
Privacy-Preserving Verifiability
A Case for an Electronic Exam Protocol

Rosario Giustolisi1, Vincenzo Iovino2 and Gabriele Lenzini2

1IT University of Copenhagen, Copenhagen, Denmark
2University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg, Luxembourg

Keywords: Privacy-Preserving Verifiability, Electronic Exam Protocols, Analysis of Security and Privacy.

Abstract: We introduce the notion ofprivacy-preserving verifiabilityfor security protocols. It holds when a protocol
admits a verifiability test that does not reveal, to the verifier that runs it, more pieces of information about
the protocol’s execution than those required to run the test. Our definition of privacy-preserving verifiability
is general and applies to cryptographic protocols as well as to human security protocols. In this paper we
exemplify it in the domain of e-exams. We prove that the notion is meaningful by studying an existing exam
protocol that is verifiable but whose verifiability tests are not privacy-preserving. We prove that the notion
is applicable: we review the protocol using functional encryption so that it admits a verifiability test that
preserves privacy according to our definition. We analyse, in ProVerif, that the verifiability holds despite
malicious parties and that the new protocol maintains all the security properties of the original protocol, so
proving that our privacy-preserving verifiability can be achieved starting from existing security.

1 INTRODUCTION

“Being verifiable” is an appreciated quality for a pro-
tocol. It says that during its execution the protocol
safely stores pieces of information that can be used
later as evidence to determine that certain properties
have been preserved by the protocol’s run. A voting
system that offers its voters to “verify that their votes
have been cast as intended”, for instance, generates
data that allow a voter to test that his/her ballot has
been registered and that it contains, with no mistake,
the expression of his/her vote (Adida and Neff, 2006).

This paper is about verifiability, but it also dis-
cusses a new requirement for it. The requirement
states that a curious verifier, in addition to the veri-
fiability test’s result, should learn no more about the
system’s execution than the pieces of information that
he needs to know to run the test.

The need-to-know principle is not new (e.g., see
(Department of Defence, 1987)). Not new is also
the particular interpretation of the principle that link
to techniques like zero knowledge proofs (De Santis
et al., 1988) where a verifier is convinced of a given
statement’s truth without learning no more than that.
However, in this paper we originally present and dis-
cuss the principle asa requirement for verifiability.

Our notion of privacy-preserving verifiability

needs to be formally defined, and we do so in §3. We
contextualize the definition to the particular domain
of electronic exams, where verifiability and privacy
are sensitive properties (the first should work despite
untrusted authorities, the second is not everlasting but
conditional). Besides, in §4, we prove that our notion
of privacy-preserving verifiability is meaningful. We
show for a particular protocol called Remark! (Gius-
tolisi et al., 2014) that several of its current universal
verifiability are not privacy-preserving according to
our definition.

In §5, we give evidence that achieving privacy-
preserving verifiability is possible. In particular,
again taking Remark! as use case, we demonstrate
that by modifying the protocol’s design it becomes
possible to have, for one of the protocol’s verifiability
property, a test that is privacy-preserving. The modi-
fication we operate on the protocol is guided straight-
forwardly by the predicate that the verifiability test
is expected to check. The other verifiability prop-
erties of Remark! rely on predicates which are, in
their structure, similar to that we prove our case (i.e.,
they are all predicate about integrity and authentica-
tion); thus, we can easily, we claim, achieve privacy-
preserving verifiability for them too.

In §6, we analyse formally the new protocol. We
verify with Proverif (Blanchet, 2014) that the new de-

Giustolisi, R., Iovino, V. and Lenzini, G.
Privacy-Preserving Verifiability - A Case for an Electronic Exam Protocol.
DOI: 10.5220/0006429101390150
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 139-150
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

139

sign does not compromise any of the protocol’s en-
joyed security including all its other verifiability prop-
erties. This analysis is a significant step since we
prove that privacy-preserving verifiability for a spe-
cific verifiability test can be achieved while preserv-
ing all the existing security properties of the protocol.

Before moving to the technical part of the paper it
is important to anticipate that private-preserving veri-
fiability can be potentially achieved using many of the
instruments that computer security research offers to-
day for minimize the disclosure of information. Non-
interactive Zero-knowledge proofs (De Santis et al.,
1988) and functional encryption schemes (Boneh
et al., 2011) are the two instruments that stand out for
this purpose. Here, we use the second instrument. We
do not have a formal proof but we discuss in §7 that
only Functional Encryption has features that make it
suitable to our purpose.

2 RELATED WORK

Privacy and verifiability, apparently two contrast-
ing properties, have been discussed in the literature
mainly to show that they can be both satisfied in the
same system.

Most of the works discussing privacy and verifia-
bility in this sense are about voting systems. The liter-
ature on the subject is vast but, to make our point, we
comment the work of Cuvelieret al. (Cuvelier et al.,
2013). The authors propose a new primitive, called
Commitment Consistent Encryption. With it, they re-
design a voting scheme for an election that is veri-
fiable while ensuring everlasting ballot privacy. The
problem they solve for voting is clearly related to that
we raise here: avoid that from a public audit trail a
verifier could learn more than it is allowed to learn.
To a certain extent, Cuvelieret al. propose a crypto-
graphic instance of the problem that we formalize in
this paper. But our notion of privacy-preserving ver-
ifiability is more general and not necessarily crypto-
graphic: it applies to cryptographic protocols as well
as to non-crypto protocols. It is, in other words, a
functional requirement for the verifiability tests that a
system offers to auditors. In this sense, our work re-
lates more to the plentiful research that discusses re-
quirements and definitions of privacy. Again, the lit-
erature on this subject is huge, but the work that most
closely represents the notion of privacy-preservation
that we advance here is that of Mödersheimet al.
(Mödersheim et al., 2013). The work presents and
discussesα−β privacy whereα is what an adversary
knows, andβ are the cryptographic messages that the
adversary sees. Thenα− β privacy means that the

intruder can derive fromβ only what he can derive
from α already. We have not tried it, but we think
that our notion of privacy-preservation can be for-
mulated in term ofα− β privacy. It that were true,
since Mödersheimet al. prove that their definition
subsumes static equivalence of frames and is in some
part decidable with existing formal method tools, we
would gain further ways to prove our notion formally.

