
Supporting Pre-shared Keys in Closed Implementations of TLS

Diogo Domingues Regateiro, Óscar Mortágua Pereira and Rui L. Aguiar
DETI, University of Aveiro, Instituto de Telecomunicações, 3810-193, Aveiro, Portugal

Keywords: Software Architecture, Secure Communications, Information Security, Network Protocols.

Abstract: In the business world, data is generally the most important asset of a company that must be protected.
However, it must be made available to provide a wide variety of services, and so it can become the target of
attacks by malicious users. Such attacks can involve eavesdropping the network or gaining unauthorized
access, allowing such an attacker to access sensitive information. Secure protocols, such as Transport Layer
Security (TLS), are usually used to mitigate these attacks. Unfortunately, most implementations force
applications to use digital certificates, which may not always be desirable due to trust or monetary issues.
Furthermore, implementations are usually closed and cannot be extended to support other authentication
methods. In this article a methodology is proposed to slightly modify closed implementations of the TLS
protocol that only support digital certificates, so pre-shared keys are used to protect the communication
between two entities instead. A performance assessment is carried out on a proof-of-concept to demonstrate
its feasibility and performance.

1 INTRODUCTION

Security is an important aspect to consider when
sensitive data is being served by some service, but as
in many software solutions, it is often regarded at
later phases of their development cycle. Therefore,
many companies end up relying on the usage of
secure communication channels to authenticate client
applications and encrypt the data transmitted. To this
end, digital certificates are many times used to secure
the transmission of that data.

Digital certificates, which uses asymmetric
cryptography, is a very good solution for situations
where communication is required between endpoints
that are unknown to each other, such like browsers
and webservers. However, the usage of digital
certificates places extra responsibility on the users of
the client applications, among other security
problems (Leavitt, 2011). The users have to maintain
the public key certificate of the server secure if it is
not signed by a certificate authority whose public key
certificate is distributed along with the device being
used, making the whole system rely on a Public Key
Infrastructure (Weise, 2001).

There are several reasons as to why a company
might not want to have their certificates signed by an
external certificate authority, e.g. the fact that the
company must trust a third-party company or the

money required to sign the company certificate. This
can lead to self-signed certificates being used, which
requires a level of trust in the users of the client
applications that may not be compatible with the
business policies. A self-signed public key certificate
can be easily replaced on the client application host
device without the user noticing, meaning that an
intruder can still impersonate the server to obtain
sensitive information that can be used later for
follow-up attacks. Even when the server certificate is
signed by a certificate authority, it is still possible for
an attacker to install a new root certificate authority
on the client application host device and forge a new
certificate claiming the attacker to be the server, since
root certificate authorities’ certificates are always
self-signed. Incidentally, human users of systems that
rely on these certificates do not always verify which
root certificate authority signed the certificate in use.

This paper argues that TLS implementations
based on pre-shared keys can address these concerns,
because using pre-shared keys removes the need to
trust certificate authorities, and by extension paying
them to sign a digital certificate. Hence, it will focus
on situations where asymmetric keys are not
necessarily the best option, such as between a server
and a custom client application that connects to it.

Furthermore, the client application does not have
to validate the certification chain of the certificate

192
Regateiro, D., Pereira, Ó. and Aguiar, R.
Supporting Pre-shared Keys in Closed Implementations of TLS.
DOI: 10.5220/0006424701920199
In Proceedings of the 6th International Conference on Data Science, Technology and Applications (DATA 2017), pages 192-199
ISBN: 978-989-758-255-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

presented by the server. If the server does not know
the pre-shared key, then the connection simply cannot
be made.

Additionally, using pre-shared keys is less prone
than certificate authentication to certain types of
configuration mistakes, such as expired certificates or
mismatched common name fields. However, the
system must apply restrictions on the accepted pre-
shared keys to avoid low entropy.

Furthermore, such an implementation provides
mutual authentication (i.e. the client and the server
both authenticate each other), while TLS with server
certificates only authenticates the server to the client,
leaving the client authentication to the application
logic. Client certificates can be used to authenticate
the client, but it may be easier for a user to remember
a pre-shared secret, such as a password, than to
manage a certificate. Additionally, the business would
have to trust the client to keep their private key safe.

