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Abstract: Adaptive systems are able to modify their behaviors to cope with unpredictable significant changes at run-
time such as component failures. These systems are critical for future project and other intelligent systems. 
Reconfiguration is often a major undertaking for systems: it might make its functions unavailable for some 
time and make potential harm to human life or large financial investments. Thus, updating a system with a 
new configuration requires the assurance that the new configuration will fully satisfy the expected 
requirements. Formal verification has been widely used to guarantee that a system specification satisfies a 
set of properties. However, applying verification techniques at run time for any potential change can be very 
expensive and sometimes unfeasible. In this paper, we propose a new verification approach to deal with the 
formal verification of these reconfiguration scenarios. New reconfigurable CTL semantics is introduced to 
cover the verification of reconfigurable properties. It consists of two verification steps: design time and run-
time verification. A railway case study will be also presented.  

1 INTRODUCTION 

Adaptive discrete event control systems are dynamic 
and evolve according to occurrence of discrete event 
signals (Zhang et al., 2013). Examples of such 
systems are used to solve future complex mission 
needs in space exploration and railway train control. 
They include a variety of man-made systems such as 
flexible manufacturing systems, complex computer 
programs and communication systems (Li and Zhou, 
2009). They are able to change their behaviors with 
an unpredictable way during run-time processes. 
Reconfigurations are qualitative changes in the 
structure, functionality, and algorithms of a control 
system. A reconfiguration scenario is also assumed 
to be any addition, removal or update of tasks and 
resources (Salem et al., 2015). This is due to 
qualitative changes of the controlled system or the 
environment within which the system behaves 
(Salem et al., 2015). Recently, we have seen an 
increase in the deployment of safety critical 
embedded systems in rapidly changing 
environments, as well as need for on-site 
customizations and rapid adaptation. However, since 
there has been no information about the behavior of 

the new configuration at design time, it is necessary 
to reason about its impact and negative side effects 
on the overall system behavior at run time since it 
might make functions of the system unavailable for 
some time (Sharifloo et al, 2013). 

Although necessary, adaptations can cause 
inconsistent and unstable configurations that must be 
prevented for the embedded system to remain 
dependable and safe. Therefore, verifying such 
systems before they are deployed is essential 
because there are limited to no opportunities to 
effectively monitor and adjust their behavior during 
operation (Sharifloo et al, 2013). Formal verification 
has been widely used to guarantee that a system 
specification satisfies a set of properties (Kalita et 
al., 2002). The existing methods to certify 
reconfigurable systems mainly focus on the 
specification and verification of adaptation process: 
These approaches are based on a complete 
knowledge of the system and the environment 
behavior at design time, so they are able to reason 
about the properties of the whole interaction model 
(Bortolussi et al., 2015). However, this is not the 
case in many realistic examples in which the 
information about the behavior of some components 
and the environment are obtained only at run time. 
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This is why run-time verification techniques come 
into play to monitor and check that the running 
system does not violate the specification and the 
properties (Bortolussi et al., 2015). Although it is 
less expensive than model checking but it still not 
complete, and do not guarantee the satisfaction of 
the properties. Nevertheless, we find some limits in 
the temporal logic CTL for the optimal verification 
of adaptive properties.  

To avoid any requirement violation, we have to 
guarantee that all the properties will be satisfied in 
case of applying any reconfiguration scenario 
(Sharifloo et al, 2013). This could be guaranteed by 
formally verifying the new system specification, 
which is obtained by integrating the specification of 
the new configuration, against the properties. 
Intuitively, it is an extra work and overhead because 
the major part of the specification does not change. 
Moreover, model checking a large specification at 
run-time at each reconfiguration is really difficult 
because of the time and resource limitations 
(Sharifloo et al, 2013). Thus, once it is possible to 
refer to the verification results of the invariant part 
for future verifications, this would significantly save 
the time and resource usage. This is why verification 
techniques to be proposed in this paper should verify 
all behaviors of the reconfigurable systems. We 
address run-time model checking of reconfigurable 
systems which are seen as systems with changing or 
unstable specifications. We focus on components 
based reconfigurable systems represented by an 
extension of Labelled Transition System and a 
model checking approach based on Reconfigurable 
Computation Tree Logic (CTL) (Zhang et al., 2013). 
More specifically, this approach allows the designer 
to verify the system at design time, even if some 
components are not fixed (unstable, can be 
replaced). The proposed model checking approach 
verifies if the requirements hold and produces a set 
of constraints for the unspecified components.  

