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Abstract: From the performance view point, manufacturing strategy relates to the decision about where to focus 

concentration among quality, speed, dependability, flexibility and cost. This study analyzes a hypothetical 

flexible manufacturing system (FMS) and aims to illustrate an optimization procedure based on a variance 

reduction applied on two strategic performance measures, namely the Throughput Rate (TR) and the Mean Flow 

Time (MFT). The study uses a Taguchi robust design of experiments (DOE) methodology to model and simulate 

the hypothetical FMS, analyzes the output of the simulations, then proposes a unique and hybrid (empirical-

analytical) methodology to quickly uncover the optimal setting of operating parameters. The robust design is used 

to guarantee the system stability necessary to improve the system and validate the outcomes. Using the key 

principle of the Six Sigma methodology that advocates a reduction of variability to improve quality and processes 

the proposed methodology quickly reaches a near optimum by considering both the main and interaction effects 

of the control factors that will minimize the variability of the performances. Fine-tuned follow-up runs may be 

necessary to compromise and uncover the true optimum. 

1 INTRODUCTION 

Accomplishing excellence, global competition, and 

catching up with the rapid technological changes and 

advances in manufacturing and information 

technology, are forcing manufacturers to optimize all 

possible manufacturing processes and operations for 

the purpose of delivering high quality products in a 

short period of time. Achieving the above requires a 

strategic decision-making at the corporate level that 

involves the coordination of additional sub-strategies 

for marketing, engineering, manufacturing, research 

and development.  

At the tactical and operation levels a variety of 

approaches, including mathematical programming, 

queuing networks, computer simulation, Artificial 

Intelligence (AI), and others, are among the most 

proposed techniques for the design and control of 

production and manufacturing systems. When it comes 

to find the best and optimal setting of the operational 

parameters Lean Six Sigma is emerging nowadays as 

one of the most rapid and powerful techniques for 

process and/or system continuous improvement. It has 

been noticed however, that the usefulness and 

appropriateness of any of these techniques depend on 

the nature of the problem and systems under 

consideration.  

The drastic reduction of product life cycles has lead 

manufacturing flexibility to become a competitive 

weapon in many industries, increasing the popularity 

of Flexible Manufacturing Systems (FMS). The 

performance of an FMS is influenced by several 

complex “design” and “operational control" issues 

requiring an optimal setting of operational parameters. 

Thus, the problem of identifying the most optimal 

configuration of FMSs is gaining importance in today’s 

operation and production management strategies. For 

that reason this study simulates a flexible 

manufacturing system. The selection of a poor, non-

suitable or inappropriate combination of an FMS’s 
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design variables and control measures may 

consequently lead the system to exhibit 

counterproductive behaviors in the form of work-in-

process storage queues, vehicle blocking due to path 

contention, and even a shop locking phenomenon. The 

proposed model used in this study results in smooth 

materials and vehicles flow, high productivity 

environment free of adverse behaviors.  

The research is motivated by both the Six Sigma 

governing principle, that seeks performance 

improvement through a reduction of variability and the 

Six Sigma methodology that uses the DMAIC roadmap 

to seek and implement the best solution. 

Lean and Six Sigma principles based on Little’s 

law and reduction of variance, respectively recommend 

a stable system or process before implementing an 

improvement/optimization scheme. Robust DOE is 

used to render the system insensitive to uncontrollable 

factors (noise) and guaranty system stability. 

Simulation is used because it becomes difficult if not 

impossible to apply strict analytical models to study 

manufacturing systems behaviors. 

The optimization of the modeled system is 

subsequently implemented and achieved through a 

minimization of the performance variation followed by 

an optimal adjustment of the performance’s mean. 

2 LITERATURE REVIEW 

There is still a limited number of reported system 

optimization using Lean, Six Sigma or both combined. 

