
Determining Firing Strengths Through a Novel Similarity Measure to
Enhance Uncertainty Handling in Non-singleton Fuzzy Logic Systems

Direnc Pekaslan1, Shaily Kabir1, Jonathan M. Garibaldi1 and Christian Wagner1,2

1Intelligent Modelling and Analysis (IMA) Group and Lab for Uncertainty in Data and Decision Making (LUCID),
School of Computer Science, University of Nottingham, Nottingham, U.K.

2Institute for Cybersystems, Michigan Technological University, U.S.A.

Keywords: Inference Based, Firing Strength, Similarity Measure, Non-singleton, Noise/Uncertainty, Time Series
Prediction.

Abstract: Non-singleton Fuzzy Logic Systems have the potential to tackle uncertainty within the design of fuzzy sys-
tems. The inference process has a major role in determining results, being partly based on the interaction of
input and antecedent fuzzy sets (in generating firing levels). Recent studies have shown that the standard tech-
nique for determining firing strengths risks substantial information loss in terms of the interaction of the input
and antecedents. To address this issue, alternative approaches, which employ the centroid of intersections and
similarity measures, have been developed. More recently, a novel similarity measure for fuzzy sets has been
introduced, but as yet this has not been used for non-singleton fuzzy logic systems. This paper focuses on
exploring the potential of this new similarity measure in combination with the similarity based inferencing
approach to generate a more suitable firing level for non-singleton input. Experiments are presented for fuzzy
systems trained using both noisy and noise-free time series. The prediction results of non-singleton fuzzy
logic systems for the novel similarity measure and the current approaches are compared. Analysis of the re-
sults shows that the novel similarity measure, used within the similarity based inferencing approach, can be a
stable and suitable method to be used in real world applications.

1 INTRODUCTION

Most real world applications contain a variety of
sources of uncertainty that depend on different cir-
cumstances, and hence the ability to handle uncertain-
ties becomes an indispensable component in decision
making applications. Fuzzy logic systems (FLSs) are
considered as a robust systems for handling decision
making under uncertainty (Zadeh, 1965). FLSs have
been successfully utilised in a variety of areas, includ-
ing data mining, pattern recognitions and time series
predictions (Mendel, 2001)

FLSs processes are completed in three essential
steps; fuzzification, inferencing and defuzzification.
In fuzzification, crisp input values are transformed
into fuzzy sets (FSs). This transformation can be
implemented as singleton (SFLSs) or non-singleton
(NSFLSs). Due to simplicity and lower computa-
tional cost of SFLSs, it is the most commonly used
design in literature; however, studies show that NS-
FLSs have the potential to provide better results than
SFLSs for the same number of rules (Balazinski et al.,

1993; Hayashi et al., 1993; Larsen, 1980; Pedrycz,
1992; Sahab and Hagras, 2010).

In inferencing, the firing strength of the rule is
defined based on the interaction between input FSs
and antecedent FSs. As the most used standard
composition-based technique, the maximum member-
ship degree grade of the intersection between the in-
put FS and antecedent FS is determined as the firing
strength. However, recent work, including Pourab-
dollah et al. (2015) and Wagner et al. (2016) showed
that adopting the maximum point of the intersection
to determine the firing strength risks substantial infor-
mation loss in terms of the interaction of the input and
antecedent FSs. To address this issue, they introduced
alternatives which employ the centroid of the intersec-
tion (cen-NS) and similarity measures, between input
and antecedent FSs, respectively. While Wagner et
al. proposed similarity measure inferencing approach
which is a generic application of any similarity mea-
sure (e.g., Jaccard, Dice), they focused on the Jaccard
measure (1908) to produce firing strengths (jac-NS).
Yet the Jaccard similarity measure is not highly
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sensitive to the width of FSs or the size of the inter-
section when one interval is a subset of another (Kabir
et al., 2017). Therefore, employing a new similarity
measure may have the potential to be a more stable
approach in determining firing levels in the inference
step of FLSs.