The paper is presented as follows: Section 2 
describes the preliminaries on top of formal 
verification. Section 3 presents the railway network 
as a case study to show the problem statement. 
Section 4 introduces the proposed verification 
approach and its RCTL model checking. A 
discussion is presented in Section 5. The last Section 
concludes the paper. 

2 BACKGROUND 

We present in this section an overview of the 
temporal logic CTL. Some formal verification 

techniques such as model checking will be 
presented. The related works will be discussed in 
this part.  

2.1 Computation Tree Logic 

In CTL, all formulae specify behaviors of the system 
starting from an assigned state in which the formula 
is evaluated by taking paths (e.g. sequence of states) 
into account. The semantics of formulae is defined 
with respect to a reachability graph where states and 
paths are used for the evaluation (Axelsson et al., 
2010). A reachability graph M consists of all global 
states that the system can reach from a given initial 
state. It is formally defined as a tuple M = [Z, E] 
where:  

• Z is a finite set of states,   
• E is a finite set of transitions between 

states, e.g. a set of edges (z, z0), such that z, 
z0 ∈ Z and z0 is reachable from z.  

In CTL, paths play a key role in the definition 
and evaluation of formulae. A path denoted by (zi) 
starting from the state z0 is a sequence of states, (zi) = 
z0,z1... such that ∀j ∈ N, there is an edge (zj,zj+1) ∈ E. 
The truth value of a CTL formula is evaluated with 
respect to a certain state of the reachability graph. 
Let z0 ∈ Z be a state of the reachability graph and ϕ 
be a CTL formula (Axelsson et al., 2010). The 
relation z0 |= ϕ means that the CTL formula ϕ is 
satisfied in the state z0. Then the relation |= for a 
CTL formula is defined as follows:  

• z0 |= EFϕ, if there is a path (zi) and j > 0 
such that zj |= ϕ, ˆ  

• z0 |= AFϕ, if for all paths (zi), there exists j 
> 0 such that zj |= ϕ.   

2.2 Model Checking 

Model checking is a technique to automatically 
verify the correctness properties of finite-state 
systems (Baier and Katoen, 2008). It is a general 
verification approach that is applicable to a wide 
range of applications such as embedded systems, 
software engineering, and hardware design. It also 
supports partial verification, i.e., properties can be 
checked individually, thus allowing focus on the 
essential properties first. It can be also easily 
integrated in existing development cycles since its 
learning curve is not very steep, and empirical 
studies indicate that it may lead to shorter 
development times (Baier and Katoen, 2008). Model 
checking is based on the reachability graphs of the 
system. SESA (Starke and Roch, 2002) is an 
effective software environment which analyses and 
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computes the set of reachable states exactly. Typical 
properties which can be verified are boundedness of 
places, liveness of transitions, and reachability of 
states. In addition, temporal/functional properties 
based on computation Tree Logic (CTL) specified 
by users can be checked manually. 