This paper also relates with the research on verifi-
ability. This is a property that has been studied preva-
lently, but not exclusively, in secure voting, where
different models and requirements have been pro-
posed (Küsters et al., 2010; Kremer et al., 2010).
For instance,individual verifiability is introduced as
the ability that voters have to prove that their votes
have been “cast as intended”, “recorded as cast”, and
“counted as recorded” (Benaloh and Tuinstra, 1994;
Hirt and Sako, 2000), whileuniversal verifiabilityas
the ability to verify the correctness of the tally using
only public information (Cohen and Fischer, 1985;
Benaloh and Tuinstra, 1994; Benaloh, 1996). Tools
have been proposed to analyse the security of verifia-
bility: Kremer et al. (Kremer et al., 2010) formalise
individual and universal verifiability in the applied pi-
calculus, and Smythet al. (Smyth et al., 2010) use
ProVerif to check verifiability in three voting proto-
cols.

We also base our definition of verifiability on pre-
vious work. The formalization we propose is based
on the model proposed in (Dreier et al., 2015) This
choice is not a coincidence. That work is about verifi-
able e-exams, the same domain that we take here as a
use case to demonstrate that our notion of privacy-
preserving verifiability is meaningful and effective.
Besides, that work proves that Remark!, an exam
protocol rich in security properties (Giustolisi et al.,
2014), is verifiable. Such a proof is fundamental
for this paper, since we need to consider a protocol
that is verifiable although we need it be not privacy-
preserving. Thus, as use case, we also chose Remark!.

3 MODELS & DEFINITIONS

We refer to the specific domain of exams. We con-
sider three fundamental roles: thecandidate, who
takes the test; theexam authority, who helps run the
exam; theexaminer, who grades the tests.

An exam’s workflow is rigidly structured in dis-
tinct sequential phases:Preparation, where an exam’s
instance is created, the questions are selected, and
the candidates enrol;Examination, where the candi-
dates are identified and checked for being eligible, re-
ceive the test sheet(s), answer the questions, and quit

SECRYPT 2017 - 14th International Conference on Security and Cryptography

140

or submit their answers for marking;Marking, where
the exam-tests are assessed and marked;Notification,
where grades are notified and registered.

An Exam’s Abstract Model. An exam and its exe-
cution can be modelled concisely using sets. The defi-
nitions below, slightly simplified, comes from (Dreier
et al., 2015)

Definition 1. Anexamis a tuple(ID,Q,A,M) of finite
sets: ID are the candidates; Q are all the possible
questions; A the possible answers; M all the possible
marks.

Definition 2. Given an exam(ID,Q,A,M), an exam’s
execution, E , is a tuple of two sets

• ID′ ⊆ ID are the registered candidates;

• Q′ ⊆Q are the official questions of the exam;

and of four relations over the exam

• AssignedQuestions⊆ (ID×Q), links a ques-
tion to a candidate, supposedly the question the
candidate receives by the authority;

• SubmittedTests⊆ (ID× (Q×A)), links an an-
swered test to a candidate, supposedly the test
submitted for marking by the candidate;

• MarkedTests⊆ (ID×(Q×A)×M) links a mark
to a exam-tests of a candidate, supposedly the
grade given to the test;

• NotifiedMarks ⊆ (ID ×M) links a mark to a
candidate, supposedly the mark notified to the
candidate;

These four relations model the state of the exam’s
execution at the end of each of the four phases. They
are, in fact, execution logs. There are no requirements
between the relations, and this is because the model is
meant to capture also executions which are erroneous
or corrupted. It may happen that a test assigned to no
one is submitted fraudulently (i.e., creation of test) or
that a test assigned to a candidate is duplicated and
answered in two possible ways, and both copies are
submitted (i.e., duplication of a test). It may happen
as well as that a submitted test is never marked be-
cause it got lost (i.e., loss of a legitimately submitted
and answered test).

Authentication and integrity properties are ex-
pressed as predicates overE . Let c,q,a andm range
over ID,Q,A and M respectively. An example of
property isMarking Integrity, which states that no
mark has changed from marking to notification, and
it is written as follows:

NotifiedMarks⊆
{(c,m) : (c,(q,a),m) ∈ MarkedTests}

Another property,Testing Integrityexpresses that all
the exams that have been marked are submitted for
marking. It is as follows:

{(q,a) : (c,(q,a),m) ∈ MarkedTests)} ⊆
{(q,a) : (c,(q,a)) ∈ SubmittedTests}

Properties can be easily combined. For example,
Marking and Test Integrityis obtained by conjunction
from the previous properties:

NotifiedMarks⊆
{(c,m) : (c,(q,a),m) ∈ MarkedTests
and(c,(q,a)) ∈ SubmittedTests}

(1)

Definition 2 serves well also to express properties
of verifiability of a generic security propertyp. An
exam protocol isp-verifiable if it has atestfor p, say
testp. This is an algorithm that given any exam’s
executionE and some knowledgeK (e.g., decryption
keys) returns true if and only ifp holds onE . For-
mally, p-verifiability can be expressed as

∀E , testp(E ,K) iff E |= p (2)

whereE |= p means thatp holds onE .

A Refined Exam’s Abstract Model. Dreieret al.’s
model partially serves the goal of this paper: it is too
abstract to capture non-trivial notions of privacy like
the one we intend to advance (see Definition 4). We
need a formalism able to model encrypted logs, tests
which run over them, and knowledge gained from
running a test and about the exam’s run. It is in the
interplay between these elements where our notion of
privacy-preserving verifiability will emerge.

