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Abstract: Measuring complexity of processes or systems is currently a very popular topic. There is a wide range of 
defined complexity measures that quantify features such as legibility, modifiability, uncertainty, 
comprehensibility, easiness of implementation, user-friendliness and many others. The content of this work 
is a presentation of a method for quantification of complexity using Shannon entropy and stochastic Petri 
nets. Shannon entropy and Petri nets are an appropriate combination because they allow analysing the 
complexity of processes not only in terms of their structure but also in terms of their dynamic development 
under tension. On a simple example are outlined possible analyses and the correlation analysis examines the 
comparability with other selected complexity measures. 

1 INTRODUCTION 

Growth in the complexity of Information and 
Communication Technologies (ICTs) is one of the 
greatest challenges today. Today, ICT is not only an 
integral part of all major corporations and 
institutions but also influences the everyday life of 
modern people in many ways.  
In the area of IT management, complicated systems 
bring on the advantage of being able to support all 
process variants, and to meet the demanding 
requirements of customers or users while giving the 
company a competitive edge on the market. On the 
other hand, it is penalised by higher acquisition costs, 
higher maintenance expenses, changes and interfaces 
with other systems. Therefore, it is important that the 
information system is sophisticated (complex) enough 
that it can efficiently cover the maximum of 
enterprise requirements, but at the same time, it must 
not contain complexity beyond these requirements. 
Problems associated with quantification of complex 
variables (e.g., user-friendliness, comprehensibility, 
etc.) are mostly solved through a certain form of a 
statistical survey among users. However, this 
solution is time and cost consuming, and in many 
cases, it is based on a subjective assessment of a 
representative sample of the population. This paper 
aims to specify a method for quantifying the 

complexity of process models, i.e., the processes 
themselves. The degree of complexity is, in a 
number of cases, defined to assess the quality of user 
interactions with the system/process that reflect 
features such as clarity, usability, user friendliness, 
predictability, uncertainty, modifiability, etc. The 
suitability of using complexity measures to assess 
user-friendliness confirms methods that allow their 
theoretical validation (Weyuker, 1988). 
Ergonomics and the structure of the user interface 
play a significant role in the efficiency of work. The 
system builder usually does not give the user-
friendliness enough weight. For example, if a user 
needs 6 mouse clicks instead of two to perform a 
certain activity, his productivity will deteriorate 
significantly in the long run. In the case of scarcely 
used applications, this does not usually play a role, 
but if it is an application that for example ten people 
in an enterprise work with eight hours a day, it 
means tripling their work. Effects on efficiency are 
obvious. It is, therefore, necessary to manage the 
complexity of information systems, as otherwise 
costs and risks increase and the efficiency is 
reduced. Complexity in information systems is 
difficult to reduce. Therefore, the main objective is 
not to allow a process/system to increase its optimal 
complexity, both during design and development of 
the information system and during its operation and 
maintenance. The optimal complexity of the 
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information system is the lowest possible complexity. 
Complexity can be also analysed, for example, within 
system integration (Jirava and Toseafa, 2016) or 
social network analysis (Panus, 2016). 

2 MEASURES OF COMPLEXITY 

Analysing complexity at all stages of process 
lifecycle development helps to avoid the 
disadvantages associated with high complexity. 
Currently, organizations have not accepted 
complexity metrics as part of their process 
management projects. As a result, simple processes 
can be designed unnecessarily complex. Using 
Complexity analysis helps design and implement 
processes and workflows that are more simple, 
reliable, and robust. In-depth analysis is needed to 
correct defects in high complexity process parts. 
Three questions are often asked when measuring the 
complexity of a process (Lloyd, 2001): 

How difficult is the process to describe? 
How difficult is the process to create? 
What is the level of organization? 