2.3 Related Work 

There have been a set of approaches to formally 
apply model checking techniques to verify the 
properties at design time (Schneider et al., 2006). 
Zhang and Cheng (Zhang and Cheng, 2006) 
introduce a modular verification algorithm to verify 
an adaptive system against the formulae expressed in 
A-LTL (Zhang et al., 2006). The system is 
represented as a state machine in which the states 
present the system configurations and transitions are 
adaptation actions. Xie and Zhe (Xie and Dang, 
2004) propose a test-based approach for the 
verification of component-based systems, in which 
the behavior of some components is not specified. 
The system consists of a host system and a 
collection of unspecified components, which are 
represented as finite transition systems that 
synchronously communicate via a set of input/output 
symbols. Schaefer (Schaefer, 2008) has provided 
several approaches on verifying adaptive embedded 
systems specified as synchronous adaptive systems - 
high level representations of modelling concepts 
used in the MARS modelling approach (Trapp et al., 
2007). The solution integrates model slicing of 
various granularities to reduce the complexity and 
enable automated model checking of the models by 
means of theorem proving. The technique is tested 
on adaptive vehicle stability control system. Goldsby 
et al. (Goldsby et al., 2008) provide the AMOEBA-
RT model focused on run-time verification and 
monitoring. Wang et al. (Wang et al., 2007) have 
proposed usage of verification techniques to find the 
optimal schedule for energy constrained systems. 
Nevertheless, these works did not discuss how to 
optimize the formal verification of reconfigurable 
systems and their feasibility at run-time verification 
at each adaptation.  

3 RUNNING EXAMPLE 

The running example used through this paper is 
presented in this section. Rail transport is a means of 
conveyance of passengers and goods on wheeled 
vehicles running on rails. It is also commonly 
referred to as train transport. It is a complex and 

critical system because it deals with millions of 
human life every day. It is also faced to different 
challenges: safety from collisions and derailments 
and provide as maximum line capacity as possible 
for running many trains on the same line within the 
safety constraints (The Metro, 2017). These systems 
are considered to be reconfigurable distributed 
systems because the railway structure is not static: it 
is usually the subject of variant extension on 
different lines. It is also faced to numerous accident, 
structures breaking and natural disasters. Moreover, 
the number of trains is always changeable; it is 
possible to add extra trains to cover the increased 
demand and to maintain quality of service. 

 Similarly, rapidly increasing capacity is the 
biggest challenge facing all mass transit operators 
today. As major cities expand, so too does demand 
for high capacity and efficient railway network. 
Thus, the speed of trains is not constant for almost of 
the lines. Each change can be considered as an 
adaptation process that affects the characteristics of 
the system. As a real case study, the Paris Metro is a 
safety critical reconfigurable system. It is a large 
railway network with 14 main lines that cover 303 
stations in the Paris area. It is mostly underground 
and it has 205 km of tracks. This system carried 1.5 
billion passengers in 2014 (The Metro, 2017). The 
Metro system is an example of component-based 
systems whose safety properties depend on the 
dynamic components which are variable and change 
at run-time. Such systems require a continuous 
verification process to certify the correctness of the 
system at any new adaptation process.  
This verification step should be as light-weight as 
possible to avoid intolerable overheads. The system 
is highly critical and its safety is the main propose of 
its existence. On the other side, the formal 
verification of the whole system at each adaptation 
process is considered to be unfeasible because of the 
resources and time limitation at run-time. We focus 
on the specification and verification part of the 
project. We present the system as a modular 
connected structure. It is a reconfigurable distributed 
system that can change its characteristics at run-time 
operation. Fig. 1 presents the abstract model of the 
system. It is a 14 module system that represents the 
different lines of the railway network. Each module 
represents one metro line with its trains and 
characteristics. It describes its capacity, structure 
and its connection to other lines. We assume that 
modules links represent the connections points 
between different lines of the railway network. The 
red rectangles are the system modules that represent 
the unstable lines: its characteristics are not fixed at  
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Figure 1: Reconfigurable railway network structure. 

run-time. They are the object of new configurations 
to cope with the environment requirements at the 
current state of the system. These reconfigurations 
are due to an increase demand to enlarge the line 
capacity, the quality of service or to extend the line 
to new parts of the urban area of the city. 

