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Abstract: The focus of this work is detecting pedestrians, captured in a surveillance setting, and locating them in world

coordinates. Commonly adopted search strategies operate in the image plane to address the object detection

problem with machine learning, for example using scale-space pyramid with the sliding windows methodo-

logy or object proposals. In contrast, here a new search space is presented, which exploits camera calibration

information and geometric priors. The proposed search strategy will facilitate detectors to directly estimate

pedestrian presence in world coordinates of interest. Results are demonstrated on real world outdoor collected

data along a path in dim light conditions, with the goal to locate pedestrians in world coordinates. The pro-

posed search strategy indicate a mean error under 20 cm, while image plane search methods, with additional

processing adopted for localization, yielded around or above 30 cm in mean localization error. This while only

observing 3-4% of patches required by the image plane searches at the same task.

1 INTRODUCTION

Extracting relevant information from images is a key
goal in many camera based applications. For exam-
ple, pedestrian detection is one important and well-
studied area of research (Dollár et al., 2012). Despite
the extensive research on pedestrian detection, recent
papers still show significant improvements, sugges-
ting that a saturation point has not yet been reached
(Dollár et al., 2014; Zhang et al., 2016b; Zhang et al.,
2016a). These methods typically adopt a scale-space
pyramid with sliding windows search or are combi-
ned with object proposal methods (Cheng et al., 2014;
Zitnick and Dollár, 2014; van de Sande et al., 2011).
However, this endeavor of detecting pedestrians is
mainly focused on an image as the only input, and
output as coordinates in the image plane.

Research has been conducted that focused on fin-
ding world information as a post-processing step fol-
lowing image plane detection (Andriluka et al., 2010;
Xiang et al., 2014; Choy et al., 2015). While other
works have exploited more explicit world, or three di-
mensional, reasoning, but only as a means of speeding
up image plane search (Sudowe and Leibe, 2011; Be-
nenson et al., 2012). Note that these methods all uti-
lize an image plane search as a basis.

Other methods have exploited a more explicit

use of 3D information for detection. For example,
by prior camera calibration and geometric priors in
sports tracking (Carr et al., 2012) and car detection
(Nilsson and Ardö, 2014). However, those approa-
ches make use of foreground/background segmenta-
tion rather than utilizing machine learning.

A key observation here is that there is a gap be-
tween exploiting directly available 3D information
and machine learning, where state-of-the-art detec-
tors work only in the image plane. In this paper, a
core insight is that, with additional camera calibration
information and geometric priors, one can produce a
new search strategy, suitable for machine learning, to
directly address the 3D localization problem. Thus
what is proposed can be seen as a “glue” that ties 3D
information together with patch based machine lear-
ning tools. Or, to put this in another light, what is pro-
posed can be viewed as a specialized object proposal
method resulting in rotated rectangles. Note though,
that the “proposal part” here is directly formed using
camera calibration, geometric priors and a world sam-
pling grid. Furthermore, each object proposed has a
corresponding world coordinate location.

The paper is organized as follows. The following
section presents the real-world collected data and ca-
libration used for evaluations. Section 3 presents how
the framework proposed is formed from the image,
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camera calibration and geometric prior to a search
strategy resulting in patches that can be fed to a ma-
chine learning framework. Section 4 presents the ma-
chine learning used in the paper. Section 5 presents
experiments comparing image plane search methodo-
logies to the one proposed. Finally, conclusions are
made in Section 6.

2 DATA COLLECTION AND

CAMERA CALIBRATION

In an outdoor setup, using an Axis F41 camera with a
F1015 lens mounted on top of a lamppost, pedestrians
can be viewed on a piece of a path approximatively
four meters wide.

A requirement for the proposed methodology is
the existence of a calibrated camera. Note that the
focus of this paper is not that of the camera cali-
bration, it is on the design of search space utilizing
a calibrated camera that can be feed to a patch ba-
sed machine learning system. Due to the availability
of a high precision GPS, a Leica GX1230 GG, the
fixed camera could be calibrated with good results
by marking twelve world reference positions, mar-
ked by spraying the ground at positions on the side of
the path and measuring the world coordinates at each
point. The points were then manually positioned in
the camera image, see Fig. 1. Camera calibration was
then performed using Tsai calibration (Tsai, 1987).