However, using pre-shared keys can give rise to
some new issues, such as the possibility of the users
writing down the keys or how the endpoints agree on
a shared-key securely. These issues can also be
mitigated and will be discussed.

A previous work is presented (Pereira et al.,
2014)(Regateiro et al., 2014) and (Pereira et al.,
2015), called Dynamic Access Control Architecture
(DACA), where a distributed access control
framework allows the clients to connect to a database
through runtime generated access control
mechanisms. There, the client applications can use an
interface based on Java Database Connectivity
(JDBC), which is implemented by the access control
mechanisms, to access and manipulate data stored in
a server. A connection to a server side application is
also made to configure the runtime generation of the
access control mechanisms, based on the security
policy that applied to that client. The method
proposed in this paper can then be used to secure this
framework without the issues described.

This paper contributes with a method to avoid the
usage of digital certificates to authenticate the server
and the client using TLS. It also analyzes the changes
necessary to make this possible, the security
considerations that must be taken into account and its
impact on the performance of a system.

The paper is divided as follows: chapter 2 presents
the related wok, chapter 3 presents the proposed
concept solution, chapter 4 presents a proof of
concept detailing the method of implementation and
the related issues, on chapter 5 a performance
assessment is carried out to measure the overhead of
the solution and on chapter 6 a discussion of the
proposed work is made.

2 RELATED WORK

The work described in this article attempts to add
support for pre-shared keys in SSL/TLS (IETF,
2008), even though the standard does define cipher
suits that make use of pre-shared keys instead of
digital certificates. Therefore, this article is not aimed
to modify the standard, but instead to make it possible
to use pre-shared keys with closed implementations
of TLS that do not support these cipher suits. One
such case is the Java implementation (Oracle, n.d.),
which is not extensible to support new cipher suits
programmatically and does not implement the cipher
suits using pre-shared keys. The method described in
this paper will allow to use pre-shared keys in the Java
implementation of TLS.

In terms of security, the SSL/TLS protocol has
seen some work to try to improve it. In (Oppliger et
al., 2006) and (Oppliger et al., 2008), a session aware
user authentication is introduced and expanded in an
attempt to thwart Man-In-The-Middle (MITM)
attacks. Unfortunately, these approaches still use
digital certificates. While the proposed solution is not
completely invulnerable to these kind of attacks, it
can detect when one occurs and preventive measures
can be taken before sensitive data is disclosed.

There are SSL/TLS cipher suits that do not require
digital certificates, and therefore certificate
authorities and a public key infrastructure, that
provide secure communication based on passwords
such as TLS-SRP (Taylor et al., 2007). The Secure
Remote Password (SRP) (Wu, 1998) is a password
authenticated key exchange that allows to parties to
agree on a common value derived from a password
and a salt, known in advance. This value is then used
to establish a TLS connection. The SRP protocol is
also a form of augmented password authenticated key
exchange, meaning that the server does not store any
password equivalent data. The solution in this paper
does not possess this feature, but is not as complex
and requires less computing power to use since it does
not utilize complex mathematics.

Other password authenticated key exchange
protocols exist, such as the Simple Password
Exponential Key Exchange (SPEKE) (Hao and
Shahandashti, 2014) (MacKenzie and MacKenzie,
2001) or Password Authenticated Key Exchange by
Juggling (J-PAKE) (Hao and Ryan, 2010) (Toorani,
2014) (MacKenzie and MacKenzie, 2001). However,
no known actively supported implementation in TLS
exist.

Supporting Pre-shared Keys in Closed Implementations of TLS

193

3 SOLUTION CONCEPT

The goal with this work is to adapt the SSL/TLS
encryption protocol to use pre-shared keys instead of
digital certificates on closed implementations that do
not support the specific cipher suits that makes use of
them.

To achieve this goal, the capabilities of the
SSL/TLS encryption protocol are required to be
maintained without the need for certificate authorities
or a public key infrastructure. Instead, a pre-shared
key will be used to establish the secure connection.
While a pre-shared key can be obtained from a user
of the client application for server impersonation, it is
likely to be different between users. Provided that
non-trivial pre-shared keys are used, any attempt at
server impersonation will only affect that user/client
application. This differs from a server certificate
because, since it is the same for every client
application, one forged certificate signed by a
certificate authority installed on the device is all that
is required to impersonate the server for every client,
even easier if the certificate is self-signed.

