
Web Oriented Architectural Styles for Integrating
Service e-Marketplace Systems

Robert Kutera and Wiesława Gryncewicz
Department of Information Systems, Wroclaw University of Economics, Wroclaw, Poland

{robert.kutera, wieslawa.gryncewicz}@ue.wroc.pl

Keywords: Service e-Marketplace, Web-Oriented Architecture, Web Services, REST, Integration.

Abstract: e-Marketplaces for services have faced many challenges in the last few years. Many factors, including user
expectations, service specificity or technological development, influence the scope of requirements for
integrated solutions on that market. Such an integration can help in creating the place in the cyberspace, where
any user obtain an access to any service he or she actually needs. However, the integration isn’t an easy task,
especially in such a diversified environment. That is why there is a need to find a suitable way of integrating
the service e-marketplaces. Using loose coupling and WOA principles can make this task easier, what was
proved during the real-life experiment, using the “consortium research” method. In the paper authors proposed
the concept of integration of service e-marketplaces that bases on three foundations: user interface, data &
business logic and security. In that context authors described the integration procedure which takes into
account not only the classic software lifecycle, but also agile development principles. Having such
foundations, verification of this procedure on the example from ActGo-Gate research project was performed.
The high-level architecture of the project IT solution was presented and the way of integration of the offer
synchronization process was described.

1 INTRODUCTION

The technological progress and, most of all, the IT
revolution have significantly affected the operation of
the service markets. Many services have gained their
electronic form, while others – which are difficult or
impossible to provide remotely – have been given a
broad range of visual and interactive solutions
(including communication and transaction ones).
Thanks to them the consumer can become familiar
with the description of a given service, engage in a
discussion with the service provider’s representative
or other customers of the company, place an order and
pay online (Łysik et al., 2015).

e-Marketplaces are more and more fragmented,
customized and personalized (Maciaszek et al.,
2017). There are three most important factors
determining the development of service e-
marketplaces:
 user expectations and behaviours,
 service specificity,
 technological development.

Nowadays users have very simple access to different
information. Thanks to the Internet and ICT
technologies they have very good market recognition.

On the other hand people don't have much time, so
they expect to receive personalized offers in one
place, effortless and immediately.

Services are very differentiated and varied. Some
of them require coordination of appointments (one-
time services), the others use recruitment and
evaluation process (recurrent or long-term services)
(Maciaszek at al., 2017).

There are many service providers which offer
different services. They need efficient, quick and
effective technology solutions, especially in case of
increased traffic on web pages. That is why design
patterns are implemented. The main elements of
design patterns are typical and effective development
solutions which relate to one or more regularly
occurring problems (Fowler, 2003). The key feature
of design patterns is that they are rooted in practical
experience. They provide advices for developers how
to proceed in such cases to work more efficient,
transparent and orderly. Design patterns are often not
original ideas, but rather an attempt to systematize
observations of what is routinely used in practice.
They consist of many implemented functions that can
be called with one command (Gamma et al., 2008).

72

In order to streamline and optimize the web
applications development process, design patterns are
also reflected in web frameworks like Laravel,
Symphony (PHP), Spring (Java), Django, Flask
(Python) or AngularJS, ReactJS (JavaScript). The
web framework consists of a collection of software
components that help developers create and execute
web-based user interfaces (Vosloo and Kourie, 2008).
The framework manages the content displayed on the
web interface, the pages that are to be displayed, and
what actions are available to the user of the page.
They also standardize the ways of communication
between web applications.

Taking into consideration all these three factors:
very personalized and precisely defined user
expectations; different kinds of services and various
types of available programming patterns and
technologies - there is a need of a specific kind of
integration in the service e-marketplace area.

This integration should take into account a set of
requirements:
 viewing and managing of data in one place,
 ease of access to data (Single Sign On),
 safety,
 consistency of data presentation,
 a user-friendly interface,
 keeping current information and reminding about

any user events.
The above-presented list of requirements has been

established on the basis of analysis related to the
feedback from scientific and research projects
conducted by the authors and the development of web
applications.