Sharma (2003) mentions that there are many 

advantages of using strategic Six Sigma principles in 

tandem with lean enterprise techniques, which can lead 

to quick process improvements. More than 95% of 

plants closest to world-class indicated that they have an 

established improvement methodology in place, mainly 

translated into Lean, Six Sigma or the combination of 

both. “Lean” is an integrated system of principles, 

practices, tools and techniques that are focused on 

reducing waste, synchronizing workflows, and 

managing production flows (de Koning and de Mast 

2006). Shihata (2014) applies “Lean” technique to 

optimize the flow of solutions in a refrigerator 

assembly line. David Forgaty (2015) uses Lean Six 

Sigma to optimize the process of bid data extraction in 

manufacturing. Valles et. al 2009 use a Six Sigma 

methodology (variation reduction) to achieve a 50% 

reduction in the electrical failures in a semi-conductor 

company dedicated to the manufacturing of cartridges 

for ink jet printers. Han et al. 2008 also use Six Sigma 

technique to optimize the performance and improve 

quality in construction operations. 

The pursuit of optimization has intensified the 

demand for higher process/product development speed, 

manufacturing flexibility, waste elimination, better 

process control, and efficient manpower utilization to 

gain competitive advantages (Karim et al.2010). The 

Six Sigma philosophy maintains that reducing 

‘variation’ will help solve process and business 

problems (Pojasek, 2003). The strategic use of Six 

Sigma principles and practices ensures that process 

improvements generated in one area can be leveraged 

elsewhere to a maximum advantage, resulting in 

quantum increasing product quality, continuous 

process improvement resulting in corporate earnings 

performance (Sharma 2003).  

3 SYSTEM CONSIDERATIONS 

There are 9 machines (workstations) in the system to 

process 15 different part types (jobs). Seven of these 

workstations are typical machining centers, such as 

turning, milling, drilling, etc. The two remaining 

stations are used as a receiving station for loading 

when jobs enter the system, and a shipping station for 

unloading when the jobs exit the system.  

The throughput rate (TR) and the mean flow time 

(MFT) are used to track the performance of the 

simulated system. Note that these indicators also give a 

measure of a third one, the work-in-process (WIP) 

through Little’s law, considered as the backbone 

equation governing Lean principles. The two indicators 

have been selected to serve the purpose of this research 

while additional measures such as Machine Utilization 

(MU) and AGV Utilization (AU) are also used in this 

study, more as benchmarks to evaluate the goodness of 

the developed model.   

The research considers a sequence of machine 

visitation with a number of operations uniformly 

distributed between 2 and 8. The corresponding 

processing times range from 5 to 30 minutes. Table 1 

illustrates the shop conditions. The processing of jobs 

within the FMS is modeled, following the basic 

assumptions (Tshibangu 2013).  
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Table 1: Shop Configuration. 

Part Types Considered for 

Production 

15 

Arrival Time Between Parts EXPO(5) and EXPO(15) 

Machines (Workstations) 9 (including one loading 

and one unloading 

stations) 

Queue Discipline  FIFO, SPT 

Material Handling System 

(AGV) - Size 

Variable from 2 to 9 

Speed of AGV 100-200ft/min 

AGV Dispatching Rule FCFS, STD 

Buffer Capacity  8 to 40 for workstations 

2 to 8 

 Infinite for workstation 1 

Loading/Receiving Sations  1 (workstation 1) 

Unloading/Shipping Stations 1 (workstation 9) 

Path Direction Mixture of uni- and bi-

directional paths 

4 THE ROBUST DESIGN 

A robust system immune to the noise factors during the 

actual operations will secure a valid optimization 

procedure as the Six Sigma technique assumes a stable 

and predictable system. Lean Six Sigma also advocates 

the use of a roadmap methodology known as DMAIC 

(Define- Measure-Analyze-Improve and Control). This 

study follows a similar procedure. In the following 

sections each one of these steps will be referred to with 

the initial letter, e.g., D, M, A, I, C.  

4.1 Formulating the RD Problem - (D) 

The objective in formulating a robust design problem 

is to find those control factor settings for which noise 

has a minimal effect on the performance measures. 

Three concepts are needed to define in a precise 

manner the robust design problem): (i) functional 

characteristics, (ii) control parameters, (iii) and sources 

of noise.  

4.1.1 Functional Characteristics 

These are basic, measurable quantities that determine 

(from the management or the experimenter perception) 

how well and how smoothly the manufacturing system 

operates. The functional characteristics of this study 

are the performance measures. Five measures are 

computed but only two (TR and MFT) will be used in 

the illustration of the single optimization formulation 

model. The other three (machine utilization, material 

handling system utilization and work-in-process) are 

monitored and  used as guideline or benchmarks to 

evaluate the goodness of the developed model.   