More recently, Kabir et al. (2017) introduced
a novel similarity measure intended to enable more
comprehensive capture of the similarity between sets,
while also being bounded by the Dice and Jaccard
similarity measures. However, to date, this new sim-
ilarity measure has not been applied in the context of
NSFLSs. This paper therefore focuses on exploring
the potential of this new similarity measure in combi-
nation with the similarity based inferencing approach
(Kab-NS). To enable a systematic comparison to al-
ternative previously introduced NSFLS approaches,
the paper follows the experimental strategy of Pourab-
dollah et al. (2015) and Wagner et al. (2016), showing
the performance for all different NSFLSs for a series
of time-series prediction experiments.

The structure of this paper is as follows. Section
II provides background information on the standard
(singleton) composition method, cen-NS, jac-NS, and
the Kab-NS. Also, Mackey-Glass time series gener-
ation with noise adding process are introduced. In
Section III, experimental environment and the results
are discussed. In Section IV, conclusion of the exper-
iments and possible future work directions are pro-
vided.

2 BACKGROUND

In this section, the background material for single-
ton and non-singleton FLSs, and the various tech-
niques for determining firing strength (standard com-
position, centroid and similarity based inferencing ap-
proaches) and the novel similarity measure will be in-
troduced. Lastly, Mackey-Glass time series generat-
ing and noise adding procedures will be presented.

2.1 Singleton and Non-singleton Fuzzy
Logic Systems

In standard singleton fuzzification, a given crisp input
x is transformed into an input fuzzy set I, represented
by a membership function µI(x) that takes values in
the interval [0,1], formulated as:

I = {x,(µI(x)) | ∀x ∈ X} (1)

While singleton sets are characterised by a single
point in I having the value 1, non-singleton sets are

characterised depending on the design choice. A pic-
torial demonstration of singleton and non-singleton
Gaussian input can be seen in Fig 1. (Note that in
practice, singleton fuzzification is often done implic-
itly, immediately determining the firing strength by
simply calculating µA(x) for the given value of x.)

Figure 1: Singleton and non-singleton Gaussian FSs.

2.2 Non-Singleton Fuzzy Logic Systems
with Standard Composition-based
Inference

In Mamdani NSFLSs, the firing levels are defined
according to the interaction of non-singleton input
and antecedent sets (Mamdani and Assilian, 1975;
Mendel, 2001). In the standard composition based in-
ference approach, the maximum membership degree
of the intersection (between the input and antecedent
sets) is determined as the firing level. An illustration
of this firing level determining approach (between a
triangular antecedent and a Gaussian non-singleton
input FS) can be seen in Fig. 2.

Figure 2: The max degree membership of the intersection
between A (antecedent) and I (input) FSs is determined as
firing strength which is an illustration of the standard ap-
proach in defining firing strength.

Even though the standard composition based tech-
nique has been extensively studied, the most impor-
tant limitation lies in the fact that different input FSs
(e.g. with different standard deviations) may intersect
an antecedent at the same membership grade, result-
ing in the same firing level, despite the fact that those
input FSs are clearly different (see Fig 3).



Figure 3: An illustration of two distinct fuzzy sets having
the same intersection level with A.

Figure 4: An illustration of the centroid-based firing
strength technique (cen-NS). The centroid of intersection
is calculated and the corresponding membership degree at
the position of the centroid is defined as the firing strength.

2.3 Centroid Based Approach

The centroid-based inferencing approach, known as
cen-NS, focuses on the area of intersection between
input and antecedent FSs (Pourabdollah et al., 2015).
Firstly, the centroid of intersection between input FS
(I) and antecedent FS (A) is calculated:

xcen(I∩A) =
∑n

i xiµ(xi)

∑n
i µ(xi)

(2)

where n is the number of discretisation levels in the
intersection between the input FS (I) and the an-
tecedent FS (A)

Then, the corresponding membership degree of
the centroid (xcen(I ∩ A)) is defined to be the firing
strength:

µI∩A(xcen(I∩A)) (3)

An illustration of the cen-NS technique can be
seen in Fig. 4. The centroid of intersection for two
distinct input FSs (I1 and I2) and the antecedent (A)
are calculated respectively. Then the calculated cen-
troids are projected to the intersection (A∩ I) to pro-
duce firing strengths.