Precisely, besides theabstract model, E , which
represents an exam’s log always in clear-text, we con-
sider aconcrete model, {E}, which models the actual
and possibly encrypted logs of an exam’s execution.
A verifiability test is executed on the concrete model
{E}.
Definition 3. Let E and {E} be an abstract and a
concrete exam’s execution respectively, and let p be a
security property overE . Then, p is verifiable if there
exists a test for p,testp, that given some knowledge
K satisfies the following condition:

∀E , testp({E},K) iff E |= p (3)

Any proof aiming at convincing thatp is verifiable
needs to clarify how the test that operates on{E} is
sound and complete with respect to the validity ofp
on E .

The notion of privacy-preserving verifiability is
defined in respect to what a verifier, sayv, can learn

Privacy-Preserving Verifiability - A Case for an Electronic Exam Protocol

141

aboutE by runningtestp({E},K). We are, how-
ever, not interested to capture whatv can learn in-
crementally by running several and cleverly selected
tests. Potentially, quite a deal can be deduced by in-
ference attacks, see (Naveed et al., 2015), but study-
ing the leaks due to such attacks is a goal outside the
scope of this paper.

Let [{E}]p be the portion of{E} to which a ver-
ifier needs to access to run a test forp. Since[{E}]p
can be encrypted,v does not necessarily learn about
the exam’s executionE . It depends on whatv can do
from knowing[{E}]p andK. If we assumev be a pas-
sive but curious adversary, and if we assume that the
learning process works at the symbolic level of mes-
sages, the deduction relation⊢ over messages defines
the ability to learn. It is the minimal relation that sat-
isfies the following equations:

mk,k
−1 ⊢ m

(m,m′) ⊢ m andm′

In the relation above, we abstract from symmet-
ric/asymmetric encryption:k−1 is the key to decrypt,
whatever the paradigm of reference.
Definition 4. LetE be any execution of an exam pro-
tocol andtestp a test for verifiability for a property
p. The test isprivacy-preservingif by running it v
does not learn more about the exam execution than
he knows from the information he is given to run the
test. Formally:

{m : ([{E}]p∪K) ⊢m}∩E = ([{E}]p∪K)∩E

Definition 4 says thatv should learn aboutE no
more than what he knows already from the portion of
the exam’s log and from additional knowledge, i.e.,
from the pieces of information that he needs to know
to run the test.

In Definition 4 we have slightly overloaded the op-
erator∩. SinceE is a tuple of sets it must be consid-
ered applied over each element of the tuple that is:
(A,B)∩C=C∩(A,B) = (A∩C,B∩C). Similarly the
interpretation of⊆when applied to tuple of sets, must
be extended to tuple, that is:(A,B) ⊆ (C,D) iff A⊆
C andB⊆ D.
Definition 5 (Privacy-Preserving Verifiability). A
protocol isprivacy-preserving verifiablewith respect
to a property p, if p is verifiable and admits a verifia-
bility testtestp that is privacy-preserving.

4 MEANINGFULNESS

Claim 1. Our notion of privacy-preserving verifiabil-
ity is meaningful: it can be used to distinguish verifi-
able protocols that are privacy-preserving from those
which are not.

To prove the claim, we refer to an e-exam proto-
col whose verifiability (with respect to several prop-
erties) has been established formally. The protocol is
called Remark! (Giustolisi et al., 2014). The proto-
col is structured in the four typical phases of an exam.
Its message flow is recalled in Figure 1, whereC is a
candidate andE is an examiner. Only one candidate
and one examiner are shown for conciseness, but the
protocol is supposed to work for all candidates and
all examiners and it is executed by them all. An exam
authority,A, helps the process.

Description. The Preparation is the phase where
pseudonyms are generated to ensure a double blind
anonymity in testing and marking. Here,n exponen-
tial mixnets, M in Figure, generate the pseudonyms
PkC for the registered candidateC. The candi-
date already possesses a pair of public/private keys,
〈PkC,SkC〉 and uses the private key to recognize its
designated pseudonym among the pseudonyms gen-
erated for all the candidates and posted on a pub-
lic bulletin board (BB , in Figure). Similarly, the
mixnets generate pseudonyms for the examiner. A
zero-knowledge proof of the generation is present on
the bulletin board as proof of correctness of the gen-
eration process.

At Examination, the selected questions are signed
by the authority and encrypted with the pseudonym of
the candidates. The questions are posted on the bul-
letin board from where the candidates retrieve them.
Then they answer the questions. In Figure,quesis
the question andans is an answer. The candidateC
prepares a tuple〈ques,ans,PkC〉, which he signs with
its private keySkC. The tuple is then encrypts with
the public key of the authority and send to it. The au-
thority decrypts and re-encrypts the message with the
candidate pseudonym and publishes the message on
the bulletin board.

At Marking the authority dispatches the tests to
the examiners. In Figure,A signs the answered test
and uses the pseudonyms of the examiner, i.e.,PkE,
as encryption keys. Hevene re-encrypts with it the
answered test and publishes it on the bulletin board.
From there, similarly to what the candidates did with
the questions,E retrieves the test, marks them (i.e.,
assigns a markM), and prepares a tuple with the an-
swered tests signed by the authority and the marking,
which E signs further with its secret keySkE. En-
crypted this with the public key of the authority,E
returns this message to theA who, in turn, decrypts
the marking and re-encrypts it with the pseudonym of
the candidatePkC.

At Notification the candidates’ anonymity is re-
voked and the marks can finally be registered. The

SECRYPT 2017 - 14th International Conference on Security and Cryptography

142

phase starts when the authority publishes all the
marks together. On request the mixnets reveal (on an
authenticated encrypted channel like one using TLS)
the random values used to generate the pseudonyms
(in Figure,rm, for C).

Security Properties. Remark! ensures several au-
thentication, anonymity, privacy and verifiability
properties. Here, we focus on verifiability, in partic-
ular onuniversal verifiability. Universal means that
anyone only by using public knowledge and without
having participated in the protocol execution can ver-
ify that a specific property holds over the execution.
The public data is generally that available on the bul-
letin board; the pieces of additional information are
explicitly provided for the test, e.g., by the authority.