4.1.2 Control Factors  

Also referred to as controllable inputs or process 

variables, their operating values are fixed by the 

engineering management team and/or by the top 

management of the firm. This research considers five 

input variables: fleet size (number of AGVs), vehicle 

speed (speed of AGVs), queue discipline (machine 

scheduling rule), AGV dispatching policy, and buffer 

size. Control parameters can be controlled both in the 

real world and during the simulation runs. 

4.1.3 Sources of Noise  

Sources of noise in contrast are identified as the 

variables that are impossible or expensive to control in 

the real world but can be controlled during the 

simulation experiments. This research study considers 

interarrival rate and machine reliability as source of 

noise. They will be varied at two different levels 

during simulation. Machine reliability is considered 

through the Mean Time Between Failure (MTBF) and 

Mean Time To Repair (MTTR).  

4.2 Operational Steps for RD 

Implementing the robust design formulation as applied 

throughout the next sections of the study requires the 

following steps: 

1. Define the performance measures of interest, 

the controllable and uncontrollable factors. 
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2. Plan the experiment by specifying how the 

control parameter settings will be varied and 

how the effect of noise will be measured. 

3. Carry out the experiment and use the results to 

predict improved control parameter settings 

(optimization). 

4. Run a confirmation experiment to check the 

validity of the prediction. 

4.3 Experimental Conditions  

Knowing that material handling dynamic introduces a 

lot of randomness in an FMS and because one of the 

objectives is to design a robust system, this research 

considers mainly those parameters that are directly 

related to the material handling system performance. 

It should be noted that the machine utilization 

(MU) is not directly taken into account as a 

performance criterion because an FMS is a highly 

capital intensive system. Thus, it must operate at a high 

machine utilization of 85% or above.  

The WIP is not considered as a direct objective 

performance but rather is monitored as a benchmark as 

it is directly related to the two performance measures 

studied through Little’s law. This law, also known as 

the Lean methodology governing equation and first 

principle of manufacturing systems, states that the 

work-in-process (WIP) is directly proportional to the 

flow time (lead time), the proportionality constant 

being production exit rate (TR).  

AGV utilization is not included in the developed 

model as a primary objective function either. However, 

it is used as secondary objective function and indicator 

of the system congestion. An AGV system utilization 

rate of 100% suggests that the system is highly 

congested while an utilization in the range of 80-90% 

indicates rather a highly smooth flow of material in the 

system. AGV utilization values less than 70% suggest 

a poorly used vehicle fleet.  

Also, although the research is particularized only to 

two functional characteristics, the developed and 

proposed model is a generalized model that can 

accommodate as many characteristics as needed for a 

specific experiment, research and/or application. 

4.4 Simulation Experiments - (M) 

To formulate the robust design and be able to 

subsequently (in a further research study) construct a 

metamodel for the simulated FMS, a 2v
5-1 experimental 

design augmented with five center points is used. It 

should be noted that adding a center point to a 2k 

factorial design is a method that will provide some 

protection against pure quadratic effects that can be 

easily captured by a 3k because to fit a quadratic 

model, all factors must be run at least at three levels. 

Since a 2k design will support main effects plus 

interactions model, some protection against curvature 

is already inherent in the design (Tshibangu 2013). 

One can test to determine if the quadratic terms are 

necessary. Table 2 and Table 3 depict the experimental 

values for the control and noise factors, 

respectively.The center points consist of nc (nc = 5 in 

this study) replicates run at the point xi = 0 (i = 1,2,…, 

k).  

The experimental design under this study resulted 

into 21 various configurations across all eight noise 

factor combination. 

Table 2: Settings of the Control Factors. 

Factor Control Factor Low 

Level 

(-1) 

High 

Level 

(+1) 

Center 

Point 

(0) 

X1 Number of 

AGVs 

2 9 (6) 

X2 Speed of AGV 100 200 (150) 

X3 Queue 

Discipline 

FIFO SPT (SPT) 

X4 AGV 

Dispatching 

Rule 

FCFS SDT (SDT) 

X5 Buffer Size 8 40 24 

After the robust design process was completed, the 

experimental runs were carried out accordingly. The 

output results of the various simulation experiments are 

partially displayed in Tables 4 and 5 just for illustration 

purpose. These results are the average of the three 

replications used in this research study. 
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Table 3: Settings of the Noise Factors. 