In the event a pre-shared key is stolen from a user,
many methods of determining that a non-legitimate
client is trying to use the pre-shared key of another
client can be put in place, such as authentication
attempt notifications or client location based validation
using the IP address. The protocol behavior of the
proposed solution under certain attack scenarios will
also be shown.

This chapter is divided as follows: section 3.1
introduces the adapted protocol which use pre-shared
keys without the required cipher suit and section 3.2
will open some discussing regarding security
considerations that are raised in the standard in the light
of the adapted protocol.

3.1 TLS Protocol Adaptation Method

In this section the adapted protocol that is being
proposed will be discussed. The basis of the solution
for an SSL/TLS based protocol using a pre-shared
key relies on setting up an initial SSL/TLS channel
using the Diffie-Hellman key exchange protocol
(Diffie and Hellman, 1976) in anonymous mode. This
mode allows a connection to be made without the use
of certificates, but it leaves the connection vulnerable
to MITM attacks and neither the server or the client
are authenticated. The connection encryption keys are
then modified to provide these features.

The basic TLS handshake protocol message
exchange pattern can be seen in Figure 1. since a
certificate is used in this example, and for both parties

Figure 1: Basic TLS protocol using server certificate.

to agree on a common secret to encrypt the
communication, the client must generate a secret and
send it encrypted with the server public key. Since the
data encrypted with the public key can only be
decrypted with the private key and only the server
should possess the private key, only the server can
decode the shared secret that will be used to encrypt
the communication with the client. Given that the
client trusts the certificate authority that signed the
server certificate, it has some degree of confidence
that the secret can only be decrypted by the intended
server. Further communication is then encrypted
using the agreed secret.

Instead of using digital certificates due to the
issues presented, the adapted protocol makes use of
the Diffie-Hellman key exchange protocol. The basic
Diffie-Hellman key-exchange protocol uses a mixture
of public and private values so that two parties can
agree on a secret, exchanging only public information
that does not allow a third party to easily arrive at the
agreed secret.

The TLS implementation using the Diffie-
Hellman key exchange protocol in anonymous mode
uses an agreed key K to derive the session key for
encrypting the rest of the communication, but it does
not authenticate the client or the server. Hence, it is
vulnerable to MITM attacks since the endpoints are
not verified before the key exchange takes place.

A small variation was introduced in the Diffie-
Hellman protocol which aims to change the agreed

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

194

Figure 2: MITM attack scenario on the adapted TLS protocol.

key K the same way on both endpoints using a pre-
shared key (PSK). This PSK should be agreed upon a
priori using a separate communication channel.

If the key agreed initially using the Diffie-
Hellman protocol is K, then the new agreed key K’
used to calculate the session key becomes: ܭ’	 = ܪ	 ቀܭ	 + ሻ൯ቁ (1)ܭሺܲܵܨ൫ܪ	

With PSK in Formula 1 being the pre-shared key,
F a known function of the pre-shared key and H a
cryptographic hash function. The function F can be a
simple concatenation of a user’s pre-shared secret
with a salt value or something more complex, its main
goal is to prevent the usage of rainbow tables
(Marechal, 2008).

This transformation of the agreed key cannot be
performed by an intruder in a MITM attack scenario,
since they should not know the pre-shared key of the
client. This way, when no MITM attack is in effect,
both the client and the server can communicate using
the SSL/TLS channel as normal, since they both
perform the same transformation of the base key K.
However, if an MITM attack is in effect, then the
intruder cannot decrypt the data coming from either
endpoint after the key K is transformed into K’.

This occurs because the modified keys K’ do not
match between the client and the server, as shown in
Figure 2 (K1’ and K2’), since the client and the server
agreed on the initial key K with the MITM on two
separate sessions and not between themselves. Thus,
when the client and the server transform their agreed
keys with the pre-shared secret, the attacker cannot
decrypt the messages sent by either of them. In fact,
even if the attacker tries to relay the data between
them to hide the attack, neither can decrypt the data
they receive since they agreed on different K’ keys.