4 VERIFICATION APPROACH 

The proposed model checking approach deals with 
distributed reconfigurable models, where a set of 
components or modules are considered to be 
unstable (change their behavior at run-time process) 
and could be also unspecified at design time and are 
known only at run-time. Moreover, the classical 
techniques enable to check the system every time the 
unspecified components are resolved or modified at 
design time. Indeed, the time and space required for 
the verification could be considerable and since 
many configurations are resolved only while the 
system is operating, the total overhead in resolving 
them has to be as small as possible. To get over this 
problem, we propose a two-phase verification 
approach that enables the designer to deal with 
reconfigurable scenarios and incomplete 
specification at design time and generate a set of 
constraints to be checked for the unstable parts of 
the system. Those constraints are verified at run-
time against the new configuration of the component 
once it is available. A complete over view is given in 
Fig. 2. It presents two verification levels: at design 
time, the incomplete system is represented by a 
particular labelled transition system. It is an 
Incomplete Labelled Transition System dealing with 
specified and unspecified states. It contains two 
different states categories: the first are known as  
 

 

Figure 2: New verification approach. 

stable states which describe a predefined fixed part 
or task of the system. The second are known as 
unstable states to describe the reconfigurable 
scenarios of the system which are unknown only at 
design time or variable at run-time. The model is 
then checked against the desired Reconfigurable 
CTL properties “RCTL”. The results of the 
verification process differ from the traditional model 
checker by an extra output namely “Conditionally 
True”. This option generates a set of constraints to 
be checked against the reconfigurable module later. 
At run-time, only these constraints are checked 
against the new configuration and not the whole 
system specification as used before in the standard 
model checking. 

4.1 Incomplete Labelled Transition 
System 

An incompletely labelled transition system (ILTS) is 
a labelled transition system in which there are two 
sets of states: stable and unstable states. It can 
describe the unknown characteristics of the 
reconfigurable system at the specification step. 
Formally, it is a tuple (S, s0, R, L) where:  

• S is the set of stable states T and unstable 
states I, i.e., S = T ∪ I and T ∩ I = ∅; 

• s0 is the initial state, the unique entering 
state, and it is a stable state,  

• R ⊆ S × S represents the transitions 
between states, 

• L is a labelling function that associates a 
subset of propositions to each stable state. 

ILTS is used to specify any incomplete system 
later. The proposed verification approach is based on 
this formalism. Here, we present the ILTS of the 
motivating example showed in Fig. 3. It is derived 
from the net structure model: it is a LTS with some 
special unknown states. The white places represent 
the predefined (stable) states of the system.  The  red  
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Figure 3: ILTS of the railway model. 

the predefined (stable) states of the system. The red 
states represent the reconfigurable states of the 
system: its characteristics change at run-time. They 
are the object of new configurations to cope with the 
environment requirements at the current state of the 
system. These reconfigurations are due to an 
increase demand to enlarge the line capacity, the 
quality of service or extending the line to new parts 
of the area. (R2, R7, R11 and R14) are 

respectively new simple structures of the 
reconfigurable modules (2, 7, 11 and 14) at this 
adaptation phase. Then, once the structure is known, 
the constraints are applied to check these new 
specifications. R2 is checked against the matrix 

generated to satisfy the desired RCTL formula in the 
second module.  

4.2 RCTL Model Checking 

Reconfigurable CTL (RCTL) model checking is an 
extended version of CTL applied to adaptive 
systems. It has the same semantics as the standard 
CTL model checking for the “True” and “False” 
outputs with an extra definition related to the third 
possible output namely “Conditionally True”. We 
will not recall the standard definition of CTL 
semantics here; we just add the new semantics 
related to unstable states and undefined paths. CTL 
is classically defined on a state of LTS. RCTL is 
defined now on states of ILTS, M=(S, s0, R, L), M, s 
|= φ means that φ could hold in a state s of the ILTS 
M. The set of constraints that are needed to satisfy 
the formula φ in an unstable state s are saved in a 
matrix constr. Each element constr(φ, s) is a set of 
constraints in the form [(φ1, state1), . . . , (φn, staten)], 
meaning that the formula φ holds in s if the path 