According to (Lloyd, 2001), complexity 
measurements can be grouped into the following 
categories depending on which question they are 
dealing with: 

Difficulty of description, typically measured in 
bits, including Information and Entropy 
(Shannon, 1948), Algorithmic Information 
Content (Zurek, 1990), Minimum Description 
Length (Rissanen, 1978), Fisher information 
(Lehmann and Casella, 2006), Renyi entropy 
(Renyi, 1960), Code Length (Huffman, 1952), 
Chernoff information (Chernoff, 1972, Nielsen, 
2011), Lempel-Ziv complexity (Lempel and 
Ziv, 1976), Dimension and Fractal Dimension 
(Mandelbrot and Hudson, 2004); 

Difficulty of creation, working with time, 
currency, or energy, such as Computational 
Complexity (Arora and Barak, 2009), Time 
Computational Complexity, Spatial 
Computational Complexity, Information-based 
Complexity (Traub et al., 1988), Logical Depth 
(Bennett, 1995), Thermodynamic Depth (Lloyd 
and Pagels, 1988), Cost and Crypticity 
(Mahoney et al., 2011); 

The degree of organization that can be divided 
into the difficulty of describing the 
organizational structure and the amount of 

information divided into the parts of the system. 
This category includes, for example, Metric 
Entropy (Lorentz, 1966), Stochastic Complexity 
(Rissanen, 1996), Sophistication (Mota et al., 
2013), Effective Complexity (Gell�Mann and 
Lloyd, 1996), True Complexity, Ideal 
Complexity, Hierarchical Complexity 
(Commons et al., 1998), Schema length, 
Grammar complexity, Mutual Information 
(Shannon, 1948). 

Measurement has a long tradition and is a basic 
discipline in any type of engineering. Engineers 
must be experienced in estimating and valuing, 
which means understanding the activities and risks 
associated with process development, forecasting 
and managing activities, risk management, reliable 
delivery and proactive management to avoid a crisis.  
One of the most sophisticated methodologies to 
analyse the complexity of business processes has 
been developed by Cardoso (Cardoso, 2008), which 
identifies four main views of complexity levels, 
namely complexity of activities, control-flow 
complexity, data-flow complexity and complexity of 
resources.  
Another, widely used complexity measure is 
McCabe’s Cyclomatic Complexity (MCC) 
(McCabe, 1976). Since its development, it has been 
one of the most promising software metrics. The 
resulting empirical knowledge base has enabled 
software developers to calibrate their own software 
measurements and gain some understanding of its 
complexity. Software metrics are often used to 
obtain a quantitative expression of program 
complexity. They cannot be confused with the 
complexity of algorithms that aim to compare the 
performance of the algorithm. It has been found that 
software metrics are useful in reducing software 
maintenance costs by assigning a numeric value that 
reflects the easiness or difficulty of with which the 
program module can be understood. 
Finally, we can mention the entropy-based measure 
of complexity (Jung et al., 2011). However, the 
entropy is calculated only from the model structure 
and ignores its dynamic component. 

3 ENTROPY-BASED MEASURE 
OF COMPLEXITY IN 
STOCHASTIC PETRI NETS 

The Petri nets are a suitable tool for modelling and 
analysing discrete event dynamic systems that are 
characterised by concurrency, parallel processing, 



 

synchronization, or non-determinism. Their main 
advantage is the ability to accurately verify 
assumptions imposed on the model. Since the 1960s, 
when Petri nets were defined by Carl Adam Petri 
(Petri, 1962), their development has evolved in a 
number of directions. One way was to extend the 
original definition of new elements, the example of 
which is the stochastic Petri nets. 