In the experiment of Pourabdollah et al. (2015),
two different time series datasets (Mackey-Glass and
Lorenz) were used and two different noise levels
(10dB and 5dB) were added to those time series. The
Wang-Mendel (1992) method was utilised to create

rules from either noise-free or noisy time series in the
training of the FLS. The Mean Square Error (MSE)
results obtained showed that the cen-NS technique
outperforms the standard composition method by be-
tween 7% and 17%.

Wagner et al. (2016) suggested that, whilst an
interesting development, one possible issue with the
cen-NS technique is that similar input and antecedent
FSs generate high firing levels simply because their
intersection may have high membership grades at
their centroids, rather than because the input FS ac-
tually strongly matches the antecedent FS.

2.4 Similarity Based Approach

A similarity measure on fuzzy sets is a function that
determines to what degree (in the interval of [0,1])
two fuzzy sets contain the same values with the
same degree of membership (McCulloch and Wagner,
2016).

Wagner et al. (2016) have proposed that similar-
ity ratios, between input and antecedent FSs, can be
utilised to determine firing levels. As a sample of this
approach, the Jaccard similarity ratio (1908) was fo-
cused to determine firing strengths in their study.

2.4.1 The Jaccard Similarity Measure

The Jaccard similarity ratio (Jaccard, 1908), which is
in the interval [0,1], is determined for discrete FLSs
as follows:

S(I,A) =
∑t

i min(µA(xi),µI(xi))

∑t
i
max(µA(xi),µI(xi))

(4)

where t is the discretisation level over both input FS
(I) and the antecedent FS (A).

Wagner et al. (2016) utilised the same experimen-
tal procedures as the Pourabdollah et al. (2015) study,
and the experimental results showed that the Jaccard
ratio based inference system can improve MSE values
by between 23% and 31%.

Yet the Jaccard ratio is not highly sensitive to
changes in the widths of FSs, such as in the case that
one interval is a subset of another (Kabir et al., 2017).
For instance, when an antecedent and input sets have
their centres at the same location (see Fig. 5), the fir-
ing level of that intersection is presumed to be one,
normally. However, the Jaccard ratio produces non-
intuitive firing strength results, e.g. if the inner set
is narrowed as shown in Fig.5, a lower Jaccard ratio
is be generated and, as the narrowing increases, the
Jaccard index gets closer to zero. However, when the
inner FS continues to narrow to eventually be a single-
ton FS, the Jaccard ratio would spike to one. Because



Figure 5: An Input FS (I) entirely covers an antecedent FS
(A).

of this inconsistent behaviour, the Jaccard ratio may
not produce the most appropriate firing levels in such
situations. Hence, the Jaccard ratio may not the best
option to be used in the inference step of NSFLSs.

In the following section, we present an alternative
similarity measures which can be used to define firing
strength in a more sensitive way.

2.5 The Novel Similarity Measure

Kabir’s similarity measure (Kabir et al., 2017) dis-
plays the following features;

• Sensitivity to changes in the width of intervals

• Sensitivity to the size of the intersection when one
interval is a subset of another

The proposed similarity measure focuses on the over-
lapping ratios which is bounded [0,1] and is formu-
lated as follow:

SOR(I,A) = min

(
∑t

i
min(µA(xi),µI(xi))

∑t
i
µA(xi)

,

∑t
i
min(µA(xi),µI(xi))

∑t
i
µI(xi)

) (5)

where t is the discretisation level.