RCTL formula φ1 holds in state1, and the path RCTL 
formula φn holds in staten. We present here the 
semantics of RCTL:   

• M, s |= φ ⇔ φ ∈ L(s) if s ∈ T and s |= 
constr(φ, s) if s ∈ I ;   

• M, s |= ¬φ ⇔ M, s ⊭ φ if s ∈ T and s ⊭ 
constr(φ, s) if s ∈ I ;   

• M, s |= φ1 ∧ φ2 ⇔ M, s |= φ1 and M, s |= φ2 
if s ∈ T;  and s |= constr(φ1, s) and  s |= 
constr(φ2, s) if s ∈ I;    

• M, s |= φ1 ∨ φ2 ⇔ M, s |= φ1 or s |= φ2 if s ∈ T;  and s |= constr(φ1, s) or  s |= 
constr(φ2, s)  if s ∈ I;     

• M, s |= AXφ ⇔ (∀π such that π0 = s, M, π1 
|= φ) for all paths starting at s, next time φ 
if s ∈ T  or next time constr(φ, s) if s ∈ I;    

• M, s |= AFφ) ⇔ (∀π such that π0 = s, ∃i 
such that M, πi |= φ) for all paths starting at 
s, eventually φ if s ∈ T or eventually 
constr(φ, s) if s ∈  I;    

• M, s|= AGφ ⇔ (∀π such that π0 = s, ∀i M, 
πi  |= φ) for all paths starting at s, always φ 
or  always constr(φ, s) if s ∈ I;    

• M, s |= φ1AUφ2 ⇔ (∀π such that π0 = s, ∃ i 
such that (∀ j < i (M, πj |= φ1)) ∧ (M, πi |= 
φ2)), for all paths starting at s, φ1until φ2 if s ∈ T  or constr(φ1, s) until constr(φ2, s)  if s ∈ I;   

• M, s |= EXφ ⇔ (∃π such that π0 = s, M, π1 
|= φ) there exists a path such that next time 
φ   if s ∈ T  or  next time  constr(φ, s) if s ∈ 
I; 

• M, s |= EFφ ⇔ (∃π such that π0 = s, ∃ i 
such that M, πi |= φ) there exists a path such 
that eventually φ if s ∈ T  or  eventually 
constr(φ, s) if s ∈ I;  

• M, s |= E φ1 ∪ φ2 ⇔ if there exists a path π 
starting from s such that ∃sk ∈ π | M, sk |= 
φ2 if s∈  T  or s |= constr(φ2, s)  if s ∈ I and ∀ si ∈ π with i < k, M, si |= φ1 if s ∈  T  or s 
|= constr(φ1, s)  if s ∈ I;   

• M, s |= EGφ ⇔ if there exists an infinite 
path π starting from s such that ∀ si ∈ π, M, 
si |= φ if s ∈ T and s |= constr(φ, s) if s ∈ I.   

The core of the presented approach is an RCTL 
model checking algorithm for incomplete models, 
described using the ILTS formalism. It is based on 
the traditional explicit CTL model checking (Clarck 
et al., 1986) in order to deal with unstable and 
incomplete states. The inputs of the algorithm are an 
RCTL property and an ILTS model. If the ILTS is a 
stable LTS, it behaves as the traditional approach on 
predefined LTS. On the other hand, if the ILTS 
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contains unknown states, it computes the set of path 
RCTL formulae that shall be guaranteed by the 
unspecified components later at run-time. More 
precisely, the algorithm operates respecting these 
steps. First, the RCTL formula is parsed and its 
parsing tree is derived. Usually, the leaves are 
propositions and the inner nodes are boolean and 
temporal operators. As CTL model checking, a 
bottom-up approach is applied to the tree to check if 
each sub-formula holds. For each node of the tree, 
the set of the states in which the sub-formula holds 
is evaluated by parsing the tree, starting from the 
leaves. The algorithm takes as inputs a subtree ST of 
the parsing tree, the formula φ, and the ILTS M on 
which the original formula is evaluated. The tree ST 
is a binary tree, where a node representing a unary 
operator has a single son, while a node representing 
a binary operator has two sons. We use ST.S to refer 
to the set of states in M that satisfy the formula 
represented by the current subtree, ST.left and 
ST.right to refer to the left and the right subtrees of 
the current tree (when the root is a binary operator), 
and ST.son to refer to the subtree of the current tree 
(when the root is a unary operator). The algorithm 
can store the elements that satisfy φ in a local set X. 
Moreover, the set of constraints that are needed to 
satisfy the formula φ in an unstable state s are saved 
in the matrix constr.  