However, this method still contains one
vulnerability. In a MITM attack scenario, after the
agreed key has been hashed and the new session key
calculated, the client will send a message to the server
with a known structure. The intruder can then
perform an offline dictionary attack to transform the
known key K agreed with the client into K’ and
attempt to decrypt the message until the known
structure is obtained. Fortunately, it is always

possible to detect that a MITM attack has occurred. If
a client does not receive a valid response from the
server inside a time window or an invalid message is
received instead, then it is best to assume a MITM
attack has occurred and take precautionary measures
as necessary, such as expire the user pre-shared key.

3.2 Security Considerations

In this section the security considerations made in the
standard (Eronen and Tschofenig, 2005) that should
be taken into account when dealing with security for
communication protocols such as SSL/TLS are
discussed.

The first consideration is regarding perfect
forward secrecy (Günther, 1989) and it expresses the
property of a communication protocol to not
compromise past session keys if the long-term keys
are compromised. Considering that the adapted
protocol uses the Diffie-Hellman private key
exchange, which generates a different key K for each
handshake of the protocol, when the key K’ is
compromised it is only possible to decrypt that
communication session, given that the attacker is also
in possession of the client pre-shared key. Since the
agreed keys K are independent from one another, all
past communications remain uncompromised,
providing perfect forward secrecy.

The second consideration regards to brute-force
and dictionary attacks. The use of a fixed shared
secret of limited entropy such as a pre-shared key
chosen by a human (e.g. a password) may allow an
attacker to perform a brute-force or dictionary attack
to recover the shared secret. This may be either an
off-line attack (against a captured TLS handshake
message) or an on-line attack where the attacker
attempts to connect to the server and tries different
keys. In the case of a protocol that uses Diffie-
Hellman, such as this adapted protocol proposal, an
attacker can only obtain the message it requires by
getting a valid client to connect to him, for example
by using a MITM attack. While a weak pre-shared
key can be obtained from such methods, only future
communications between the client and the server are
vulnerable, since the key K agreed via the Diffie-

Supporting Pre-shared Keys in Closed Implementations of TLS

195

Figure 3: Server socket creation process with the pre-shared key authenticated key exchange.

Hellman key exchange changes every time a new
connection is established. Additionally, since a MITM
attack is required to obtain the data needed for an
offline attack, it is always detectable as explained in
section 3.1. If the system triggers a forced pre-shared
key reset, then future communications are not
vulnerable. However, as with many other protocols,
one attacker could carry out a denial of service attack
by making MITM attacks on every communication
attempt.

Finally, considering identity privacy, currently the
adapted protocol does send the client identity in clear
text. It is possible to enhance the protocol by sending
the client entity after the Diffie-Hellman key
exchange protocol has finished and the
communication is encrypted by the agreed key.
However, since the client identity is required for the
server to know which pre-shared key to use to modify
the agreed key K, this method would only prevent
eavesdroppers from knowing the communicating
parties. In a MITM attack scenario, the attacker
would still be able to know the identity of the client.

4 PROOF OF CONCEPT

For the proof of concept, Java was used as the
programming language for the client application and
SQL Server 2012 as the relational database
management system (RDBMS). In this section, the
method for supporting pre-shared keys in the native
Java implementation of TLS will be detailed.

The generic approach to implement the
modifications needed to make the adapted protocol
work can be seen in Figure 3, and it shows how an
anonymous SSL/TLS connection is established using
Diffie-Hellman and where the agreed key is altered.
However, a problem surfaced while trying to
implement this method. Since the SSL/TLS
implementation in Java is closed and cannot be
extended, the agreed key K mentioned on section 3.1
cannot be easily changed. Reflection features in the
Java programming language were used to access the
Java implementation of the SSL/TLS protocol and
perform the necessary changes to make it work.

First, an SSL socket is created (line 32) and the
desired cipher suit is specified (line 33). The cipher
suit is a named combination of authentication,
encryption, Message Authentication Code (MAC)
algorithms and a pseudorandom function. The cipher
suit “TLS_DH_anon…” states that the key exchange
protocol to be used is Diffie-Hellman (DH) and no
authentication will be made (anon), which removes
the need to use certificates since they are used to
provide authentication. The other fields are not
relevant to this work.

The server then waits for a client to connect
(line 34). When a client connects, the server saves the
reference to the handshaker, which is an internal
object of the clientSocket that handles the
handshaking process of the SSL/TLS protocol
(line 35). ReflectionUtils is a class that provides
several functionalities based on reflection, where
getFieldValue(obj, fieldName) retrieves variable with
the name fieldName from the object obj. It is required
to save this reference because after the handshaking
process finishes, its reference is set to null. Then a
normal handshaking process takes place (line 36),
after which the agreed key is changed (line 37).