The aim of this paper is to present a concept of
integration of service e-marketplace systems using
web oriented architectural styles. The paper is a part
of the ActGo-Gate project funded by the AAL
Agency awarded on the basis of the agreement
number AAL6/1/2015.

2 RELATED WORK

There are different types of integration. Among them
the most common are (Hohpe and Woolf, 2004):
 information portals,
 data replication,
 shared business functions,
 service-oriented architectures,
 distributed business processes,
 business-to-business integration.

It is not a complete classification, it illustrates the
kind of solutions that integration architects build.
Information portals aggregate information from

different systems into a single display. User may
happen when many business systems require access
to the same data. When a user change something in
one system, all the other systems need to change this
element. To avoid redundant functionalities
developers can use a shared business function that is
implemented once and available as a service to other
systems. Service-oriented architecture (SOA) is
applied when enterprise gathers a collection of useful
services and managing them becomes a critical
function. Remote services provided by other
applications ae integrated as distributed business
processes. A business-to-business integration
manages the execution of a business function across
multiple existing systems.

The paper is based on the experience from ActGo-
Gate project. In this project developers have used a
few types of integration simultaneously: information
portals, shared business functions, but mostly SOA. It
provides the basis of distributed application
frameworks in which software components are
delivered as modular and reusable services. The
benefits of a SOA approach are evident in the
flexibility of business processes involving loosely
coupled services and resulting potential cost decrease,
reduced complexity, reusability, and high flexibility
(Thies and Vossen, 2009).

A software architecture style which extends SOA
to web-based applications is called Web-oriented
architecture (WOA). This architecture emphasizes
generality of user interfaces and Application
Programming Interfaces (APIs) to achieve global
network effects.

Pautasso (2014) draws attention also to the
Representational State Transfer (REST) architecture.
This architectural style emphasizes the scalability of
component interactions and promotes the reuse and
generality of interfaces. It decreases also coupling
between components. The basic principle of loose
coupling is to reduce the assumption that two parties
(components, applications, services, programs, users)
exchange information with one another (Fowler,
2003). Although REST is usually chosen to build
simple CRUD (create, retrieve, update and delete)
services, there is a possibility to develop REST web
services offering complex services and stateful
behavior (Rauf, 2013). REST comes with 4 basic
principles like: using HTTP methods explicitly, being
stateless, exposing directory structure-like URIs and
transferring XML, JavaScript Object Notation
(JSON), or both (Fielding, 2000).

In practice, the web service typically provides an
object-oriented web-based interface to a database
server, utilized for example by another web server, or

Web Oriented Architectural Styles for Integrating Service e-Marketplace Systems

73

by a mobile application, that provides a user interface
to the end user.

3 RESEARCH METHOD

During the research process two main research
methods were used. First of them was literature
review, that included both research and professional
books and articles from the area of software
engineering and project management that helps to
build a scientific foundation for the paper.

The applied part of the article is based on the
Consortium Research method (Österle and Otto,
2010a) (Österle and Otto, 2010b). It is the method of
developing research artefacts which applicable in
real-life environments. It is an extension of the
Design Science research method (Österle et al, 2011)
(Myers and Venable, 2014), which is widely used in
IT & business-related research projects. It bases on
the cooperation of practitioners and researchers in
order to develop artefacts possible to be applied in
real-life use cases.

The obtained results are coming from such a
cooperation within a multinational consortium
consisted of research and business partners.

Business partners are supporting the research and
testing the developed research artefacts in the real-life
use cases of service e-marketplace within local
communities, while researchers, beside the creation
process, analyse the feedback and improve the
previous results. The result from the research are real-
life pilot implementations in three cities in Germany
and Switzerland, which support their users by
offering them different occupational opportunities.

4 THE CONCEPT OF WOA
INTEGRATION FOR SERVICE
E-MARKETPLACE

With the evolution of the consumer behaviours in the
Internet, service e-marketplaces gain more and more
popularity. Analyzing the previously identified
requirements there seems to be a strong need for
contributing solutions, which are integrating different
service providers at one place, with convenient and
secure access by the user. Such a solution should take
into account the differentiation of the essence of
particular services and their processing. It influences
on the extent to which the particular processes could
be integrated. The conclusions obtained during the
realization of the research project help in determining

the foundations of the integration of service e-
marketplace.