Remark! has been proven to be verifiable for five
properties (Dreier et al., 2014):

Registration Correctness: all accepted tests are sub-
mitted by registered candidates.

Marking Correctness: all the marks attributed by
the examiners to the tests are computed correctly.

Test Integrity: all and only accepted tests are
marked without any modification

Test Markedness: only the accepted tests are
marked without modification

Mark Integrity: all and only the marks associated to
the tests are assigned to the corresponding candi-
dates with no modifications

The properties are verifiable only if the exam au-
thority handles to the verifier some dataafter the
exam has ended. For instance to verifyRegistra-
tion Correctnessthe manager must reveal the signa-
tures inside the receipts{SignSkA(H(TC)}PkC

posted
on the bulletin board and the random values used to
encrypt the receipts. To verifyMarking Correctness,
the manager must reveal the marked exam-tests inside
the evaluations{SignSkE,hE (MC)}PkA, the random val-
ues used to encrypt the marked tests, and the table
correct ans (not described in Figure 1) that defines
what is the mark given a question and an answer; to
verify Test IntegrityandTest Markedness, the man-
ager must reveal the marked exam-tests inside the
evaluations, the random values used to encrypt the
marked tests, plus the data disclosed for Registration;
finally, to verifyMark Integrity, the manager must re-
veal the examiners’ signatures on the marked exam-
tests inside the evaluations, and the random values
used to encrypt the notifications{SignSkE ,hE(MC)}PkC
before posting them on the bulletin board.

Discussion. Let us see where Remark!’s verifiabil-
ity fails to be privacy-preserving.

To verify Registration Correctness, Remark! pre-
scribes a test that takes the pseudonyms of the
candidates signed by the mixnet, i.e., message
SignSKM

(PkC,hC), and the receipts of submissions
generated by the exam authority i.e., messages
{SignSKA

(H(TC)}PkC
. The test succeeds if for each

pseudonym there is a unique receipt of submission.
The verifier does not know any other information
about the execution of the exam apart the pseudonyms
and the hash version of the tests. Hence, the registra-
tion test satisfies Definition 4.

To verify Marking Correctness, the protocol re-
quires a test that inputsSignSKM

(PkC,hC), the ta-
ble correct ans, and the mark notifications signed by
the examiner and published by the exam authority
{SignSKE ,hE

(MC)}PkA. The test needs also the help of
the exam authority that decrypt these last messages,
and reveals theMC = 〈SignSKA

(PkE,TC),mark〉which
reveals the pseudonym of the examiner who marked
the answers, the questions, and the mark. This test
does not satisfy Definition 4: the verifier learns the
questions, the answers, and the link between candi-
date and examiner pseudonyms.

To verify Test Integrity, the protocol needs a
test that takes messageSignSKM

(PkC,hC), the re-
ceipts of submissions{SignSKA

(H(TC)}PkC
, and the

mark notifications generated by the exam authority
{SignSKE ,hE

(MC)}PkC
. This test reveals to the verifier

questions, answers, and the link between candidate
and examiner pseudonyms, which are leaked in the
mark notifications, so it does not satisfy Definition 4

To verify Test Markednessa test needs to input the
same data as in test integrity. The same considerations
outlined above applies for this test and the test does
not satisfy Definition 4.

To verify Mark Integrity, Remark! pre-
scribes a test that takes in the mark notifications
{SignSKE ,hE

(MC)}PkC
and allows the verifier to check

if the marks that the exam authority assigned to the
candidates (in Figure, RegisterPkC,mark) coincide
with the marks that the examiner assigned to the
candidates tests inMC = 〈SignSKA

(PkE,TC),mark〉.
Once more, the knowledge of questions, answers, and
link between candidate and examiner pseudonyms is
leaked byMC, although those pieces of information
are not necessary to evaluate mark integrity. Also this
test does not respect Definition 4.

Overall, Remark! is privacy-preserving only for
Registration Correctness verifiability.

Privacy-Preserving Verifiability - A Case for an Electronic Exam Protocol

143

Examiner CandidateMixnet Exam Authorityq q
Pr

ep
ar

at
io

n

r̄m =
m
∏
i=1

ri, PkC = Pkrm
C , hC = gr̄m

r̄′m =
m
∏
i=1

r′i , PkE = Pk
r̄′m
E , hE = gr̄′m

✲1 : SignSKM
(PkC,hC) BB

✲2 : SignSKM
(PkE ,hE) BB

Check PkC = hSkC
CCheck PkE = hSkE

E

q q

Te
st

in
g ✛ 3 : {SignSKA

(quest,PkC)}PkCBB

✛

TC = 〈quest,ans,PkC〉

4 : {SignSKC ,hC
(TC)}PkA

✛ 5 : {SignSKA
(H(TC)}PkCBBq q

Ma
rk

in
g

BB ✛ 6 : {SignSKA
(PkE ,TC)}PkE

✲

MC = 〈SignSKA
(PkE ,TC),mark〉

7 : {SignSKE ,hE
(MC)}PkAq q

No
ti

fi
ca

ti
on ✛ 8 : {SignSKE ,hE

(MC)}PkCBB

✲9 : r̄m
(T LS)

Register PkC,mark

Figure 1: The message flow of Remark!

5 APPLICABILITY

Except forRegistration Correctness, all the tests for
universal verifiability that Remark! offers are not pri-
vacy preserving. Here, we show how to make them
privacy-preserving. For reason of space we show the
technique only that the test aboutMark and Test In-
tegrity verifiability. We claim, but we leave a proof
for future work, that we can apply the same idea of
solution to achieve privacy-preserving verifiability for
all the other verifiability tests.

To achieve our goal we propose a version of Re-
mark! that relies onFunctional Encryption(FE). This
is an encrypting paradigm that relies on the notion of
FE scheme (Boneh et al., 2011).

