

5.3 Set Retrieval Performance

The test for a single action posture estimation shows

good results, hence we conducted an extended version

of this test containing a bigger number of various pos-

tures. A full test for 18 postures was performed with

an SVM. Feature vectors of the selected postures were

used for training and testing. Figure 7 shows the con-

fusion matrix for the classes obtained by the SVM.

The descriptor parameters (number of sections, cir-

cles and sectors) were tuned for the best performance.

We obtained the best results with 12 sections, 10 cir-

cles and 10 sectors, corresponding average precision

is 0.94. The parameter tuning is straight-forward and

shows that the different parameters combinations do

not have much of an effect on performance. The main

observation is that for postures selected the most im-

portant parameter is the number of sections which

helps to separate the volume by vertical planes. Diffe-

rent combinations of parameters can give slightly bet-

ter or worse results in terms of precision, recall and

F-measure. Corresponding curves obtained for diffe-

rent parameters are shown in Figure 8.

The results show good performance in terms of

precision which is excellent for simple postures. Our

results are comparable with the results of (Wang et al.,

2016) where authors are using only 5 distinct postu-

res: standing, sitting, stooping, kneeling and lying.

Of these, several postures are similar to ours, plus we

are aiming at more complex and varied postures. The

original dataset of (Wang et al., 2016) is not availa-

ble, but we also performed a test with just 3 very dif-

ferent postures and a similar amount of training and

testing data. As before, the training data and test

data are formed from different subjects. Our postu-

res are: staying, right-hand up, bending. The corre-

sponding numbers of training and testing images are:

384/125, 246/125, and 98/103. With this small da-

taset we obtain excellent results in term of precision

and recall, all the tests are assigned correctly. Our re-

sults and the results from (Wang et al., 2016) can not

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

166



Figure 8: Tuning of the parameters. Precision, recall and F-measure curves for a) the number of section varies, sectors and
circles fixed to 10; b) the number of sectors varies, sections and circles fixed to 10; the number of circles varies, sections and
sectors are fixed to 10.

be directly compared, but this test gives an idea about

the descriptor capabilities. Wang et al. test their pos-

ture recognition method on 80-100 depth images ta-

ken each for 8 persons. The recognition rate is also

very high, with some minor errors (for example, for

the first person the recognition rate is: 79/80, 99/100,

80/80, 80/80, 79/80). It should be mentioned, that

(Wang et al., 2016) uses same subjects for testing and

training, which is probably easier as we have shown

in our tests from the previous section.

6 CONCLUSIONS

This paper shows that body pose may be adequately

represented without joint estimation. The proposed

descriptor can be used exclusively, or as an advanta-

geous addition to tradition skeleton-joints estimation

methods.

The introduced descriptor works well for captu-

ring the 3D spatial arrangement of a point cloud struc-

ture. Experiments show that our method achieves

competitive results compared to current hand crafted

state of the art descriptors. Learned or trained des-

criptors may give superior performance but critically

depend on the availability of large amounts of labeled

data. Secondly, these architectures don’t generalize

outside their initial domain. Our algorithm is a sim-

ple and elegant solution, when joint information is not

available or unreliable.

Example applications include action recognition

and gait analysis. For the latter, the descriptor may be

deployed for cycle event or symmetry detection and

evaluation (Auvinet et al., 2015). Another possibility

is to be able to divide a video along the time axis using

posture information in the case of misalignment. De-

tected postures can be used to temporally align the

data or as key-words describing the action.

There are number of open issues. The descriptor is

noise sensitive, which becomes more apparent if part

of the depth data is missing. Secondly, the Euclidean

distance metric between two descriptor vectors cur-

rently excludes 3D spatial information. Semantically

different postures can thus result in descriptor vectors

that are near similar.

Future work will address these issues next to de-

veloping an application for real-time gait cycle event

recognition.
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