Designation Noise Factor Low Level (-1) High Level (+1) 

X6 Interarrival EXPO(15) EXPO(5) 

X7 MTBF EXPO(300) EXPO(800) 

X8 MTTR EXPO(50) EXPO(90) 

A well-planned experiment makes simple the analysis 

needed to predict the improved or optimal parameter 

settings. In this research, 8 measurements (over the set 

of noise factor combinations) are taken for each 

performance measure of interest, i.e., throughput rate, 

mean flow time, machine utilization, work-in-process, 

AGV utilization, for each of the 21 simulated design 

configurations over a set of 8 noise combinations, and 

averaged across three replications. 

The expected value of each function estimate is 

obtained by simulating the system for 60,000 minutes 

with 3 independent replications. For each replication, a 

warm-up time of 15,000 minutes is set in order to 

remove the initial transient effects. The remaining 

45,000 minutes represent more or less a month 

continuous operation. For each design configuration 

simulated, the mean y and the variance 2 of these 3 

independent replications have been estimated. 

Table 4: TR Simulation Results (parts/day). 

 
Noise 

1 

Noise 

2 

Noise 

3 

Noise 

4 

Noise 

5 

Noise 

6 

Noise 

7 

Noise 

8 

Des 1 53.87 94.00 33.63 91.87 99.70 76.13 77.23 61.17 

Des 2 25.47 25.93 23.23 25.70 26.00 25.63 25.63 23.93 

Des 3 90.13 95.37 68.13 93.43 99.80 83.03 100.70 92.40 

Des 4 24.40 24.13 22.07 23.87 25.47 22.60 25.07 23.30 

…         

Des 18 41.07 93.97 32.80 91.87 99.63 76.03 46.83 44.20 

Des 19 25.87 26.03 25.17 26.23 26.23 25.90 25.77 24.23 

Des 20 89.53 96.37 70.97 93.27 99.33 83.00 101.83 94.63 

Des 21 91.23 95.77 73.17 92.30 99.93 84.10 101.23 91.80 

Because the intent is to minimize the Var TR and MFT 

the variances with respect to noise factors (variance 

(wrtnf)) are computed for each run. Table 6 partially 
depicts the values of 

iy  and log 2
(wrtnf)i at various 

design configuration for each of the two primary 

performance. The logarithm of 2
wrtnf is taken to 

improve statistical properties of the analysis. The 

objective of the proposed scheme is to quickly seek 

Table 5: MFT Simulation Results (min/part). 

 
Noise 
1 

Noise 
2 

Noise 
3 

Noise 
4 

Noise 
5 

Noise 
6 

Noise 
7 

Noise 
8 

Des 1 18.99 1.83 32.8 0.26 0.45 4.26 11.98 16.12 

Des 2 43.47 33.06 45.07 32.81 34.7 32.63 43.72 43.74 

Des 3 8.71 0.81 7.61 1.22 0.38 2.07 8.03 7.99 

Des 4 42.34 17.73 40.42 21.07 29.88 14.21 42.45 40.62 

….. ….. ..... ….. ….. …. ….. ….. ….. 

Des 18 26.14 1.18 33.77 1.7 0.45 4.28 21.99 23.69 

Des 19 43.95 34.92 43.13 34 34.73 34.75 43.93 44.46 

Des 20 8.6 0.93 7.63 1.77 0.33 2.09 7.98 8.03 

Des 21 8.6 1.08 7.68 1.36 0.44 2.08 8.05 7.96 

for a near optimum by making TR and MFT variances 

as small as possible and while shifting their means as 

close as possible to maximum and minimum, 

respectively. The focus is to minimize the variances. 

For each design configuration, 2
wrtnf is first calculated 

before deriving the log 2
(wrtnf)i that will be used to 

enhance analysis sensitivity.  

Table 6: Average and Log 2
(wrtnf)i for TR (parts/day)and 

MFT (min/part). 

Design 

Config. 