Definition 6. A FE schemeis a 4-tuple of functions
(Setup,KeyGen,Enc,Eval), where:

1. Setup(1λ,1n) returns a pair of keys(Pk,Msk).
The first is a public key and the other a secret mas-
ter key. The keys depends on two parameters:λ,
a security parameter and n, a length. They are

SECRYPT 2017 - 14th International Conference on Security and Cryptography

144

polynomially related.

2. KeyGen(Msk,C) is a function that returns ato-
ken, TokMsk

C . A token is a string that when evalu-
ated (see item 4, functionEval) on specific cipher-
texts encrypted withPk returns the same output
as theBoolean CircuitC (a decider) would re-
turn if it were applied on the corresponding plain-
texts. We talk about Boolean Circuits (Jukna,
2012) because the “functionality” in Functional
Encryption is defined on this model of computa-
tion. Here, C∈ Cn, wherenCn is the class of
Boolean Circuit on inputs long n bits.

3. Enc(Pk,m) encrypts the plaintext m∈ {0,1}n
with the public keyPk.

4. Eval(Pk,Ct,TokMsk
C) is the function that pro-

cesses the token as we anticipated in item 2. On
inputCt = Enc(Pk,m) the function returns C(m)
that is the same boolean output (accept/reject) as
that of circuit C applied on string m. The keyMsk
embedded in the token is used retrieve the plain-
text m fromCt. For any other input than the spec-
ifiedCt, Eval is undefined and returns⊥.

A FE scheme should be of course instantiated
cryptographically, but whatever implementation we
chose it must satisfy two specific requirements:cor-
rectnessandsecure indistinguishability.

The requirement ofcorrectnesssays that the func-
tions in Definition 6 behave as described: for all
(Pk,Msk)← Setup(1λ,1n), and allC ∈ Cn andm∈
{0,1}n, and forTokMsk

C ←KeyGen(Msk,C) andCt←
Enc(Pk,m) thenEval(Pk,Ct,TokMsk

C) = C(m). Oth-
erwise it returns⊥.

The requirement ofsecure indistinguishability
says that the scheme is “cryptographically secure”
against any active and strong enough adversary
(i.e., uniform probabilistic polynomial time adver-
saries). Such an adversary, despite having seen
tokens TokMsk

C , cannot distinguish (with a non-
negligible advantage over pure guessing) two ci-
phertextsEnc(Pk,m0) and Enc(Pk,m1) for which
C(m0) =C(m1).

A stronger security requirement used in FE is
simulation-security, but due to impossibility results
for it (see (Boneh et al., 2011)), we limit our assump-
tion to indistinguishability security.

5.1 Revising the Protocol

We modify Remark! and let it have a test forUni-
versal Marking and Test Integrity(UMTI) verifiabil-
ity that is privacy-preserving according to our Defini-
tion 4. We use a FE scheme to encrypt the messages
that the verifier needs to process when running the

test. From §3 we recall that the test should decide the
following predicate:

testUMTI({E},K) iff (NotifiedMarks⊆
{(c,m) : (c,(q,a),m) ∈ MarkedTests
and(c,(q,a)) ∈ SubmittedTests})

(4)

The test should succeed if and only if the set of
all notified marks to candidates is included in the set
of exams that have been marked for those candidates
and the exams marked should be those that the have
submitted for marking.

As we discussed in §4, in Remark! this test allows
the verifier see all messagesSignSKE ,hE

(MC) which he
needs to build the sets as in Equation (4). Thus, the
verifier gets to know the questions and answers and
their link with the candidate identifiers.

By resorting to a FE scheme we intend to achieve
a version of the test that implements predicate (4) that
does not reveal a candidate’s questions and answers,
which is a sufficient condition to satisfy Definition
5. Figure 2 shows the new protocol, but reports only
the messages that have been modified. We assume
a trustedFE authoritythat generates the publicPkFE
fromMsk. It can be any party, internal or external, but
must be trusted in this particular task. It is implicit in
the Figure 2, visible only when we usePkFE. Mes-
sages in step 5 and in step 8 are those which change.
In 5 the exam authority encrypts withPkFE the signa-
ture of a testTC that a candidate submitted for mark-
ing. It also post a digest of the same message, signed
with the candidate’s pseudonym. To avoid that the
message encrypted underPkFE and that encrypted un-
derPkC hide two different values (i.e.,y andTC such
that H(TC) 6= y), we require a non-interactive zero
knowledge proof (NIZK) of consistency,π in Figure.
Similarly, in step 8 the authority encrypts withPkFE
the marking and another NIZKπ′ is required.

5.2 Revising the Verifiability Test

Ciphertexts in 5 and in 8 will be used in combination
with the tokens that the FE authority prepares for the
verifier. It needs tokens that implement two functions:

The first, functionf1, embeds the public-keysPkC
andPkE and the markmark to be verified. It is sup-
posed to inputSignSkE,hE

(MC), the message in 8. Af-
ter properly parsing the strings, checks whether the
mark, saymark′, contained inMC is equal tomark,
checks the signature and checks whether thePk

′
C con-

tained inTC (in turn, contained inMC) equalsPkC. It
also verifies the validity of the zero-knowledge proof
π. If a check fails, the function returns 0. If all checks
succeed, it returns 1. Functionf1 is coded as follows:

Privacy-Preserving Verifiability - A Case for an Electronic Exam Protocol

145

Function f1[PkC,mark,PkE](σ)
1. If V ERIFY(σ,PkE) = 0 then Return 0
//verifies a signature, returns 0 on fails
2. Parseσ asSignSkE ,hE

(MC)