Figure 4 shows the same process from the client
point of view. First an attempt to connect to the server
is made (line 46). Since the cipher suit used is
disabled by default it must be enabled in the client as
well (line 47). Then a reference to the handshaker
object is saved for the same reason as in the server
(line 48) and then start the normal handshake process
(line 49). Finally, the agreed key is changed using the
same process as the one used on the server (line 50).

This handshake process uses Diffie-Hellman key
exchange protocol to agree on a preMasterKey which
is then used to derive a masterKey (our key K) from
which the read and write ciphers are initialized. Since
the preMasterKey is disposed of after the masterKey
is created, it is not possible to change it. Therefore, it
was decided that changing the masterKey instead was
the better option, since it remained available
throughout the whole process.

Only changing the masterKey into K’ is not
enough, however, because the read and write ciphers
that read and write into the communication channel
have already been initialized. The process necessary
to change the masterKey into K’ and update the read

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

196

Figure 4: Client socket creation with the pre-shared key authenticated key exchange.

and write ciphers in Java is as follows.
1. Obtain the current private state of the socket and

save it.
2. Obtain the masterKey (K) from the TLS session.
3. The masterKey bytes is hashed per Formula 1

and the output truncated to the original size of
the masterKey (K’).

4. The calculateConnectionKeys private method
from the handshaker object, which calculates
the connections keys for the read and write
ciphers, is invoked.

5. The handshaker reference in the socket is set,
since it has been set to null after the handshake.
This is required for step 7.

6. The socket state is set to cs_HANDSHAKE. The
methods invoked in step 7 assert that the socket
is still handshaking.

7. Call the private methods changeReadCiphers
and changeWriteCiphers declared in the socket
class.

8. Cleanup by setting the socket state back to the
original value and the socket handshaker
reference back to null.

The previous process requires the usage of Java
Reflection in every step except step 3, because the
variables set and methods invoked in the socket are
private.

The reliability on the reflection functionality has
the big problem of destroying the abstraction created
by the public interface. Any changes made to the Java
SSL/TLS internal structure could potentially break
this particular solution since it is dependent on the
implementation.

However, the overall methodology of changing
the masterKey to implement the adapted protocol
should remain the same at its core.

5 PERFORMANCE ASSESSMENT

In this section, several tests aiming to measure the
performance of the proposal are presented. One
aspect that is important to note is that the proposal had
to be implemented using Java Reflection, which
impacts performance considerably, but since it is only
needed at the start of the communication its impact
will be limited.

The performance was measured over three distinct
variables: 1) the time it takes for of the adapted TLS
protocol (PSK) and an anonymous TLS to connect; 2)
the usage of TLS sessions; 3) and sending 50MBs of
random data for communication overhead. The first
variable aims to test the performance difference
between establishing a normal TLS connection, albeit
using anonymous Diffie-Hellman to be comparable
with the adapted version, and the adapted version
connection. The second variable aims to show how
the automatic resumption of TLS sessions impacts
performance on both cases. This is worth testing since
when a TLS session is resumed, the adapted protocol
procedure to change the master key is not executed,
as the previous master key (K’) is reused. Finally, the
third variable aims to show how the performance
compares when data is sent over the connection.

This section is divided as follows: Section 5.1
defines the test environment and section 5.2 shows
and discusses the results obtained.

5.1 Environment

This section details the test environment and the
machine used to run the performance tests, shown in
Table 1. Note that all unneeded programs and services
were not running or disabled. Network connectivity
was also disabled.

Furthermore, to maximize the overhead
introduced by this proposal, simple client and server
applications were run on the same machine to
simulate an optimal environment with low network
delay. The results shown were obtained from these
client and server applications.

Table 1: Testing machine specification.