2.6 The Time Series

Since adding noise to Mackey-Glass (MG) time series
is an easily manageable procedure, it is commonly
chosen to be studied. Generating procedures of MG
is performed by using the following formula (Mackey
et al., 1977; Mouzouris and Mendel, 1997):

dx(t)
dx)

=
ax(t− τ)

1+ x10(t− τ)
−bx(t) (6)

The noise in the MG time series is measured by
the signal-to-noise-ratio (SNR) and the noise adding
operation is performed as follows:

Firstly σnoise value is calculated by using σ of the
noise free set:

σnoise =
σn f

10(
SNR
20 )

(7)

where σn f is the standard deviation of noise free
dataset

Noise values are found by using a uniform ran-
dom variable with zero mean in the interval of [−δ,δ],
where [δ =

√
3σnoise], and then the noise values deter-

mined (δ) are added to the noise free dataset to obtain
noisy sets.

3 EXPERIMENTS AND RESULTS

In this section, all procedures implemented in the
study experiments will be explained, and the results
obtained are presented.

3.1 Time Series

The Mackey Glass time series is chosen to be used in
our experiment and the generation was performed by
using (6). In order to provide a chaotic behaviour in
MG, τ is set to 30, while a = 0.2 and b = 0.1. x(t)
is calculated for 2000 time points (t = [−999 : 1000])
and due to the fluctuation tendency in the initial part
of the time series, the last 1000 points are taken to be
used in our experiment. While the initial 700 points
(t = 1 to t = 700) of the generated time series are used
to train the FLS, the remaining 300 points are used
in the testing process of the FLS. Six different noise
levels (0,2,3,5,10 and 20 dB) were added to the time
series to be used in different variations of the experi-
ment.

3.2 Training and Testing

The rule creation in the training phase was performed
using the Wang-Mendel (1992) one-pass method, as
follows:
• Seven equally distributed triangular FSs (see Fig.

6) are created as antecedents, where each an-
tecedent interval was defined as follows:
– Firstly, the min (xmin) and max (xmax) point

of the training time series is obtained and the
mean point of each triangular antecedent is cal-
culated:

µi = amin +
(i−1)(xmax− xmin)

t−1
(8)

where i is the current number of antecedents
and t is the total number of antecedents (seven
in our experiments).



Figure 6: An illustration of the used 7 triangular antecedent
FSs in the Wang-Mendel (Wang and Mendel, 1992) rule
creation procedures

– After calculating µi value of each antecedent,
the interval (left and right points of each trian-
gular set) were determined:

le f t = µi−
(xmax− xmin)

t−1
(9)

right = µi +
(xmax− xmin)

t−1
(10)

Where t is 7.

• Nine past points were used as inputs and projected
to the corresponding triangular antecedents.

• The following (10th) point was designated as the
output and the window sliding procedure applied
until reaching the end of training set.

x1 = [x1,x2...x9] output = x10

x2 = [x2,x3...x10] output = x11

.

.

x691 = [x691,x692...x699] output = x700

(11)

We carried out two main experiments:

• Experiment 1: The standard deviations of input
FSs were adjusted according to the known noise
level in the testing data.

• Experiment 2: The noise levels are assumed to
be unknown, and the standard deviation of in-
put FSs were fixed for each of the six noise lev-
els (not adjusted according to corresponding noise
levels in testing one at a time). Two different fixed
standard deviations were used (Experiment 2a and
2b).

As a first phase of the each experiment, training
of the FLS was done by using the first 700 points of
the noise-free time series and the testing was imple-
mented by using six different noisy time series in turn
(noise free training). After noise free training and

testing was completed, as a second phase of each ex-
periment, training was done by using the 700 points
from noisy times series and the testing was imple-
mented on the remained 300 points from the corre-
sponding noisy sets (noisy training). The two pro-
cedures above (noise-free training and noisy training)
were repeated for each variation of experiments.