The conceptual illustration is presented in Fig.1.

Figure 1: The high-level concept of integration of the
service e-marketplace.

That concept indicates three main foundations for
integration of service e-marketplaces (clients) under
one system – the integrator (Maciaszek et al, 2017):
 User interface – assuring, by the frontend part of

the application, the rich and seamless user
experience when using an integrator. It should
make the impression of using single and compact
application, not only the gate for different 3rd
party services / clients.

 Data & business logic – utilizing basic data flows,
like messaging or asset (category, offer) data
retrieved from connected 3rd party services /
clients in common data views.

 Security – securing the communication (e.g. with
reliable token-based solutions and using safe SSL
channel) and managing user identity centrally,
where a user can log in once and have access to
all services (incl. clients) of the platform (Single
Sign On). It should utilize popular and reliable
mechanisms of user authentication and manage
permissions within the whole ecosystem.

While the first foundation is related only to front-end
adaptations within a particular system in compliance
with the given standard, the two deeper ones depend
strongly on data exchange and communication
between clients and the integrator (Maciaszek et al,
2017).

The communication integrator – 3rd party service
within data and security integration should be based
on WOA principles and loose coupling paradigm,
which meet the marketplace requirements in the most
complete way. In fact, dependent on the function
analyzed, the communication could be initiated with
a particular request by both sides.

User interface Data & business
logic (API)

Security

…
3rd party
service

(client #1)

3rd party
service

(client #2)

3rd party
service

(client #n)

Integrator

User interface Data & business
logic (API)

Security

…
3rd party
service

(client #1)

3rd party
service

(client #2)

3rd party
service

(client #n)

Integrator

Seventh International Symposium on Business Modeling and Software Design

74

The basic communication schema is presented in
Figure 2:

Figure 2: The communication between application within
the integrated solution (Hohpe, 2004).

The communication process that occurs between
two applications within the integrated system, begins
with construction of the message. It should be
possible to understand by both sides in the given
context and needs to be transported via common
communication channel, which is HTTP in case of
REST web services. REST uses HTTP standard
methods (GET, POST, PUT, DELETE, OPTIONS) to
call for resources. Combination of the method, the
Uniform Resource Identifier (URI) and some
additional parameters (required or optional) sent via
HTTP causes that the particular operation (explicitly
indicated by the chosen method) is performed and the
response message is sent with requested resource in
various formats: Text, JSON or XML (JSON is the
most widely used). Router in that process could be
responsible for redirecting messages to the correct
places. On the other hand, the translator’s role is to
decode the message, validate it and convert it to the
form acceptable by the other application. System
monitoring is a supportive actor in the process and is
responsible for overseeing the data flow, verifying the
status of all participants of the process, logging and
reporting errors.

Service e-marketplaces require a set of endpoints
within two last foundations previously mentioned:
data & business logic as well as security. The first one
involves mostly endpoints for each objective entity
(like category or offer, where operations are defined
by particular HTTP methods), while the second one –
user endpoint and all supportive entities which help
to authenticate him and grant proper privileges.
Among those entities common structural elements
should be defined and they should be treated as the
basis for the integration. When, for example, the
integrator is allowed to call directly the 3rd party’s
web service of creating a new instance of the entity (a
concrete object) with the set of common data, this
web service will be responsible for filling the missing
specific data for that 3rd party application. It can do it
automatically, or ask user for necessary additional
information. The data & business logic foundation in
more homogenous environments could also handle
with integration of transactional entities (like

appointment, order, recruitment, event, project etc.),
however in general those entities are fundamentally
diversified (as mentioned in the introduction) and
there is a real challenge to find the commonly
accepted solution for that problem. That is why in
such systems it is allowed to let some processes to be
performed only in 3rd party services (and use the
information portal integration type for displaying 3rd
party’s view within the integrator view), which are
fully specialized in such processes.