OS Windows 10 Home

Architecture x86_64

Motherboard LENOVO Lancer 5A2 (U3E1)

CPU Intel Core i7 4510U @ 2.00GHz

Memory
8.00GB Dual-Channel DDR3 @
797MHz (11-11-11-28)

Hard Drive
465GB Seagate ST500LM000-
SSHD-8GB (SATA)

Other Programs Netbeans IDE

Supporting Pre-shared Keys in Closed Implementations of TLS

197

5.2 Performance Tests

In this section the performance tests conducted and
their results will be presented. The tests show the time
it took to establish a TLS connection, either using this
approach with pre-shared keys (PSK) or not (TLS).
The performance impact of session resumption is also
tested by invalidating a session after each iteration of
a test (NS) or not (S) and finally by the time it takes
to send 50MBs of data (D). Each test had 10.000
running iterations except when the 50MBs of data
were sent, in which case 100 iterations were used.

Table 2 shows the data that was obtained from the
tests, including the average time, the standard
deviation and the 99th, 95th and 90th percentile. The
names of the tests indicate the test itself, i.e. PSK-NS
indicates that the test used the approach using pre-
shared keys and did not allow for session resumption.
Note that to obtain these times, the
System.nanoTime() service was used, which uses the
current JVM’s high-resolution time source and
returns its value with a nanosecond precision and
nanosecond resolution in the case of the machine
used. It is not related to the current time and it is only
usable to calculate elapsed time.

Table 2: Performance tests measurements in milliseconds.

PSK-
NS

PSK-
S

TLS-
NS

TLS-
S

PSK-
D

TLS-
D

Avg.
Time

7.40 7.19 1.44 1.32 2266 2256

Std.
Dev.

2.92 2.25 4.42 4.57 39 43

99th
Perc.

18.3 15.6 8.91 7.28 2332 2395

95th
Perc.

11.3 10.3 2.56 2.35 2326 2325

90th
Perc.

9.38 9.19 1.95 1.74 2324 2310

Overall, these results show that the unaltered TLS
connection is established faster than the adapted PSK
connection by about 6ms, from 7ms with PSK to 1ms
with TLS. This is expected, since the master key of
the TLS connection is modified in the PSK
connection for each connection. Furthermore, it
rarely takes more than 18ms as shown by the 99th
percentile, with a 10ms difference to the TLS version.
However, this increase in connection time does not
impact the communication of data. This is discernable
from the PSK-D and TLS-D test results, given that the
difference of 10ms is well within the standard

deviation of about 40ms. In many applications, the
connection is made while they initialize, which can
take some time (up to a few seconds). In these cases
an increase in 6ms for the connection time can be
considered negligible, since the connection, once
made, can be reused for the entire duration of the
session.

These results also show that resuming past
sessions is beneficial, even though its benefit is
decreased due to the minimal network delay in the
performance setup. This is attributed to the fact that
session resumption decreases the number of TLS
protocol messages needed to establish a connection.
Nevertheless, it allows a connection to be completed
faster on average 0.12 ms (9%) for the PSK
connection and 0.21 ms (3%) for the normal TLS
connection.

These results confirm that the process of
modifying the master key of a TLS connection does
impact performance, given the different in connection
time. However, the impact can be neglected in most
use cases since it only occurs during the
establishment of the connection and has no impact in
the data communication process. Hence, the adapted
TLS version to use pre-shared keys proposed in this
article can be used in situations where digital
certificates are not required and/or desirable, even
when closed implementations of TLS are used, and
with just a few milliseconds of overhead during
connection.

6 CONCLUSION

This article presented an adapted version of the TLS
communication protocol that was developed to
encrypt the communication between the client
applications and the server without the need to use
digital certificates. This was meant to not only protect
the database but also to allow companies that cannot
trust certificate authorities or that cannot buy the
certificates to not have to use self-signed certificates.

These self-signed certificates were argued to not
be secure, since anyone can create a new self-signed
certificate stating that they are the company they
claim to be.

The proposed protocol in this paper works by
using the anonymous Diffie-Hellman key exchange
algorithm and by performing the same transformation
of the agreed master key with a pre-shared key known
a-priori by the server and the client. While this
approach allows attackers under certain conditions to
know the identity of the client, the attackers cannot

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

198

decrypt any communication made between them in
the past.

If the pre-shared key is made vulnerable by a
MITM attack, this fact is always known by the client
and the server since they cannot communicate with
one another. Forcing a pre-shared key reset will keep
future communications secure, while past communi-
cations are always secure due to the ephemeral nature
of the Diffie-Hellman keys.