3.3 Design of the Fuzzy Logic System

Four different FLSs were created: a standard NS-
FLS, which employs standard technique (between
non-singleton inputs and antecedents) to generate fir-
ing strengths, cen-NS, jac-NS, and similarity based
inferencing approach using the novel similarity mea-
sure (termed Kab-NS). As practised in (Pourabdol-
lah et al., 2015) and (Wagner et al., 2016), Mam-
dani inference with centroid defuzzification was used
with the min and max operators for the t-norm and
t-conorm respectively. The discretisation level (100
steps) is used for all fuzzy sets in FLSs. The input
sets in NSFLSs are designed as Gaussian distribu-
tions which was centred on the crisp input. In Ex-
periment 1, the standard-deviation of input sets was
determined by means of (7) and all training-testing
procedures were repeated under six different SNR val-
ues (0,2,3,5,10 and 20 dB). In Experiment 2, the stan-
dard deviation of input sets was fixed to be 5 dB noise
(0.1613) (7) and 0 dB noise (0.2869) respectively and
a FLS was implemented for both noise-free training
and noisy training procedures, each using six differ-
ent noisy time series.

The MSE over the 300 testing points was utilised
to measure the overall error of each FLS. In order to
mitigate the effect of randomness in the noise addition
process, each experiment was repeated 30 times for
all case scenarios and the average of generated MSEs
were calculated.

3.4 Results

3.4.1 Experiment 1: The Corresponding
Standard Deviations of Gaussian Input
Fuzzy Sets

Firstly, the noise-free data set (t = 1 to t = 700) was
used in training of the FLS , which resulted in 184
rules. After rule creation was completed, the previ-
ously generated six different noisy time series (be-
tween t = 700 to t = 1000) were used to test the FLS
in turn. As mentioned in the previous section, the
standard deviations of the Gaussian input sets were
adjusted according to the noise levels as used in the
noisy time series. In comparison with the standard ap-



proach, Kab-NS reduced MSE results by 50%, 25%,
18%, 8%, 10% and 10% under 20dB, 10dB, 5dB,
3dB, 2dB and 0 dB, respectively for noise-free train-
ing scenarios (left side of the Fig. 7).

After noise-free training procedures were com-
pleted, training was repeated by using noisy time se-
ries (t = 1 to t = 700), and the remaining 300 points
from the same noisy sets were used in testing. As be-
fore, the standard deviation of the Gaussian input FSs
was adjusted to the level used in the corresponding
noise level each time. When the noisy training and
noisy testing (right side of the Fig.7) cases are scru-
tinised for Kab-NS technique, a similar tendency of
improvement (25%,18%,14%,11%,10% and 5%) can
be recognised compared to the standard composition
method.

3.4.2 Experiment 2: The Non-corresponding
Standard Deviations of Gaussian Input
Fuzzy Sets

These experiments were then modified to examine the
behaviour of all approaches under unknown noise lev-
els. In these versions of the experiment, the same
procedures from Experiment 1 (‘noise-free training,
noisy testing’ and ‘noisy training, noisy testing’) were
repeated. However, it was assumed that the noise lev-
els in time series are unknown and hence the standard
deviation of Gaussian input sets was not adjusted un-
der each different noise level. Rather the noise in the
input sets was fixed to two different levels.

Experiment 2a: The standard deviation was fixed
to be 5dB noise (0.161) and all procedures from Ex-
periment 1 were implemented without adjusting input
FSs. In comparison with the standard approach, Kab-
NS reduced MSE results by 46%, 35%, 18%, 5%,
5% and 0% under 20dB, 10dB, 5dB, 3dB, 2dB and 0
dB, respectively for noise-free training scenarios. As
it shows similar performance improvement (except
0 dB case) in noisy training (43%,29%,14%,8%,3%
and -11%). All the noise-free and noisy training pro-
cedures results can be seen in Fig.8.

Experiment 2b: This time the standard devia-
tion was fixed to be 0dB noise (0.286) and again
all operations were repeated without adjusting stan-
dard deviations of input FSs. In comparison with
the standard approach, Kab-NS reduced MSE re-
sults by 26%, 25%, 20%, 17%, 14% and 10% un-
der 20dB, 10dB, 5dB, 3dB, 2dB and 0 dB, respec-
tively for noise-free training scenarios. As it shows
similar performance improvement in noisy training
(25%,29%,25%,18%,17% and 5%). All the noise-
free and noisy training procedures results can be seen
in Fig.8. The experimental result can be seen in Fig.
9.