5 THE CONCEPT OF THE
INTEGRATION PROCEDURE

The process of software integration is very similar to
every other software development process, however
usually involves more actors as well as requires more
arrangements and iterations caused by unexpected
problems on 3rd party side. That is why common
understanding on all sides is very important factor for
the final success of the integration. It can be achieved
via preparing good documentation and using popular
web standards and design patterns in the
implementation.

Classic software development lifecycles are
usually performed in compliance with architecture-
first design paradigm (Booch, 2007). Initial
architecture should provide fundamental concepts or
properties of a system and usually consists of elicited
elements, relationships, and the principles of its
design and evolution (IEEE/AWG, 2017): However,
the rapid expansion of agile software development
techniques in recent years caused that the initial
concepts are changing during the project. The short
development cycles in agile (Agilemanifesto.org,
2001) and lean techniques (Poppendieck and
Poppendieck, 2003) are bringing new functions / new
versions of the application which can be quickly
implemented, deployed and validated each time by
real users or project collaborators. The input from
real-world tests provides architects and developers
with new requirements (remarks to the way of
satisfying already known needs as well as new needs
which are emerging). Those new requirements can
change the initial concept significantly from the
original version. That is why some agile techniques
diminish the importance of the rich architectural
documentation and limit it to the minimum. However,
still the architecture is the most important way of
getting the common clear understanding how the
system works for all stakeholders, even non-technical
ones.

Web Oriented Architectural Styles for Integrating Service e-Marketplace Systems

75

Some agile techniques, like Agile Model-Driven
Development (Eliasson et al., 2014) (Kulkarni et al
(2011) has successfully combined agile with the
approach of defining the abstract specification, which
finally will be transformed into the implementation in
compliance with the given architecture. Taking their
experiences as well as the concept of WOA-oriented
architecture modelling proposed by Thies and Vossen
(2009) a procedure of developing an integrated
system is proposed (Fig. 3).

Figure 3: The procedure of developing an integrated system
in Agile approach.

The proposed concept is based on Disciplined
Agile Delivery (DAD) framework (DAD, 2014) It is
a three-phase lifecycle, where a consumable solution
is built over time. The process of integration begins
with the inception phase, where the first requirements
are gathered. In the meantime first arrangements
between integration sides are made. Usually those
arrangements are the basis for the integration
contract, which finally will include basic parameters
and uniquely identifies the access interface.

Having such a starting point the first iteration of
construction phase can be started where the integrated
business processes are modelled, usually in
commonly understandable notation like BPMN
(Business Process Modelling Notation). The involved
systems and business roles should be identified and
the detailed processes should be constructed. That
step will show the complexity of the particular
processes and help to identify all parties involved.

In the second step the basic data structures and
flows are designed. The achievements of this step,
together with the high-concept architecture schema,
constitute the architectural documentation of the
integrated system. All tasks within the flows, which
require communication of at least two parties, should
be described in a way that was arranged in the

inception phase by all parties. The WOA concept is
promoting an easy way of documenting APIs and
therefore the WADL (Web Application Describing
Language) gains popularity. The well-structured
documentation in commonly-understood notation is
an important factor for the better performance of the
whole project. There are also many tools that enable
the automation of the API documentation (like
Swagger, Apiary, Apigee, Sphinx and so on), which
could be useful especially in large-scale projects..

Third step is the implementation of the previously
documented APIs by all sides involved and
consequently bringing the WOA to life. The API
owner implements proper web services and binds
them to the process while other parties are
implementing the necessary changes on their side,
which make it possible to consume API. When the
process is completed a series of tests should be
performed to indicate possible errors in the
communication between parties or in the data
processing. The results from tests should be gathered
and requested changes and improvements in
particular processes should be reported. That will
constitute the foundation for performing the next
iteration within the construction phase. First iteration
usually covers the most important processes and
structures, while further ones introduce next features.