MFT 

iy  
MFT log 

2
(wrtnf)i 

 

Design 

Config. 

TR 

iy  

TR 

log 

2
(wrtnf)i 

Des 1 10.84 2.12 Des 1 73.45 2.71 

Des 2 38.65 1.52 Des 2 25.19 0.02 

Des 3 4.60 1.15 Des 3 90.38 2.05 

 …..  ….. …..  …..  ..... ...... 

Des 9  18.09 1.32 Des 18  ..... ...... 

Des 10 3.92 0.97 Des 19 65.8 2.86 

……  …… Des 20  25.68 -0.34 

Des 20 4.67 1.13 Des 20 91.12 2 

Des 21 4.65 1.13 Des 21 91.191 1.91 

4.5 Effects on Variances and Means - (a) 

After calculating the log 2
(wrtnf)i for each design 

configuration defined in the robust DOE formulation, 

the effects of each control factor on the mean and the 

variance (or log 2
wrtnf) are calculated by using the 

normal probability data plotting technique. 

The computed effects at high and low level will be 

used in identifying the controllable factor levels 

(settings) that have the largest effect on log 2
wrtnf. The 

results of the effects of various input factors on TR and 

MFT variances are given in Tables 7 and 8. It can be 
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seen (in bold) for instance, that for TR, the control 

factor X1 (fleet size) has the highest effect on the 

variance while the parameter X3 (queue discipline) has 

the most significant effect on the mean flow time 

variability. Figures 1 and 2 provide a Minitab visual 

display of control factor’s magnitude effect on the 

performance variabilities. 

The same procedure is applied to TR and MFT 

means y in order to determine the effects of the 

control parameters on these two performance measures 

as depicted in Tables 10 and 11. 

Once identified, these factors will be set at the 

settings (levels) that minimize log 2
wrtnf.  The author 

had proposed a four-step optimization procedure 

(Tshibangu 2013) that represented a departure from the 

traditional approaches in the sense that interactions 

between factors were for the first time considered and 

integrated in the optimization approach. Interaction 

effects on both TR and MFT log 2
(wrtnf) MFT are 

depicted in Figures 3 and 4 for illustration purpose. 

Table 7: Effects of the Control Factors on Log 2(wrtnf) TR.  

Control 

Factors 

Effect TR log 

2
wrtnf at Level (+1) 

Effect TR log 2
wrtnf  

at Level (-1) 

Delta 

 

X1 2.57 0.05 2.53 

X2 1.463 1.08 0.38 

X3 1.26 1.36 -0.10 

X4 1.29 1.33 -0.04 

X5 1.20 1.46 -0.26 

Table 8: Effects of Control Factors on Log 2(wrtnf) MFT. 

Control 

Factors 

Effect MFT log 

2
wrtnf Level (+1) 

Effect on log 2
wrtnf   

at Level(-1) 

Delta 

 

X1 1.62 1.66 -0.04 

X2 1.61 1.56 0.05 

X3 1.49 1.78 -0.29 

X4 1.63 1.64 -0.01 

X5 1.60 1.67 -0.07 

Table 9: Effects of Control Factors on TR. 

Control 

Factors 

Effect TR Avg. 

at Level (+1) 

Effect TR Avg. 

at Level (-1) 

Delta 

 

X1 76.31 34.97 41.34 

X2 58.18 55.00 3.17 

X3 58.35 52.94 5.40 

X4 55.60 55.69 -0.10 

X5 53.00 55.08 -2.09 

Table 10: Effects of Control Factors on MFT. 

Control 

Factors 

Effect MFT Avg. 

at Level (+1) 

Effect MFT Avg.  

at Level(-1) 

Delta 

 

X1 8.25 25.97 -17.73 

X2 12.63 20.90 -8.267 

X3 13.86 20.35 -6.49 

 16.97 17.24 -0.27 

X5 17.61 16.60 1.01 

 

Figure 1: Effects of Control Factors on Log 2(wrtnf) TR. 

 

Figure 2: Effects of Control Factors on Log 2(wrtnf) MFT. 