In a general description, let Θ denote all the Tsai
calibration parameters, then a world point pworld =

[xw,yw,zw]
T

can be projected as

pimage = f (pworld ,Θ) (1)

where f is a vector valued function involving all the
world to image point operations in the Tsai method

(Tsai, 1987) and pimage = [x,y]T is the resulting image
point. Furthermore, if N points are stacked into a ma-
trix P of size 3×N then the operation f (P,Θ) is one
world to image mapping per column in P and the out-
put a matrix of size 2×N.

A dataset composed of ten images for each of
twelve persons when passing the camera results in
120 images. Each pedestrian had their feet location

Figure 1: World position of camera (white), field of view
(red) and calibration points (yellow) sprayed on the ground
and measured with high precision GPS.

annotated in world coordinates in each image. These
will be explored for experimentation of pedestrian lo-
calization in world coordinates. Note that the vie-
wpoint here is from a higher angle than usually ap-
pear in existing databases such as Caltech pedestrians
(Dollár et al., 2009; Dollár et al., 2012) and INRIA
pedestrians (Dalal and Triggs, 2005), where an eye le-
vel camera is typically applied, see examples in Fig. 2.

Figure 2: Examples of pedestrians from the outdoor scene.

3 IMAGE SEARCH STRATEGY

AROUND 3D MODELS

The proposed search strategy works by transforming
3D models, here a 3D box, in the world to a sam-
pling grid in the image plane. This sampling grid in
the image is a rotated rectangle since camera rotation,
roll in particular, as well as lens distortions produce
tilted pedestrians, making an axis aligned rectangle
less suitable. Furthermore, note that the method pre-
sented here can, in principle, be utilized with any 3D
model in general. A general overview of the process
for a given world point can be found in Fig. 3 and a
specific example can be found in Fig. 4. The specifics
for each step will follow.

With prior knowledge one can consider the pre-
sence of a pedestrian on several world coordinates of
interest, as we will see later, a grid on the path for ex-
ample, see Fig.6a. As will be seen later, such a grid,
which utilize prior knowledge and a camera calibra-
tion, can produce far fewer patches to explore compa-
red to a brute force image plane search. What follows
is the proposed processing pipeline to get a classifier
score from one such world point.

Given world coordinates for the feet of a pede-
strian, a box is calculated around it. In general, a box
of size width× depth× height is used to capture pe-
destrians in the world coordinate system. In this paper
a standard box is considered to be 0.5 × 0.5 × 1.8
meters. However, due to taller persons, and the
desire to capture some context, an enlarged box of
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Figure 3: Principle for getting a rotated rectangle given a 3D point, an image, the camera calibration and a 3D shape.

(a) Standard box, 0.5 × 0.5 ×
1.8 meter.

(b) Enlarged box, 1.0 × 1.0 ×
2.2 meter.

(c) Convex hull of points map-
ped to image plane.

(d) Minimum rotate rectangle
around the points.

(e) Sampling or rotated rec-
tangle. Sampled with 64× 128
points, here shown as 4× 8 for
clarity.

(f) Patch
sampled
on a
64 × 128
grid.

Figure 4: Steps a) to f) for creation of patches from a world coordinate box.

size 1.0× 1.0× 2.2 meters is employed. Thus, if a
detection is found from the larger box, then the stan-
dard one is considered as the output detection box,
see Fig. 4a and Fig. 4b for the different boxes. More

formally, let W, D and H denote width, depth and
height of the enlarged box, respectively. Then a ma-
trix containing eight vertices, one at each column, of
the box can be found as
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
 . (2)

The next step involves finding the corresponding
vertices in the image plane. Let

Q = f (P,Θ) (3)

contain the eight points in the image plane. These
points are now the main input towards finding a ro-
tated rectangle in the image plane. The way this ro-
tated rectangle is formed involves finding the mini-
mum rotated rectangle enclosing all the points. This
is achieved by first finding the convex hull and then
finding the smallest-area enclosing rectangle of a po-
lygon that has a side collinear with one of the edges
of this convex hull. This methodology is known as
the rotating calipers algorithm (Freeman and Shapira,
1975; Toussaint, 1983). See an example of finding the
convex hull from Q in Fig. 4c and from the convex
hull finding the minimum rotated rectangle in Fig. 4d.
The output from the rotating calipers algorithm is four
image points. To keep the order of these points in a
consistent manner, they are ordered following the pro-
cedure outlined in Algorithm. 1. This process enfor-
ces a top-left, top-right, bottom-left and bottom-right
ordering of the points. Note that the points of the ro-
tated rectangle can be outside the image at times, ex-
amples of this can be seen in Fig. 5b. The result, in

Algorithm 1: Order selection.