The third phase, the transition, includes the
deployment and maintenance of the developed
system. In a result the integrated system is available
to its stakeholders who are allowed to use it in
practice. According to lean software development
technique, this phase should be initiated as soon as
possible with a minimum viable product (MVP).
MVP usually offers basic processes and is usable in
its narrow scope. Then users can provide feedback
from real-life usage. Their remarks could lead to
important decisions about changes. New
requirements are then provided to the construction
phase which run the iteration with taking into account
the new setup. If there are any changes affecting the
high-level architecture, it also should be adapted to
the new requirements to keep the architectural
documentation up-to-date, what is extremely
important for assuring the quality of the continuous
development.

Seventh International Symposium on Business Modeling and Software Design

76

6 IMPLEMENTATION – AN
INTEGRATED SERVICE E-
MARKETPLACE FOR
OCCUPATIONAL
OPPORTUNITIES

Service e-marketplaces and their integrations
generate many challenges for software architects and
developers. This chapter contains the demonstration
how the practical problem was solved in the particular
service e-marketplace, using WOA architectural
style. The essence of the e-marketplace, which is
taken into consideration, is to provide occupational
opportunities to elderly people. Specific offers are
provided to them by separate specialized services:
appointment coordination system (processing such
types of offers as services and demands, developed in
Python) and recruiting service (processing voluntary
jobs, developed in Java). Users should be able to
browse occupational offers as well as create their own
offers and manage them. They should also be able to
perform transactions (request for appointment, apply
for job) and receive notifications about particular
actions within the system. The application provides
Single Sign On feature to users. More about this topic
was discussed in (Kutera, 2016). The integrating
application is built mainly on top of Laravel (PHP)
and AngularJS (JavaScript) frameworks. The high-
level architecture of the integrated solution is
presented in Figure 4.

Figure 4: The high-level architecture of the integrated
solution.

Because of the scale of the project for
demonstration purposes one representative endpoint
was chosen. The endpoint for offer synchronization is
most important from utilitarian point of view. It
allows for gathering offers from different sources and
enables them to be displayed in a convenient form for

users. It also allows for keeping the offer data
structure consistent.

The previously described procedure for building
the integrated solution for service e-marketplace
begins with eliciting initial requirements for the
integration process in the inception phase. For
demonstration purposes they have been limited only
to those connected with offer endpoints:
 Client applications repository,
 Adding an entity of neighborhood with its

mapping with client neighborhoods,
 Central categorization of offers with category

mapping from client categories,
 Support for registration of new offering,
 Support for management/editing of offerings via

the Gate application,
 Search for offers with advanced tools,
 Browsing the catalogue with available filters,
 Presence of the common map view,
 Availability of news feed.

Not all of them are affecting the direct process of
offers synchronization so they will be omitted in
further discussion.

The most important business rules for the offer
entity are following:
 offer has to be assigned to at least one

neighborhood and category,
 offer has to be mapped with client offer index,
 offer has to be owned by one or more users;
 offer is obliged to have geographical coordinates

set for displaying it on map,
 offer which don’t have any active owner or

assignment to an active category or
neighbourhood has to be softly deleted.

Next, there is a basis for running the first iteration of
the construction process. First, the business process is
being modelled (Fig. 5 and Fig. 6). The most
important is the fact, that before the direct request for
offer is sent, neighborhoods and categories are
synchronized (Figure 5). The synchronization process
is invoked automatically with using CRON
mechanism at a certain frequency. One of the
assumptions, arranged in the integration contract, is
the focus on the transmission of the small pieces of
information frequently to keep the consistency of the
data within all systems. That is why the data flows
contain only information about recent changes (added
as well as modified or deleted offers).

<<component>>
INTEGRATOR

<<component>>
CORE

APPLICATION

<<component>>
CMS VENDOR

<<component>>
USER VENDOR

<<component>>
SYNCHRONIZATION

VENDOR

<<component>>
DATA VENDOR

<<component>>
CORE

APPLICATION

<<component>>
CMS VENDOR

<<component>>
USER VENDOR

<<component>>
SYNCHRONIZATION

VENDOR

<<component>>
DATA VENDOR

<<component>>
CLIENT #1

<<component>>
CLIENT #2

<<component>>
SSO AUTH
SYSTEM

Appointment
Coordination
System

Recruiting
System

synchronization
and user endpoints

synchronization
and user enpoints

Web Oriented Architectural Styles for Integrating Service e-Marketplace Systems

77

Figure 5: The high-level process of overall synchronization task.