4.6 Optimization Procedure - (I, C) 

Let us assume that Xv
T, Xm

T, and X0
T, are not empty sets 

representing the vectors of controllable factors that 

have a significant effect on the variance, the mean, and 

neither, respectively. Implementing the four-step 

optimization procedure (Tshibangu, 2013) for TR the 

following results are obtained at the end of Step 3, just 

before the follow-up confirmatory runs (Step 4): Xv
T: 

[X1(-1), X2(-1)], pending tradeoff (X1 and X2 need 

adjustment and follow-up) 

Xm
T: [X5(-1)], confirmed, 

X0
T: [X4 (-1), X5(-1)], confirmed.  

Small follow-up experiments are needed to 

determine the tradeoff and economical settings, while 

adjusting the mean to optimum when possible. Factors 

needed in the follow-up and mean adjustment runs are 

X1(-1), X2(-1). X2 is used as tuning factor to adjust the 

mean. Its effect on the mean is tested at level (-1) first, 

and levels (+1) and (0) next. A quick look at the 

collected data (Table 4) reveals that levels (0) and  (+1) 
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Figure 3: Interaction Effects of Control Factors on Log 

2
(wrtnf) TR. 

 

Figure 4: Interaction Effects of Control Factors on Log 

2
(wrtnf) MFT. 

are the best X2 (AGV speed) settings for mean 

improvement. However, this has to be confirmed by 

the results of the follow-up runs. Because X1 has a 

large effect on both mean and variance in opposite 

directions, then a trade-off is found at the center point. 

Based on this analysis, the most robust optimal setting 

is implemented as displayed in Table 11.  

Table 11: Most Robust TR Design Configuration.  

Factor Variable Name Value-code Natural Value 

X1 AGV Fleet Size 0 (-1?) 6 (3) 

X2 AGV Speed 0 (-1?) 150 (100) ft/min 

X3 Machine Rule  +1 SPT 

X4 AGV Rule  -1 FCFS 

X5 Buffer Capacity -1 8 units 

Note that this design configuration is not among the 21 

designs originally simulated. This illustrates the 

powerfulness of the applied approach. 

Follow-up and confirmatory experiments have been 

carried out under these system conditions. The results 

of the follow-up indicate that setting X2 at level (0) is 

the best implementation in terms of TR maximization. 

In addition, the follow-up runs also confirm the first 

intuition about X1 trade-off level. The center point has 

been proven to be the best compromise. Because X1 is 

also considered as the most expensive component or 

input parameter to implement, the overall economical 

setting was confirmed by varying the AGV fleet size (3 

to 8 AGVs) around the value found to be the optimal 

with regard to the throughput rate. The final design to 

be implemented as optimal is therefore, X1 (0), X2 (0), 

X3 (+1), X4 (-1), X5 (-1). 

Machine utilization, WIP, and AGV utilization are 

additional information that can be used in deciding 

which system configuration to implement. At this 

stage, the implemented design, highlighted in bold in 

Table 12 seems to represent the best option leading to 

the highest TR (100 parts/day), an excellent machine 

utilization (89.73%), an acceptable WIP (81 parts/day) 

and a relatively high AGV utilization (97.87%).  

The equivalent optimal performance under failure-

free robust design configuration is indicated between 

parentheses in the optimum column (6 AGVs).  

Table 12: TR Optimization Follow-Up/Confirmation Runs 

under various AGV Fleet Size (X1) and AGV Speed (X2). 

X2 X1        (*) System saturated 

           
         5 AGVs 6 AGVs 7 AGVs 8 AGVs 9 AGVs 

TR100 

TR150 

TR200 

(TR*ZF) 

(parts/day) 

* 

87.57 

99.80 

* 

100 

99.90 

(100) 

87.67 

99.87 

99.83 

99.73 

100 

99.90 

99.87 

99.93 

99.93 

MU100 

MU150 

MU200 

(MU*ZF) 

(%) 

* 

79.70 

89.71 

* 

89.73 

89.79 

(89.72) 

79.47 

89.76 

89.77 

89.55 

89.78 

89.76 

89.77 

89.77 

89.76 

WIP100 

WIP150 

WIP200 

(WIP*ZF) 

(parts/day) 

* 

377 

78 

* 

81 

77 

(81) 

380 

79 

78 

100 

78 

79 

81 

80 

80 
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Table 13: Most Robust MFT Design Configuration.  