Stochastic Petri Nets (SPN) are predominantly 
used for performance analyses (Ajmone Marsan, 
1990). Problems associated with stochastic 
processes in connection with Petri nets include, for 
example (Ciardo et al., 1994, Haas, 2002) 

A Stochastic Petri net (Molloy, 1981) is a 7-
tuple, ܵܲܰ	 = 	 (ܲ, ܶ, ,ܨ Λ,ܹ,  :where	଴)ܯ,ܥ

• ܲ	 = 	 ,ଵ݌	} ,ଶ݌ ,,ଷ݌ … ,  ௠} – a finite set of݌
places, 

• ܶ	 = 	 ,ଵݐ} ,ଶݐ ,ଷݐ … ,  – a finite set of	௡}ݐ
transitions, 

• ܲ	 ∩ 	ܶ	 = 	∅ – places and transitions form 
disjoint sets, 

	ܨ • ⊆ 	 (ܲ	 ⨯ 	ܶ) 	∪ 	(ܶ	 ⨯ 	ܲ) – a set of 
edges, defined as a subset of all possible 
connections, 

• Λ: ܶ	 → 	ܴା – a parameter of exponential 
distribution for transitions, 

	ܨ:ܹ • → 	 ଵܰ – a weighting function that 
defines the multiplicity of edges, 

:ܥ • ܲ	 → 	 ଵܰ – capacity of places, 

:଴ܯ • ܲ	 → 	 ଴ܰ – an initial marking. 

Entropy of a Stochastic Petri net 
Let ܵܲܰ	 = 	 (ܲ, ܶ, ,ܨ Λ,ܹ,  ଴) is a Stochasticܯ,ܥ

Petri net, ܴ(ܯ଴) is the set of all reachable markings 
and ߟ	is a vector of steady-state probabilities	ߟ௜ =Pr(ܯ௜) ௜ܯ, ∈  :Entropy of ܲܰ is defined as .(଴ܯ)ܴ

(ܰܲܵ)ܪ = − ෍ ௜logଶߟ |௜|ோ(ெబ)ߟ
௜ୀଵ  

4 EXAMPLE OF A SIMPLE 
MODEL AND COMPARISON 
TO OTHER MEASURES 

The presented method for quantification of entropy 
in stochastic Petri nets is, in this section, illustrated 
with a sample example. In addition, a comparison 
will be made with selected alternative measures of 
complexity. 

Figure 1 represents a process model consisting of 
5 places and 5 transitions. The model can represent 
any process, for example, the business process, 
workflow, software process, etc. 

 

Figure 1: Petri net example. 

The entropy of this example is equal to 1.9219. 
For comparison, the MCC is equal to 5 and 
Cardoso’s Control-Flow Complexity (CFC) measure 
equals 2. The advantage of this measure is the ability 
to analyse the complexity change with increasing 
tension (number of tokens) of the process under 
investigation. Figure 2 illustrates the increasing 
entropy with an increasing number of tokens at the 
place P1. 

 

Figure 2: Entropy development with different number of 
tokens at P1. 

Moreover, the calculation of entropy in the Petri 
nets allows quantification of the upper limit of 
complexity, which is equal to the maximum entropy. 
Figure 3 shows the values of entropy divided by the 
maximum entropy, which we denote the uncertainty 
index. It can be seen from the figure that with the 
increasing number of tokens at P1, the index 
approaches one, i.e., with the increasing number of 
tokens the process approaches its maximum entropy. 
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Figure 3: Uncertainty index development with different 
number of tokens at P1. 

Since other complexities do not allow the 
process to be analysed under tension, the 
comparison of selected methods is performed 
without consideration of tokens. Table 1. illustrates 
the results of the correlation analysis of selected 
complexity computation methods, namely the 
entropy in SPN, MCC, Entropy-Based Uncertainty 
(EBU) measure and Cardoso’s CFC measure. 

Table 1: Correlations. 

 Entropy MCC EBU CFC

Entropy Pearson 
Correlation 

1 ,844** ,877** ,914**

Sig. (2-tailed)  ,008 ,004 ,001 

N 8 8 8 8 

MCC Pearson 
Correlation 

,844** 1 ,862** ,780*

Sig. (2-tailed) ,008  ,006 ,022 

N 8 8 8 8 

EBU Pearson 
Correlation 

,877** ,862** 1 ,724*

Sig. (2-tailed) ,004 ,006  ,042 

N 8 8 8 8 

CFC Pearson 
Correlation 

,914** ,780* ,724* 1 

Sig. (2-tailed) ,001 ,022 ,042  

N 8 8 8 8 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

The results show a significant dependency between 
all selected.  