Figure 6: The low-level process of offer synchronization task.

The request for the offer synchronization (Fig. 6)
is invoked automatically by CRON server tool (from
CRONtab entry). The request is sent to the router
(discovery API). It redirects it to the proper URI and
the procedure of building the collection of offers and
converting it to the JSON format is performed. As the
web service get the parameter “FROM::” each offer
is checked whether timestamp of last update
operation fits the requested period (if the parameter is
missing, all offers are added to the collection – this
path is allowed for special maintenance purposes). If
the collection is ready, it is being sent to the
synchronization endpoint of the integrator. It
validates the request for syntax (expected structure
and data types) and verifies dependencies
(neighborhood, category, user). If any dependency is
returning errors (e.g. doesn’t exist, aren’t mapped),
the offer is omitted and it is recorded in log files. If
validation is successful the offer is being processed:
the offer is being subjected to decoration (conversion
to the form, in which data could be stored into the

integrator’s database). Decorator is also adjusting the
timestamps and checking the availability status of the
offer. If the offer already exists in the database (was
only updated in the client), it is updated in the
integrator’s database. If the offer doesn’t exist, it is
added. Log counters are also updated. All offers from
the collections are checked within a multiinstance
loop and if it ends the synchronization result is
logged. If any error occurs the respective status in
logger database is set and the counter is updated. If
the counter reach a limit value, the problem with
synchronization is reported to the administrator.

In the next step of the process the four services
(that were recognized before as necessary to be
implemented in clients) were designed and described
in REST/JSON notation. They are: neighborhood
endpoint, category endpoint, offer endpoint and offer
IDs endpoint. Due to the capacity limitations of the
paper, only the offer endpoint will be discussed. The
request and response are taking the form of:

CRON task
invoked

Synchronize
neighborhoods

Synchronize
categories

Synchronize
offers

Log the status of
synchronization

Synchronization
finished

Does client have
a hard deletion

method?

Synchronize deleted
offers

Y

N

In
te

gr
at

or
sy

nc
hr

on
iz

at
io

n
ve

nd
or Receive the

response
Validate the

response
Is the

response
vaild?

Items processing

Check item
dependencies

Are all
dependencies

correct?

Log the
dependency error

Decorate
item data

Does the
item exist?

Update
the entry

Create
new entry

Send
synchronization

result

co
re

 a
pp

lic
at

io
n

CRON
task invoked

Request for offer
synchronization

Log the error
Log the
result

Synchronization
session completed

Synchronization
terminated

sy
nc

hr
on

iz
at

io
n

ve
nd

or Receive the
response

Validate the
response

Is the
response

vaild?

Items processing

Check item
dependencies

Are all
dependencies

correct?

Log the
dependency error

Decorate
item data

Does the
item exist?

Update
the entry

Create
new entry

Send
synchronization

result

cl
ie

nt
ro

ut
er Redirect the request to the

synchronization endpoint

sy
nc

hr
on

iz
at

io
n

en
dp

oi
nt

Decorate
data

Build the
response

Collect
offers

Is the request
vaild?

Validate
request

Report
error

ro
ut

er Redirect the request to the
synchronization endpoint

Redirect the request to the
synchronization endpoint

Receive the
response

Validate the
response

Is the
response

vaild?

sy
nc

hr
on

iz
at

io
n

en
dp

oi
nt

Decorate
data

Build the
response

Collect
offers

Is the request
vaild?

Validate
request

Report
error

Decorate
data

Build the
response

Collect
offers

Is the request
vaild?

Validate
request

co
re

 a
pp

lic
at

io
n

CRON
task invoked

Request for offer
synchronization

Log the error
Log the
result

Synchronization
session completed

Synchronization
terminated

CRON
task invoked

Items processing

Check item
dependencies

Are all
dependencies

correct?