3. ParseMC as〈SignSKA
(PkE,TC),mark′〉

(getmark′,TC)
4. ParseTC as〈quest,ans,Pk

′
C〉

(getPk′C)
5. If mark′ 6= markReturn 0
6. If Pk′C 6= PkC Return 0
7. Return 1

The second function,f2, embeds the public-keyPkC
and the messageSignSkE,hE

(MC). It expects to input
the second part of message 5,SignSkC,hC

(TC). It
checks the signatures and whether both messages
refer to the same exam test. The function returns 0 as
soon as one check fails, 1 otherwise. Functionf2 is
coded as follows:

Function f2[PkC,SignSkE ,hE
(MC)](σ)

1. If V ERIFY(σ,PkC) = 0 then Return 0
//verifies a signature, returns 0 on fails
2. Parseσ asSignSkC,hC

(TC)
(getTC)

3. ParseMC as〈SignSKA
(PkE,T ′C),mark〉

(getT ′C)
4. If TC 6= T ′C Return 0
5. Return 1

The verifiability test uses two sets of tokens of form
TokMsk

f1[x]
andTokMsk

f2[x]
wherex ranges over the token

embedded parameters.
The test then calls the functionEval over those to-

kens to check whether thef1 and f2 holds on the mes-
sages found on the bulletin board that correspond the
the messages that the verifier needs to implement the
test in Equation (4).

testUMTI({E},K) first verifies whether for each
notified mark per candidate there exists at least one
message among those in step 8 that corresponds to
the mark for a test of that candidate; if one is found
the test continues and checks whether there is at least
one message among those in step 5 that corresponds
to that exam for that candidate submitted for marking.

The test requires to know the markings that have
been notified to the candidates andPKE the public
key of the authority, soK = {(PkC,markC) : C ∈
IDrc}∪ {PkE}. Formally the test is implemented by
the following algorithm:

function testUMTI ({E},K):
for (PkC,markC) ∈ K do

Tok1 ← GETTOK(f1[PkC,markC,PkE])
for ({SignSkE,hE

(MC)}PkFE ,π) ∈ {E} do
b1 ← Eval(Tok1,{SignSkE ,hE

(MC)}PkFE);
if b1 then ExitLoop;

if b1 then
b′1 ← VERIFY(π for R);
Tok2←GETTOK(f2[SignSkE ,hE

(MC)]);
for ({SignSkC,hC

(TC)}PkFE ,π′)∈{E} do

b2 ← Eval(Tok2,{SignSkC,hC
(TC))}PkFE);

if b2 then ExitLoop

if b2 then
b′2← VERIFY(π′ for R′);

return b1 ·b′1 ·b2 ·b′2
GETTOK is used to retrieve a specific token. Here,

we use the function’s embedded parameters to indi-
cate which token is being requested. However, the
verifier does not necessarily know the value of the pa-
rameter to perform such request, but he must be able
to indicate the token he needs e.g., by means of an
index. RelationsR andR′ are so defined:

Relation R[PkC,PkFE,H](x)
1. Parsex as

(Ct1 = {SignSKA
(y)}PkC

,
Ct2 = {SignSkE ,hE

(TC)}PkFE)
(gety andTC)

2. If H(TC) 6= y Return 0
3. Return 1

Relation R′[PkC,PkFE](x)
1. Parsex as

(Ct1 = {SignSKE,hE
(y)}PkC

,

Ct2 = {SignSkE ,hE
(TC)}PkFE)

(gety andTC)
2. If TC 6= y Return 0
3. Return 1

Discussion. We argue thattestUMTI({E},K) is
privacy preserving. By assumption, the FE scheme
satisfies the indistinguishability security. Thus, a
Dolev-Yao attacker, given a ciphertextCt encrypt-
ing a messagem and a token for a functionf , can
only derive f (m). This holds also for a curious ver-
ifier who observes the tokens for the two functions
f1 and f2. The crucial consideration is that, by con-
struction, such two functions return aBooleanvalue
and nothing about the messages that are considered
in our model (cf. Definition 1) of an exam’s execu-
tion. Moreover, among the messages that the verifier
gets in input, precisely inK, there is nothing that al-
lows him to decrypt other messages on the bulletin
board. Actually, all the decryption operations that the
verifier needs are realized within the functionEval.
Therefore, it follows thattestUMTI({E},K) is pri-
vacy preserving according to Definition 4.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

146

∼

∼

∼

∼

∼

∼

∼

∼

Examiner CandidateMixnet Exam Authority

q q
Te

st
in

g ✛
3 : {SignSKA

(quest,PkC)}PkCBB

✛

TC = 〈quest,ans,PkC〉

4 : {SignSKC ,hC
(TC)}PkA

✛

5 : {SignSKA
(H(TC)}PkC

{SignSkC ,hC
(TC)}PkFE ,π

BBq q

Ma
rk

in
g

BB ✛
6 : {SignSKA

(PkE ,TC)}PkE

✲

MC = 〈SignSKA
(PkE ,TC),mark〉

7 : {SignSKE ,hE
(MC)}PkAq q

No
ti

fi
ca

ti
on

✛

8 : {SignSKE ,hE
(MC)}PkC

{SignSKE ,hE
(MC)}PkFE ,π′

BB
✲9 : r̄m

(T LS)

Register PkC,mark

Figure 2: A revision of Remark! using FE (only phases that have been changed).

6 FORMAL ANALYSIS

We prove formally that the verifiability test is sound
and complete and that the new protocol does satisfy
the same security properties as the original Remark!.
This exercise of formal analysis is necessary because
we intend to get insurance than we achieve privacy-
preserving verifiability incrementally, on top of all the
authentication, integrity and privacy properties hold-
ing on the protocol and not on their expenses.

We perform the analysis in Proverif (Blanchet,
2014). Our ProVerif model of the protocol is an ex-
tension of the original Remark! model as it was pre-
sented in (Dreier et al., 2014). The extension mainly
regards the following aspects:

• A ProVerif specification that reflects the new pro-
tocol description.

• A new equational theory for the Functional En-
cryption primitives defined in our protocol.

• A new UMTI verifiability test.

The equational theory is illustrated in Table 1 to
model the cryptographic primitives of the protocol.