4.3 Marking Algorithms  

We present here the marking algorithm of the 
proposed RCTL temporal logic. The inputs are:  A 
model structure M, an RCTL formula ϕ and a 
subtree t. The constraint Matrix is initiated (line 2). 
Mark (ϕ, s) is a standard CTL marking function 
dependent on the formula ϕ. This function is applied 
once the visited state is a stable one (line 3). Let’s 
assume that Mark (ϕ, s) ∈ {Mark(φ, s), Mark(¬φ, s), 
Mark(φ1∧φ2, s), Mark(φ1∨φ2, s), Mark(AXφ, s), 
Mark(AFφ, s), Mark(AGφ, s), Mark(φ1AUφ2, s),  
 
 
 
 
 
 
 

Mark(EXφ,s), Mark(EFφ,s), Mark(E φ1Uφ2, s), 
Mark(EGφ,s)}. On the other case (line 4), a 
constraint is generated to be investigated at the 
adaptation phases. This constraint is added to the set 
of the existent constraints (line 5-6).   

4.4 Degraded Verification Mode 

Safety in critical systems is fundamental for their 
operation. Reconfiguration makes possible for a 
system to operate in different modes to be flexible as 
possible and adapted according the characteristics 
and requirements of the environment. Openness is 
also an inherent property, as agents may join or 
leave the system throughout its lifetime. The 
proposed verification approach is based on the 
generation of the constraints to be checked at each 
reconfiguration scenario. In case we opt to check the 
AGφ formula (line 3) on the model, i.e., this property 
has to be satisfied by the whole system model. We 
generate the corresponding constraints to be 
respected during any adaptation. Before applying the 
reconfiguration tasks, the proposed algorithm makes 
sure that the new configuration satisfies the system 
requirements (line 7). Then, it is possible to check 
the satisfiability of the generated constraints on the 
new updated specification. If it is true (line 8), the 
system can operate safely and complete its running 
task. In many other cases, the properties are not 
respected and the system has to go forward with 
respect to its safety. Here, the algorithm chooses to 
degrade the running mode to the second level and 
we try to find a possible combination that should be 
possible to be executed by the system (line 9). Then, 
we move to check the validity of following formula: 
EGφ (line 10) that presents the existence of a 

 

 

 

 

 

 

 

 

 

 

 

 
possible solution for the occurred deadlock state. For 
the following three formulas: “AXφ, AFφ, pAUq” 
(line 11). It is possible that the properties are 
satisfied at the stable part of the system (line 12), 
i.e., the reconfiguration scenario will not affect the 
requirement of the system. Then, the verification 

Marking (ϕ, t, M) {  
1: for all (s ∈ M.S) { 
2: constr (ϕ, s) = ∅;  
3:     if (s ∈ M.T) {mark (ϕ, s)} 
4:     elseif (s ∈ M.I) { 
5:     constr(ϕ, s) = constr(ϕ, s) ∪ {s};}}} 

1: Verif_output R;  
2:  While ( R ≠ false) do 
3:  if (φ= AGp) 
4:   {   R=“Conditionally True”;  
5:       constr(φ, s); 
6:       Execute_Reconfiguration(); 
7:       Verif_constr(); 
8:       if (R= True) then end; 