Log the
dependency error

Decorate
item data

Does the
item exist?

Update
the entry

Create
new entry

Request for offer
synchronization

Log the error

Check item
dependencies

Are all
dependencies

correct?

Log the
dependency error

Decorate
item data

Does the
item exist?

Update
the entry

Create
new entry

Send
synchronization

result

Log the
result

Report
error

Synchronization
session completed

Synchronization
terminated

Y

Y

N

N

N

N

Y

Y

Seventh International Symposium on Business Modeling and Software Design

78

The request:
GET http://clientapplication.com/
<AGG_API>/<API_VERSION>/offers[?fr
om=<TIMESTAMP>]

The response:

Content-Type: application/json [{
"client_offer_id": 455,
"client_users": [33],
"client_categories": [12,15],
"client_neighborhoods" : [5,6],
"is_recommended" : 0,
"is_active": 1,
"name": "Lorem ipsum dolor sit",
"type": "JOB",
"description": "Etiam malesua … ",
"image_url": "image_url",
"localization": {

"latitude": 47.427438,
"longitude": 9.376254,

},
"apartment_no": "33/5",
"street": "Kolorowa",
"city": "Warszawa",
"zip_code": "22-001",
"country": "Poland",
"language": "en-GB",
"created_at": 1456733752,
"updated_at": 1456733752,
"expired_at": 1456733752,
"deleted_at": 1456733752,

}]
The integrator is waiting for HTTP response and

only the code 200 is treated as a success. All other
answers are logged. Also the detailed restrictions for
the particular fields are described (i.e. the expected
data types, the policy of using null value, enum.
values etc.).

Both sides (development teams of the integrator
and the client) owning complete documentation, have
to implement the code to handle these operations on
such structures. The integration is performed using
Laravel framework and vendor-based architecture. So
the synchronization middleware takes the form of a
vendor which collaborates directly with integrator’s
database via Eloquent ORM. The previously
mentioned mapping of neighborhoods and categories
could be performed in the administration panel using
simple drag&drop feature. The mapping of users is
being done automatically after the registration.

It is very important to setup of all participants (the
integrator as well as clients) in the proper way.

The integrator offers a client repository where
basic configuration data is stored (i.e. the URI of
discovery API, URL’s dynamic patterns
(parametrized) for CRUD operations on particular
types of offers, information about deletion policy,
etc). That all makes the communication process easy

to configure and helps in avoiding problems in
synchronization.

7 CONCLUSIONS

The integration using WOA principles is very
efficient and lightweight. Clear structure of requests
and responses, explicit usage of HTTP methods and
the independence from any programming language
make this concept very pragmatic for developments
teams.

The paper discussed process of building the
integrated solution for service e-marketplace. The
applied consortium research method has shown that
there are many challenges that need to be overcome.
The proposed loosely coupled integration based on
three foundations: UI, data&business logic and
security can provide users with rich and seamless
experiences. It makes feeling of using one application
instead of working with several systems. Thanks to
Single Sign On authentication mechanism
(OpenIDConnect) they do not have to put their
credentials several times. The offers are gathered in
one place, may be compared, added or managed on
one window. The users can be informed about any
operation on their account immediately via three
parallel channels: the application notifications, SMS
and e-mail. From the business point of view
integration of service e-marketplaces can also bring
profits to professional service providers, as they are
able to reach much more potential customers.

Further research in the area of using WOA-based
integration will concentrate on ways of securing the
communication as well as sharing permissions
between the integrated systems. Authors will also
verify the current concept in the next real-life
implementations and will adapt it in order to reach a
satisfying level of its universality.

REFERENCES

Agilemanifesto.org, 2001. Principles behind the Agile
Manifesto, http://agilemanifesto.org/principles.html.

Booch, G., 2007. The Economics of Architecture-First,
IEEE Software, Sept./Oct., pp.18-20.

DAD, 2014. Disciplined Agile 2.X,
http://www.disciplinedagiledelivery.com/lifecycle/.