5 DISCUSSION 

Measurement of complexity in dynamic systems is a 
growing topic that is rapidly evolving mainly in 
economics and informatics. Quantification of 
complexity aims to better understand and tailor 
(optimize) the development or design of systems or 
processes in the sense of user interaction. The use of 
information technology is still expanding (e.g., the 
Internet of Things) and therefore it is necessary to 
take into account the complexity of user interfaces 
and processes, i.e. to make the user interface as 
simple as possible and to make the important 
processes intuitive and transparent (predictable). 

In this work was presented the approach of 
quantification of the complexity of any process 
modelled in Petri nets. Most existing approaches 
(Lloyd, 2001, Jung et al., 2011, Cardoso, 2008, 
Vanderfeesten et al., 2008) for complexity 
measurements only work with the structure of the 
process, i.e., it is a simple formula that calculates the 
occurrence of certain structures. Petri nets, however, 
uses tokens to represent dynamic processes and thus 
extend the static structure of the process. 
Quantification of entropy in Petri nets allows us to 
interpret both the structure and the dynamics of the 
behaviour of the process and thus greatly enhances 
the predictive ability of complexity as the implicit 
property of any system. On the simple example, a 
comparison of selected complexity measure with 
entropy was made and it is obvious from the 
conclusion that they are comparable. The case study 
outlined the possible analyses that can be 
implemented by entropy in the process. One of the 
useful analyses is the exploration of the complexity 
of the process with increasing process tension 
(increasing number of tokens in the initial marking). 
This type of analysis allows, for example, revealing 
critical process values (occurrence of phase 
transitions) or total scalability of robustness. 
Another type of analysis is, for example, sensitivity 
analysis, i.e., monitoring the development of 
complexity when changing any process parameter. 
In stochastic Petri nets, sensitivity analysis is mainly 
coupled with testing of various lambda parameters at 
transitions. Measurement of complexity is mainly a 
tool for decision support, i.e., among functionally 
equivalent solutions, the decision maker choose the 
one with the lowest entropy. 

Advantages of this approach 

• Universal approach for measuring the 
complexity of processes that can be 
modelled using stochastic Petri nets. 
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• The possibility of using the verification 
features of Petri nets such as liveness, 
boundedness, reachability etc. 

• The possibility to set specific 
probabilities (exponential distribution) 
for branching in the model. 

Disadvantages of this approach 

• Fundamental shortcomings of Petri nets 
in general, i.e., state explosion, 
restrictions based on definitions, etc. 

6 CONCLUSION AND FUTURE 
WORK 

In this paper, an approach to quantification of 
complexity in Petri nets was defined using the 
Shannon entropy. Based on the comparison with the 
existing measures, a statistically significant 
dependence was found, i.e., the selected measures 
are comparable. Quantification of complexity using 
entropy in stochastic Petri nets, however, brings a 
number of advantages over other measures. The 
main advantage of the defined measure is the ability 
to investigate the development of complexity while 
change process tension (robustness analysis) or 
sensitivity analysis (complexity response to 
changing, for example, any lambda parameter). In 
addition, this approach can be generalized to a whole 
range of modelling tools, namely any Petri nets 
(timed, generalized stochastic, coloured, etc.), multi-
agent approaches, Markov chains, and more. The 
presented approach can be used mainly as a 
supporting tool for decision-making. 

Future research will focus on expanding the 
presented approach to the other above-mentioned 
modelling tools as well as deepening, broadening 
and generalizing the analyses that can be 
implemented by entropy in any process. 
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