       9:       else {φ:= EGp ; 
     10:             Verif_constr();} } 
     11:   if (φ= AXp) OR (φ= AFp)  OR (φ=pAUq) { 
     12:    if (R= “True”) then end; 
     13:      if (R= “Conditionally True”) 
     14:        {  constr(φ, s); 
     15:           Execute_Reconfiguration(); 
     16:           Verif_constr(); 
     17:         if (R= True) then end; 
     18:           else φ:= SUBSTITUE (φ; “A”; “E”); } 
     19:           Verif_constr();} 
    20:   end while

ICSOFT 2017 - 12th International Conference on Software Technologies

360



results should be “True”. Otherwise the 
corresponding constraints are checked against the 
updated parts of the system (line 14). In case of the 
non-satisfaction of the desired constraints (line 18), 
we can opt to the degradation. The algorithm checks 
if it is possible to come over the faced deadlock 
state. Then, we check respectively the following 
constraints formulas “EXφ, EFφ, pEUq” (line 19). 
The degradation strategy is presented in a 
summarized view in Fig. 4. 
Here, the railway network is always the subject of 
different addition/removing of trains to various lines. 
As a solution for the increased demand to enlarge 
the system structure and the quality of service 
respecting to the critical safety, we can think about 
the existence of possibility to apply the desired 
property in the possible lines instead of the entire 
network. We opt to check the validity and existence 
of paths and scenarios that lead to desired target. For 
example, if we aim to double the speed of some 
trains: then, it will affect the safety distance between 
the components of the network. The property 
p=“double the speed”, then we check: EFp instead 
of AFp. Similarly, if we hope to add two extra trains 
in the network from certain stations to cover the 
large demand: φ= “add two extra trains”, then we 
check EXφ instead of AXφ. We check the formula on 
the predecessor state of the desired state. We look 
for proving the existence of safe options to improve 
the quality of service of the system.  

 

Figure 4: Degradation approach. 

5 DISCUSSION 

This paper highlights a double-phase approach to 
efficiently verify reconfigurable distributed systems, 
in which some components may dynamically change 
at run time. The idea aims to introduce an optimized 
formal certification method for adaptive systems: 
much more useful to save time and memory 
resources. The purpose is to optimize the verification 
process: the needed time and space resources at each 
modification of the system behavior. Based on the 
use of a separated modular verification approach and 
the results of the previous verification, we avoid the 

repetition of many extra unnecessary tasks during the 
certification of a reconfiguration scenario. To support 
the methodology, a new semantics of the temporal 
logic CTL is proposed to deal with the incomplete 
labelled transition systems of an adaptive system. A 
new marking algorithm to concretize the approach is 
presented. A new degraded verification algorithm is 
proposed as a solution for the deadlock states after 
applying any adaptation process. To support this built 
framework, correctness tests will be evaluated, we 
will check the validity of the results of the proposed 
RCTL model checking compared to the standard 
model checking. The gain of time and space 
resources will be also evaluated for huge states space 
of adaptive systems. Scalability of the approach will 
be considered in our future work. The presented case 
study will be checked using the introduced 
framework. 

6 CONCLUSIONS 

This paper focuses on the importance of online 
formal verification of reconfigurable systems. It 
introduces a new approach to efficiently certify 
adaptation scenarios at run-time process. It can 
avoid repetitive useless tasks that slow down the 
certification of adaptation scenario. Sometimes, the 
verification is unfeasible because of the time and 
resources limitation at run-time. A verification 
approach is proposed to cover the limits of 
traditional model checking method coping with large 
reconfigurable systems. An RCTL profile is 
introduced to present the semantics of properties in 
reconfigurable systems. An overview of the needed 
algorithm is also presented. Marking algorithm and 
degraded verification strategy are proposed here. 
This paper states the preliminary steps to address the 
runtime model checking of adaptive distributed 
systems. This work could be extended in many 
directions. At the moment, we are working on the 
implementation of the algorithm and to explore a 
new symbolic approach. In this paper, we presented 
RCTL, but the future work is to support the full CTL 
logics by adding other extensions.  
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