Eliasson U., Heldal R., Lantz J., Berger C.,2014. Agile
Model-Driven Engineering in Mechatronic Systems -
An Industrial Case Study. In: Dingel J., Schulte W.,
Ramos I., Abrahão S., Insfran E. (eds) Model-Driven
Engineering Languages and Systems. MODELS 2014.
LNCS, vol 8767. Springer.

Web Oriented Architectural Styles for Integrating Service e-Marketplace Systems

79

Fielding, R. T.,2000. Architectural styles and the design of
network-based software architectures (Doctoral
dissertation), University of California, Irvine.

Fowler, M., 2003. Patterns of Enterprise Application
Architecture, Pearson Education Inc.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 2008.
Inżynieria oprogramowania: Wzorce projektowe. Sec.
ed. Warszawa, WNT.

Hohpe, G., Woolf, B., 2004. Enterprise Integration
Patterns, Addison-Wesley.

IEEE/AWG, 2017. ISO/IEC/IEEE 42010:2011, Systems
and software engineering — Architecture description
http://www.iso-architecture.org/ieee-1471/defining-
architecture.html

Kulkarni, V., Barat, S., Ramteerthkar, U., 2011. Early
experience with agile methodology in a model-driven
approach. In: Whittle, J., Clark, T., Kuhne, T. (eds.).
MODELS 2011. LNCS, vol. 6981, pp. 578–590.
Springer, Heidelberg.

Kutera R., Gryncewicz W., 2016. Single sign on as an
effective way of managing user identity in distributed
web systems. The ActGo-Gate project case study. In:
Business Informatics (in print).

Łysik, Ł., Kutera, R., Machura, P., 2015. Social
Collaboration Solutions as a Catalyst of Consumer
Trust in Service Management Platforms - A Research
Study. In: Abramowicz, W.(ed.). Business Information
Systems, LNBIP, Springer International Publishing
Switzerland, pp. 220-232

Maciaszek, L., Gryncewicz, W., Kutera, R., 2017.
Integrated Service E-Marketplace for Independent and
Assisted Living – Business and Software Engineering
Challenges. In: Shishkov B. (ed.): Business Modeling
and Software Design. Revised Selected Papers, LNBIP,
vol. 275, 2017, Springer.

Myers, M. D., Venable, J. R., 2014. A set of ethical
principles for design science research in information
systems. Information & Management, 51(6), pp. 801-
809.

Österle, H., Otto, B., 2010a. Consortium Research.
Business & Information Systems Engineering. 2(5)
283-293.

Österle, H., Otto, B., 2010b. Relevance through Consortium
Research? Findings from an Expert Interview Study. In:
Winter, R., Zhao, J.L., Aier, S. (eds.). Global
Perspectives on Design Science Research pp. 16-30.

Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D.,
Krcmar, H., Loos, P., Mertens, P., Oberweis, A., Sinz,
E. J., 2011. Memorandum on design-oriented
information systems research. European Journal of
Information Systems. 20(1), pp. 7-10.

Pautasso, C., 2014. RESTfulWeb Services: Principles,
Patterns, Emerging Technologies. In Bouguettaya, A. et
al. (eds.) Web Services Foundations, Springer
Science+Business Media, pp. 31-50.

Poppendieck, M.; Poppendieck, T., 2003. Lean Software
Development: An Agile Toolkit. Addison-Wesley.

Rauf, I., Siavashi, F., Truscan, D., Porres, I., 2013. An
Integrated Approach to Design and Validate REST Web
Service Compositions. Technical Report 1097.

Thies, G., Vossen, G., 2009. Modelling web-oriented
architectures. In: Proceedings of the Sixth Asia-Pacific
Conference on Conceptual Modeling-Volume 96 (pp.
97-106). Australian Computer Society, Inc..

Vosloo, I., Kourie, D. G., 2008. Server-centric Web
frameworks: An overview. Computing Surveys
(CSUR), 40(2).

Seventh International Symposium on Business Modeling and Software Design

80