3.5 Discussion

When the Experiment 1 (Fig. 7) is analysed, it can
be seen that the novel similarity measure (Kab-NS)
outperforms both the standard and centroid (cen-NS)
techniques under each level of noises regardless of
noise-free or noisy training conditions. Comparing
the MSE results from jac-NS and Kab-NS, we can
see that the results for both techniques are the same
under almost all conditions.

As mentioned before, in Experiment 2a the stan-
dard deviations were fixed at the 5 dB noise level. In
this experiment (Fig. 8), Kab-NS has better MSE re-
sults than the standard and cen-NS techniques nine
out of twelve cases and the rest of cases have the
same MSE results except the extreme noisy training
case. In comparison to jac-NS, while the Kab-NS has
either higher or the same MSE results in less noisy
conditions and as the noise level is increased Kab-NS
shows the better results.

When the standard deviations were fixed as 0 dB
noise, in the Experiment 2b, in all the noise-free
and noisy training instances (Fig. 9), Kab-NS out-
performed the standard technique and cen-NS under
all 12 scenarios (both noise-free and noisy training).
However it should be mentioned that the jac-NS has
the lowest MSE results among all four variants in 10
cases out of 12.

To recapitulate, when all the 36 cases are exam-
ined, Kab-NS outperforms standard and cen-NS tech-
niques in 34 cases out of 36. Both jac-NS and Kab-
NS have moderately similar average MSE results. It
is worthwhile noting that the goal of this work is not
specifically to achieve the best performance in appli-
cations which use different approaches for generating
firing levels but to study and compare the various ap-
proaches to try to discover the most reliable approach
to be used under different conditions.

This is particularly relevant in situations in which
the noise level cannot easily be known in advance,
which is often the case in the real-world. Situations
might include when the FLS must be designed and
fixed in advance of implementation in the real world,
or in situations where the noise level itself is varying
in an unpredictable manner.

It should be noted that we have implemented
the experiments with different discretisation lev-
els/approaches and we found that the results are sen-
sitive to way the discretisations is applied.



Figure 7: The NSFLS Prediction performance comparison produced by different inference based approaches. Each standard
deviation of input FSs is set to the corresponding noise level.

Figure 8: The NSFLS Prediction performance comparison. Each standard deviation of input FSs is set to 5 dB σnoise.

Figure 9: The NSFLS Prediction performance comparison. Each standard deviation of input FSs is set to 0 dB σnoise.



4 CONCLUSION AND FUTURE
WORK

We have implemented and compared different infer-
ence based approaches (Standard, cen-NS, jac-NS,
and Kab-NS). Because of the limitations and issues
observed in current approaches, this paper has fo-
cused on exploring the potential of a new novel sim-
ilarity measure in combination with the similarity
based inferencing approach. Kabir’s similarity mea-
sure (Kabir et al., 2017) is sensitive both to changes
in the width of FSs and to the case in which one FS
is a subset of another. Considering these features, it
has now been used for the first time to define firing
levels in FLSs. The evidence from this study points
towards the idea that similarity based inferencing ap-
proach with the Kabir’s similarity measure could in-
deed be a suitable approach to be used in FLSs. How-
ever, this is a tentative finding, and more work needs
to be carried out on different data sets under a wider
range of conditions to further evaluate this.

Future work will concentrate on different inter-
esting aspects. The similarity based inferencing ap-
proach will be implemented by using different sim-
ilarity measures (e.g. Dice similarity) between an-
tecedents and input FSs. Alternative time series
datasets (for example, the Lorenz time series) will
be used in FLS. Different design types for antecedent
and input FSs will be implemented and the results will
be examined. Lastly, due to the increased modelling
capabilities of type-2 fuzzy logic in handling uncer-
tainty, different type-2 designs will be explored.
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