Input: A set of four image points. Wimage and Himage

being the width and height of the image, respecti-
vely.

Output: Four ordered image points
1: select point one as the one with minimum Eucli-

dian distance to the point [−Wimage,−Himage ]
T

from
the four points, remove this point from the set

2: select point two as the one with minimum Eucli-

dian distance to the point [2Wimage ,−Himage]
T

from
the three remaining points, remove this point from
the set

3: select point three as the one with minimum Eucli-

dian distance to the point [−Wimage,2Himage ]
T

from
the two remaining points, remove this point from
the set

4: select the last point as the one left in the set

form of four ordered points, are stored in columns of
a matrix

R =
[

p1 p2 p3 p4

]
=

[
x1 x2 x3 x4

y1 y2 y3 y4

]
.

(4)

The next step involves producing a sampling grid
matching a desired patch size. The four points in R,
and a given patch size formed by Swidth and Sheight ,
are now used to produce a sampling grid in the image
plane. This sampling grid is stored in matrix

S =
[

s1 s2 s3 . . . sSwidth·Sheight

]
(5)

of size 2×Swidth ·Sheight and the construction of it can
be found in Algorithm. 2.

Algorithm 2: Sampling rotated rectangle.

Input: p1, p2, p3 and p4 are the ordered points, see
Eq. (4). Chosen Swidth and Sheight being the desired
width and height of the patch, respectively.

Output: The matrix S containing Swidth · Sheight sam-
pling points in the image, see Eq. (5)

1: k = 0
2: C = (Swidth −1) (Sheight −1)
3: for i = 1,2, . . . ,Sheight do
4: for j = 1,2, . . . ,Swidth do

5: k = k+1
6: w1 = (Sheight − i)(Swidth − j)/C
7: w2 = (Sheight − i)( j−1)/C
8: w3 = (i−1) (Swidth − j)/C
9: w4 = (i−1) ( j−1)/C

10: sk = w1p1 +w2p2 +w3p3 +w4p4

11: end for
12: end for

Finally, the patch for classification is formed using
the sampling points S. Example of a resulting patch
can be found in Fig. 4f.

In the image view, boxes mapped from the world
may become too small or heavily cropped at image
borders to be useful. For this reason, three thresholds
are enforced allowing a rotated rectangle to be used
for processing only if it passes all three. The first and
second threshold are on the width and height in pixels
of the rotated rectangle, θwidth and θheight , respecti-
vely. Another feature to threshold is the ratio of the
sample points inside the image, denoted θratio. Choi-
ces of thresholds used in the paper can be found in
Table. 1. Examples of rejected boxes can be found in
Fig. 5b.

4 CLASSIFICATION OF PATCH

FROM ROTATED RECTANGLE

Given the possibility to produce patches from a gi-
ven world position described in the previous section,
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it is now possible for produce training and test data for
machine learning tools. In the dataset collected there
are twelve unique individuals, each contributing with
ten samples resulting in 120 tagged samples. Each
sample contains only one single pedestrian in a given
frame. Since only one pedestrian is visible in a gi-
ven scene, both positive and negatives samples can be
created with the following process: around the point,
eight samples for the radii 5 cm and 10 cm, are col-
lected, resulting in 17 positive patches for one tag-
ging. For an initial negative sample set the radius of
40, 80 and 120 centimeters are used to collect eight
samples for each, resulting in 24 negative patch sam-
ples. Hence, with this type of jittering one get 17 po-
sitive and 24 negative samples per annotated frame.
The negative set will later be bootstrapped on images
containing no pedestrians. All patches created here
from a point in world coordinates are of size 64×128
from the grid in the rotated rectangle following propo-
sed procedure, see Fig. 3 and Fig. 4. Note that there
might be negative samples containing pedestrians to
some degree using this approach, but those are not
properly positioned to yield a good world localiza-
tion, see Fig. 5a.