Table 1: Equational theory in formal analysis of the privacy-
preserving verifiability version of Remark!

Name Equation

Signature

getmess(sig(m,k)) = m

checksig(sig(m,k),spk(k)) = m

checksig(sig(m,ps pr(k,

exp(rce))),ps pub(pk(k), rce)) = m

ElGamal

decrypt(enc(m, pk(k), r),k) = m

decrypt(enc(m,ps pub(pk(k),

rce), r),ps pr(k,exp(rce))) = m

checkps(ps pub(pk(k), rce),

ps pr(k,exp(rce))) = true

FE f1

eval f1(pk(k),ps pub(pk(k), rc),

ps pub(pk(k), re),mark,

enc(sig(sig(ps pub(pk(k), re),

(q,a,ps pub(pk(k), rc)),k),

mark,ps pr(k,exp(re))), pk(k))) = true

FE f2

eval f2(pk(k),ps pub(pk(k), rc),

enc(sig((q,a,ps pub(pk(k), rc)),

ps pr(k,exp(rce))), pk(k))) = true

Privacy-Preserving Verifiability - A Case for an Electronic Exam Protocol

147

The equations that model the digital signature are
rather standard in ProVerif.

ElGamal encryption is extended with equa-
tions that model pseudonyms as public keys: the
pseudonym, which also serves as test identifier, can
be generated using the functionps pub which takes
in a public key and a random exponent. In fact,
this function models the main feature of exponenti-
ation mixnet. Functionps pr can be used by a prin-
cipal to decrypt or sign anonymous messages. The
function takes in the private key of the principal and
the new generator published by the mixnet. Func-
tion checkpsallows a principal to check whether a
pseudonym is associated with the principal’s private
key. In practice, principals use this function to iden-
tify their pseudonyms published on the bulletin board.
A public channel models the bulletin board.

The the equations that defineseval f1 andeval f2
model the two Functional Encryption primitivesf1
and f2 respectively. They returntrue if and only if the
corresponding plaintext versionf1 and f2 returntrue.
Note that our equational theory of functional encryp-
tion captures the property of verifiable FE. Whenever
an encrypted message has a form that is not consis-
tent with the constructorenc, the deterministiceval
fails, and no rule can be applied. We do not explicitly
model the generation of the token:Setup andKeyGen
are generated by a trustworthy authority. It follows
that the only two allowable functions aref1 and f2.

Verifiability. From Definition 3, we recall that a
protocol isp-verifiable if it admits a sound and com-
plete algorithm that decidesp. Soundness means that
the verifiability-test returnstrue only if the property
holds. Completeness means that if the property holds,
the verifiability-test always returnstrue.

We use ProVerif’s correspondence assertions to
prove soundness. The verification strategy consists of
checking that the eventOK emitted by the verifiability-
test when it is supposed to returntrue is always pre-
ceded by the event emitted in the part of the code
where the property becomes satisfied. In case of Mark
and Test Integrity, this happens when the exam au-
thority assigns the mark to the candidate.

We resort to the unreachability of the eventKO,
which is emitted by the verifiability-test when it is
supposed to returnfalse, to prove completeness. In
this case, the ProVerif model enforces only honest
principals and prevents the attacker to manipulate the
input data of the verifiability-test. In fact, a com-
plete verifiability-test must succeed if its input data
is correct. ProVerif confirms that our protocol meets
UMTI verifiability and the verifiability-test is sound

and complete1.
We observe that ProVerif can only prove the case

in which only one entry on the bulletin board is con-
sidered. Mark Integrity verifiability requires thatall
and only the marks associated to the tests are assigned
to the corresponding candidates. Thus, we need to
iterate over all candidates who submitted their tests,
but ProVerif cannot do this automatically as it does
not support loops. We resort on the manual induction
proofs provided by Dreier et al. (Dreier et al., 2014)
in which the base case is given by the automated re-
sult in ProVerif, and then generalise such result to the
general case with an arbitrary number of candidates,
tests, and marks. Those proofs applies to the original
Remark! as well as to this new version. In fact, the
assumption that the auditor can check the correspon-
dences of the assigned entries to the marked entries
on the bulletin board does not change: each entry that
appears on the bulletin board at step 6 of the protocol
can be matched to an entry that appears on the bulletin
board at step 8 of the protocol.

Authentication. The new protocol meets all the
original authentication properties of Remark!. Since
the new protocol differs from Remark! only in mes-
sages 5 and 8, we could reuse the same authentication
definitions advanced by Dreier et al. (Dreier et al.,
2014) and verify them in Proverif.

7 CONCLUSION

In this pioneering work, we put forth a new notion of
security that entails features of both verifiability and
privacy. To illustrate the benefits of our framework,
we proved that our definition is meaningful enough to
empower applications in the concrete domain of elec-
tronic exams and in particular to an extension of an
exam protocol that satisfies several verifiability prop-
erties but which is not compliantly with our privacy-
preserving requirement.

To achieve our goals, we employ the crypto-
graphic tool of Functional Encryption (FE). Only with
FE we can verify obliviously a property that is global
over the execution of the protocol, a property that
is about the data handled and processed by several
agents in the protocol’s run. In making this choice
we considered to obtained the same effect with other
tools, the most promising be zero knowledge proofs,
but, we claim, using this tool would have required
an authority that looks at the execution and adds

1The full ProVerif code is available on request.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

148

the proofs and that interacts with the several proto-
col agent’s asking them for other Zero-Knowledge
proofs, so changing too much how an exam should
work. This argument requires however a proof and
we plan to inquire into this question as future work.

We have not benchmarked the new protocol. At
current stage, our result is only of theoretical rele-
vance due to the high computational cost of FE for
circuits that we assumed and for this reason we rec-
ognize that FE may look as be an overkilling to some-
one. However, there is another feature of electronic
exams that must be considered here. The limited di-
mension of the an exam’s audiences and the expected
time of an exam’s notification makes feasible im-
plementations that rely on time-inefficient encryption
schemes. Comparing with electronic voting, for in-
stance, where a whole country is involved and where a
result is nowadays expected be announced within the
day, for an exam the expected audiences is definitely
far more contained while waiting weeks is a perfectly
acceptable time frame to get notified of the result.
We defer to further research about implementing our
privacy-preserving verifiability notion efficiently.