Concerning performance, the creation of the
communication channel using the adapted TLS
protocol introduces just a few milliseconds when
compared to the time a normal TLS connection in
anonymous mode takes. Performance could be
enhanced if the Java SSL/TLS API allowed to add
new key exchange algorithms, avoiding the overhead
resulting from Java Reflection, but the performance
should be satisfactory in most use cases as is.

Further work into this problem can be carried out
to fully evaluate and minimize the overhead caused
by the usage of Reflection mechanisms, as well as
evolving this solution to try to avoid the identity of
the clients from being disclosed.

ACKNOWLEDGEMENTS

This work is funded by National Funds through
FCT - Fundação para a Ciência e a Tecnologia under
the project UID/EEA/50008/2013 and
SFRH/BD/109911/2015.

REFERENCES

Diffie, W. & Hellman, M., 1976. New directions in
cryptography. IEEE Transactions on Information
Theory, 22(6), pp.29–40.

Eronen, P. & Tschofenig, H., 2005. [PSK] Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS) [RFC
4279]. RFC 4279, pp.1–15.

Günther, C., 1989. An identity-based key-exchange
protocol. Advances in Cryptology—Eurocrypt’89, 434,
pp.29–37. Available at: http://link.springer.com/
10.1007%2F3-540-46885-4_5 [Accessed April 5,
2016].

Hao, F. & Ryan, P., 2010. J-PAKE: Authenticated Key
Exchange without PKI. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
6480(PART 2), pp.192–206.

Hao, F. & Shahandashti, S.F., 2014. The SPEKE Protocol
Revisited. , (July).

IETF, 2008. RFC 5246: The Transport Layer Security
(TLS) Protocol - Version 1.2. Available at:
http://tools.ietf.org/html/rfc5246.

Leavitt, N., 2011. Internet Security under Attack: The
Undermining of Digital Certificates. Computer, 44(12),
pp.17–20.

MacKenzie, P. & MacKenzie, P., 2001. On the Security of
the {SPEKE} Password-Authenticated Key Exchange
Protocol., (2001/057), pp.1–17. Available at:
http://eprint.iacr.org/2001/057.ps.gz.

Marechal, S., 2008. Advances in password cracking,
Oppliger, R., Hauser, R. & Basin, D., 2006. SSL/TLS

session-aware user authentication - Or how to effecti-
vely thwart the man-in-the-middle. Computer
Communications, 29(12), pp.2238–2246.

Oppliger, R., Hauser, R. & Basin, D., 2008. SSL/TLS
session-aware user authentication revisited. Computers
and Security, 27, pp.64–70.

Oracle, Java Cryptography Architecture Oracle Providers
Documentation for Java Platform Standard Edition 7.
Available at: https://docs.oracle.com/javase/7/docs/
technotes/guides/security/SunProviders.html
[Accessed October 10, 2016].

Pereira, O. M., Regateiro, D. D. & Aguiar, R. L., 2014.
Role-Based Access control mechanisms. In 2014 IEEE
Symposium on Computers and Communications
(ISCC). IEEE, pp. 1–7.

Pereira, Ó.M.Ó.M., Regateiro, D.D.D.D. & Aguiar,
R.L.R.L., 2015. Secure, Dynamic and Distributed
Access Control Stack for Database Applications.
International Journal of Software Engineering and
Knowledge Engineering, 25(09n10), pp.1703–1708.

Regateiro, D. D., Pereira, Ó. M. & Aguiar, R. L., 2014. A
secure, distributed and dynamic RBAC for relational
applications. University of Aveiro. Available at:
https://www.academia.edu/7913868.

Taylor, D., Wu, T. & Mavrogiannopoulos, N., 2007. Using
the Secure Remote Password (SRP) protocol for TLS
authentication, Available at: http://www.hjp.at/doc/
rfc/rfc5054.html.

Toorani, M., 2014. Security analysis of J-PAKE. 2014
IEEE Symposium on Computers and Communications
(ISCC), pp.1–6. Available at: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6912576.

Weise, J., 2001. Public key infrastructure overview. Sun
BluePrints OnLine, August, pp.1–27.

Wu, T., 1998. The Secure Remote Password Protocol. In
Proceedings of the Symposium on Network and
Distributed Systems Security NDSS 98. pp. 97–111.

Supporting Pre-shared Keys in Closed Implementations of TLS

199