Factor Variable Name Coded 

Value 

Natural 

Value 

X1 AGV Fleet Size +1 9 

X2 AGV Speed +1 200  

ft./min 

X3 Machine Rule +1 SPT 

X4 AGV Rule -1 FCFS 

X5 Buffer Capacity -1 8 units 

Note that if X2 (AGV speed) has been set at high level 

(+1), i.e., 200 ft./min, there would have been a slight 

depreciation in the TR, almost 5% decrease in WIP, 

and an excellent AGV utilization. The AGV utilization, 

excluded from the table for space reason, ranged from 

89.20% to 100% with an optimal of 97.87% at 6 AGV-

fleet. The decision on which configuration to 

implement depends on the FMS management and 

alignment with company’s goal or “menu du jour”. 

Because the purpose is to maximize TR, then X2 is set 

up to coded level (0) or 150 ft./min. 

Following the same procedure for MFT leads to the 

implemented best MFT optimal robust design 

configuration displayed in Table 13. Note that this 

design corresponds to the simulated design # 13. 

In the follow-up experiments, X1 (AGV fleet size) 

has been identified as the tuning (mean adjustment) 

factor because it has a large effect on the mean and less 

effect on the variability of the MFT. X1 being the most 

expensive component of the system has been varied at 

different settings to identify its economical setting.  

In order to gain some insight into the impact of 

AGV rules, and also determine whether or not the X4X5 

interaction effect observed has any effect on the MFT 

the follow-up runs and confirmation included  testing 

X4 at low level (FCFS rule), and high level (STD rule). 

The MFT minimum of 0.3666 min/part is achieved 

with the following coded values for the variables X1 

(0), X2 (+1), X3 (+1), X4 (-1), X5 (-1) (Table not 

displayed). Using the natural values, the optimum of 

MFT is achieved with a fleet of 6 AGVs, at 200ft/min, 

SPT queue discipline, FCFS AGV dispatching rule, 

and a buffer capacity of 8 units.  

 
 

5 CONCLUSIONS 

This research uses a quick empirical technique to 

optimize the FMS performances modeled using 

discrete-event simulation and robust DOE. Data 

analysis confirms prior knowledge about the number of 

vehicles. TR variability with respect to noise is 

influenced by the following factors, ranked according 

to their importance: AGV Fleet size X1, AGV speed X2, 

AGV dispatching rule X4, buffer capacity X5, and 

machine scheduling rule X3. The following interaction 

effects contribute to TR variability: AGV Fleet size X1 

and all other factors, to the exception of AGV speed, 

i.e., X1X3, X1X4, X1X5. Interactions such as X3X4 and 

X4X5 also account for the TR variability. Overall, the 

interactions with an impact on TR are as follows, in 

ascending order of magnitude: X1X2, X1X3, and X2X3 

with X2X3 is almost equal to X3X4. 

AGV fleet size X1 seems to have the most 

significant effect on the MFT. AGV speed X2, machine 

rule X3 come next, and the buffer capacity X5 at a 

relatively lower degree.  Interaction X1X2 has a large 

effect in influencing the MFT, while the effects of 

X1X3, X3X5, X4X5 also need to be considered. 

Based on the performance of SPT/FCFS and 

SPT/STD on TR and MFT it can be stated that a 

combination of machine scheduling and AGV 

dispatching rules that include job/part information 

(local rule) in the implemented queue discipline might 

yield better system performance. Note also that X5, 

identified as non-significant on the mean and the 

variance, could have been set at high level, i.e., a 

buffer capacity of 40. The resulting design 

configuration in this case would have been the same as 

the simulated design #17. Results indicate that this 

would result into a MFT of 0.7876, almost the double 

the MFT with X5 at low level (Capacity = 8). Not only 

is this design not economical, but it does not yield the 

optimal performance measure. This finding suggests 

that, the principle of setting the non-significant control 

factors at any level when they do affect neither the 

mean nor the variance may lead to non-optimum 

design configurations. Thus, effects of interactions 

should be considered even when main effects are not 

significant, as is in the case of the proposed 

optimization procedure. Future research intends to 

compare the effectiveness of the proposed procedure 

against other popular, well known and established 

techniques. 
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