It should be stressed that although contextualized
in reference to exams, our research is not bound to
work in that domain only. The notion of privacy-
preserving verifiability is abstract and the solution
that we propose to ensure privacy-preservation is
demonstrated for a universal verifiability test of a
common integrity and authentiation property. There-
for it seems plausible to apply our results in other do-
mains, like voting or auction, where the verifiability
properties are also about integrity and authentication.
Proving this claim is future work.

We conclude by pointing to a future work for
us and an open problem to whom it may be inter-
ested: to study the relation between our notion and
that presented by Mödersheimet al. of α-β pri-
vacy (Mödersheim et al., 2013). Were this correlation
proved, we could gain a straightforward way to verify
formally privacy-preserving verifiability through the
fact α-β privacy subsumes static equivalence.

ACKOWLEDGEMENTS

R. Giustolisi’s research is supported in part by
DemTech grant 10-092309, Danish Council for
Strategic Research, Programme Commission on
Strategic Growth Technologies; G. Lenzini’s by the
SnT / pEp Securitypartnership project “Protocol of
Privacy Security Analisys”. V. Iovino is supported by
a FNR CORE grant (no. FNR11299247) of the Lux-
embourg National Research Fund.

REFERENCES

Adida, B. and Neff, C. A. (2006). Ballot Casting Assur-
ance. InProc. of the USENIX/Accurate Electronic
Voting Technology, EVT’06, p. 7–7. USENIX Asso-
ciation.

Benaloh, J. (1996).Verifiable Secret-Ballot Elections. PhD
thesis, Yale University.

Benaloh, J. and Tuinstra, D. (1994). Receipt-free secret-
ballot elections. In26th Sym. on Theory of Computing,
STOC’94, p. 544–553, New York, NY, USA. ACM.

Blanchet, B. (2014). Automatic Verification of Secu-
rity Protocols in the Symbolic Model: the Verifier
ProVerif. InFoundations of Security Analysis and De-
sign VII, FOSAD Tutorial Lectures, volume 8604 of
LNCS, p. 54–87. Springer.

Boneh, D., Sahai, A., and Waters, B. (2011). Functional en-
cryption: Definitions and challenges. In8th Theory of
Cryptography Conf., TCC 11, volume 6597 of LNCS,
p. 253–273. Springer.

Cohen, J. and Fischer, M. (1985). A robust and veri-
fiable cryptographically secure election scheme. In
26th Ann. Sym. on Foundations of Computer Science,
FOCS’85, p. 372–382, Portland, Oregon, USA. IEEE
Computer Society.

Cuvelier, E., Pereira, O., and Peters, T. (2013).Election Ver-
ifiability or Ballot Privacy: Do We Need to Choose?,
p. 481–498. Springer.

De Santis, A., Micali, S., and Persiano, G. (1988). Non-
interactive zero-knowledge proof systems. In Ad-
vances in Cryptology, CRYPTO87, volume 293 of
LNCS, p. 52–72. Springer.

Department of Defence (1987). DoD Personnel Security
Program. DOD 5200.2 R.

Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P., and
Lenzini, G. (2015). A Framework for Analyzing Ver-
ifiability in Traditional and Electronic Exams. In11th
Int. Conf. Information Security Practice and Experi-
ence, ISPEC 2015, volume 9065 of LNCS, p. 514–
529, 2015. Springer.

Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P.,
Lenzini, G., and Ryan, P. Y. A. (2014). Formal anal-
ysis of electronic exams. In11th Int. Conf. on Se-
curity and Cryptography, SECRYPT 14, August, p.
101–112. SciTePress.

Giustolisi, R., Lenzini, G., and Ryan, P. Y. A. (2014).Re-
mark!: A Secure Protocol for Remote Exams, volume
8809 of LNCS, p. 38–48. Springer.

Hirt, M. and Sako, K. (2000). Efficient receipt-free vot-
ing based on homomorphic encryption. In19th Ann.
Conf. on the Theory and Applications of Crypto-
graphic Techniques: Advances in Cryptology (EU-
ROCRYPT’00), volume 1807 ofLNCS, p. 539–556.
Springer.

Jukna, S. (2012).Boolean Function Complexity - Advances
and Frontiers, volume 27 ofAlgorithms and combina-
torics. Springer.

Kremer, S., Ryan, M., and Smyth, B. (2010). Elec-
tion verifiability in electronic voting protocols. In
15th Eur. Sym. on Research in Computer Security,

Privacy-Preserving Verifiability - A Case for an Electronic Exam Protocol

149

ESORICS’10, volume 6345 ofLNCS, p. 389–404.
Springer.

Küsters, R., Truderung, T., and Vogt, A. (2010). Account-
ability: definition and relationship to verifiability. In
17th Conf. on Computer and Communications Secu-
rity, CCS’10, p. 526–535. ACM.

Mödersheim, S. A., Groß, T., and Viganò, L. (2013).Defin-
ing Privacy Is Supposed to Be Easy, p. 619–635.
Springer.

Naveed, M., Kamara, S., and Wright, C. V. (2015). In-
ference Attacks on Property-Preserving Encrypted
Databases. In22nd ACM SIGSAC Conf. on Computer
and Communications Security, CCS’15, p. 644–655,
New York, NY, USA. ACM.

Smyth, B., Ryan, M., Kremer, S., and Mounira, K. (2010).
Towards automatic analysis of election verifiability
properties. InWork. on Automated Reasoning for Se-
curity Protocol Analysis and Issues in the Theory of
Security, ARSPA-WITS’10, volume 6186 ofLNCS,
p. 146–163. Springer.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

150