This collection of patches, as described above, can
now be fed to basically any machine learning tool at
one’s disposal. For example, HOG-SVM (Dalal and
Triggs, 2005), ACF (Dollár et al., 2014), HSC (Ren
and Ramanan, 2013), Roerei (Benenson et al., 2013),
VGG-16 (Simonyan and Zisserman, 2014) and vari-
ous others (Zhang et al., 2016b). Note that the focus
of this paper is not that of the the specific machine le-
arning tools used, it is on the design of search space
utilizing a calibrated camera that can be feed to a pa-
tch based machine learning system. Thus, while in-
teresting, it is out of the scope of this paper to ex-
plore various methods for this task. Rather, the aim is
to indicate the usefulness of the search strategy pro-
posed. For this reason, a single method, inspired by
HSC (Ren and Ramanan, 2013), employing a sparse
coding and logistic regression framework is adop-
ted. In particular, a sparse coding, with ability to in-
corporate supervised information (Nilsson, 2016), is
used to build a discriminative dictionary from all non-
overlapping 8×8 patches from all samples. This was
done by forming a discriminate matrix with K = 32
atoms, where eight atoms was allocated for positive,
16 for negative and eight as a do-not-care region. For
more in-depth details on this discriminative dictionary
learning, the reader is referred to the work by Nilsson
(Nilsson, 2016). Then, using this dictionary, codes
are extracted from all training samples and feed to lo-
gistic regression with elastic net regularization (Nils-
son, 2014).

In this setup a twelve-fold cross validation is used,
implying that all samples from one person is left out
in training and evaluated in a full search. During de-
tection this full search is composed of a sampling grid
produced with ten centimeter distances between the
points on the path of interest, this resulting in 7047
patches to evaluate after rejecting rotated rectangles
with θwidth = 32, θheight = 64 and θratio = 0.9. Ex-
amples of rejected boxes with these thresholds can be
found in Fig. 5b.

In image plane searches the Intersection over
Union (IoU) is a commonly adopted measure in a
Non-Maximum Suppression (NMS) method to prune
detections. The results produced here can utilize the
classifier scores on the grid in world coordinates, and
could benefit from this knowledge. Hence, a World
NMS (WNMS) is introduced instead. This WNMS
is using Euclidian distance between points, in meters,
and a threshold on this distance as a measure to decide
overlap. In general, this WNMS have three parame-
ters γdet , γradius and γcount where γdet is the classifier
threshold for detection, γradius the radius in meters to
define overlap and γcount is the number of detections
that are pruned into the maximum one. In all exam-
ples in this paper γdet = 0.5 (on the logistic regres-
sion output), γradius = 0.5 and γcount = 3. An exam-
ple of detection scores and the final WNMS output vs
ground truth can be found in Fig. 6.

5 EXPERIMENTS

The experiments focus on investigating the world lo-
calization of pedestrians. First, baselines are formed
by utilizing image plane searches. The goal is to see
how far one can come by first running an image plane
detector and then, as a second step, aim to find the
world coordinates. Then the proposed sampling stra-
tegy is investigated. Finally, a comparison between
the baselines and the proposed method is performed.

The core parameters introduced throughout the
paper has been stated and described previously. A
summary of them can be found in Table. 1, these va-
lues are used throughout the paper.

5.1 Image Plane Localization Baselines

5.1.1 Image Plane Detection

As a first step, an image plane scanning is perfor-
med. Three different methods are adopted as baseli-
nes. First, the same sparse coding and logistic regres-
sion framework, using twelve-fold cross validation,
adopted for the proposed methods is used here. The
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(a) One positive sample out of the 17 shown as red, and eight
negative out of the 24 shown as yellow. Note that some ne-
gatives contain the pedestrian but are not aligned for proper
localization.

(b) Examples of ignored boxes due to thresholds.

Figure 5: Positive and negative samples and examples of ignored boxes.

(a) Sampling grid and classifier scores. Yellow indicates low
scores and red high scores.

(b) Final detection after WNMS.

Figure 6: From scores on the grid in the ground-plane to detction box after WNMS.

Table 1: Parameter choices.

parameter Swidth Sheight θwidth θheight θratio γdet γradius γcount

value 64 128 32 64 0.9 0.5 0.5 3

difference is that axis aligned patches, formed from
the same points that were used for rotated boxes in the
proposed method, are used for training and a scale-
space and sliding window search is adopted instead.
This method used scaling 1.25 in the scale space and
jumped three pixels, resulting in 187769 patches to
evaluate. This method is denoted SCLR2D and resul-
ted in 112 true positives and 30 false positives on the
120 images. A true positive was indicated if the Inter-
section over Union (IoU) with a ground truth boun-
ding box was over 0.65.

In addition, the Aggregated Channel Features
(ACF) method (Dollár et al., 2014) is employed on the
120 images containing one pedestrian each. Using an
ACF detector trained on the INRIA database (Dalal
and Triggs, 2005) resulted in 113 true positives and
64 false positives. The ACF, trained on the Caltech

dataset (Dollár et al., 2009; Dollár et al., 2012), resul-
ted in 97 true positives and ten false positives.

5.1.2 Image Plane Detection Box to World

Coordinates

Note that the goal here is to do localization in world
coordinates using the calibration. Therefore, conver-
sion from the image plane detection box to world
coordinates is required as a second step for image
plane searches. A method positioning a fixed point
in a normalized box in the image plane (width and
height equal to one and top left position at (0, 0))
was employed. For a given bounding box this fixed
point, in normalized coordinates, is then mapped back
to the detected bounding box, resulting in a point in
the image. This point is then transformed to world
coordinates at the ground plane using the camera cali-
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(a) Box-Whisker plots of the localization errors.
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(b) Parzen window density estimation of localization er-
rors with bandwidth of 0.05.

Figure 7: Evaluation metrics on localization. Best viewed in color.

bration. In order to decide this fixed point in the nor-
malized box, an optimization finding the best mean
localization error in the world from all the detections
was performed. Note that this is a optimistic loca-
lization done here, since the point in the normalized
box is found on the same boxes as it is evaluated on.
Nevertheless, this resulted in world localization errors
for the ACF INRIA, ACF Caltech detector and locali-
zation baselines.

5.2 Direct Localization using Sampling

Strategy

Here the world localization employing the propo-
sed search strategy is employed. Hence, a resulting
hypothesis for each of the points in a sampled grid,
with ten centimeter distances, in the world coordi-
nates are produced and detections follows the World
NMS (WNMS), see Fig. 6. This detector resulted in
103 true positives and 11 false positives. A positive
was considered to be a detection point located within
a radius of two meters from the manual annotation.
This choice of 2 m was to match some of the errors re-
ceived using the baselines with an IoU choice of 0.65
in the image plane as detection choice, and could in
practice been lower. More importantly, this localiza-
tion was achieved by exploring only 7047 patches due
to the exploitation of the camera calibration and prior
knowledge. This to compare to 312977 patches ex-
plored by the ACF methods and 187769 patches by
SCLR2D using only the image.

5.3 Comparisions

A set of 74 detections, those detections that all were
detected by all three methods, were used for localiza-
tion evaluation. The results gave mean error of 19.9

cm for the proposed method, 30.5 cm for ACF trained
on Caltech, 29.4 cm for ACF trained on INRIA and
36.3 cm for SCLR2D. For a more detailed study of
the statistics of the errors in meters, the Box-Whisker
plot (Tukey, 1977) and density estimation using a Par-
zen window (Parzen, 1962) can be found in Fig. 7a
and Fig. 7b, respectively. Note that the method pro-
posed has far fewer outliers, in form of errors over 0.5
m. The main takeaways from these experiments and
the proposed search space are:

• With a given camera calibration, it is possible to
design a search space with no need for additional
processing for world localization.

• The number of patches needed to be explored can
be far fewer compared to image plane search.

• The localization accuracy can actually benefit in
the process.

6 CONCLUSIONS

A search strategy producing a rotated rectangle from
a camera calibration and prior 3D shape has been pro-
posed and investigated. By exploiting camera calibra-
tion information it has been shown that the sampling
method can be used to facilitate machine learning that
can directly produce classification scores in world lo-
cations of interest. This approach lead to accurate lo-
calization of pedestrians in world coordinates with a
mean error of 19.9 cm, while three image plane de-
tectors, adopted for the localization task, resulted in
mean errors of 29.4 cm, 30.5 cm and 36.3 cm. This
while only observing less than 3-4% of patches nee-
ded in the image plane search. Future work involves
exploring the methodology proposed on more views,
more crowded scenarios, investigating various other
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machine learning methods for the task and applying
the method on other objects.
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