Using Runtime State Analysis to Decide Applicability of Dynamic
Software Updates

Oleg Selajev' and Allan Gregersen?

YWUniversity of Tartu, Faculty of Computer Science, Tartu, Estonia

2ZeroTurnaround, Tartu, Estonia

Keywords:

Abstract:

Dynamic Software Update, Runtime Phenomena, State Analysis, Reliability, Availability.

Updating application code while it is running is a popular approach to the dynamic software update problem.

But in many cases the behavior of the updated application bears side effects of the update in the form of a
runtime phenomena that breaks application state assumptions leading to unwanted complications. We present
a runtime state analysis system, Genrih, that enhances a dynamic system update solution and automatically
decides if the state transformation functions of a DSU solution are sufficient for the given update. Genrih
analyzes the atomic changes in the updated code compared to the already running version and based on these
changes automatically determines whether updating the system’s runtime state will lead to the observable
runtime phenomena. The designed system does not break the update procedure, but observes the state and
produces notifications for enhanced analysis and crash management. The practical evaluation shows that the
designed system imposes acceptable overhead and can help the developer be aware of several kinds of runtime

phenomena.

1 INTRODUCTION

Software evolves, and existing applications inevitably
have to be updated with newer versions. The Dy-
namic Software Update (DSU) problem deals with
updating running software without interrupting their
behavior. The general motivation for solving the DSU
problem is raised by the fact that mission critical
applications cannot tolerate maintenance downtime,
which makes updating them non-trivial.

Updating applications while they run is a com-
plex task consisting of two main parts: ensuring that
the new behavior that the new version of the program
specifies is ready and linked into the running process,
and transforming the existing runtime state of the ap-
plication to accommodate the needs of the new pro-
gram version.

The first problem has been approached by making
the programming languages runtimes aware of pos-
sible dynamic updates (Erlang, 2017) (Wiirthinger,
2010), employing architectures that make dynamic
updates easier (Hayden et al., 2012b), or enhancing
the existing runtime platform to add the support for
dynamic updates (Gregersen and Jgrgensen, 2009)
(Kabanov and Vene, 2014) dynamically.

The latter problem is a more complex issue, which

38

Selajev, O. and Gregersen, A.
Using Runtime State Analysis to Decide Applicability of Dynamic Software Updates.
DOI: 10.5220/0006400900380049

has been shown (Gupta et al., 1996) to be unsolvable
automatically in the general case. Transforming the
runtime state to conform to the structure the new ver-
sion of the program expects is tedious work. The cur-
rent state-of-the-art way to handle necessary change
to the runtime state at the update time is to manually
specify state transformation functions that will con-
vert the existing runtime state into a representation
suitable for the new version of the program. Since the
safety of mission-critical systems is paramount and
we do not know how to automate the state transforma-
tion fully the DSU systems cannot risk employing au-
tomatic state transfer solutions (Hayden, 2012). How-
ever, defining these state transformation functions is
not easy, time consuming, and error-prone. However,
requiring the manual intervention of the programmer
is not always appropriate. For example, applying
dynamic updates in the development environment to
avoid long pauses

In this paper, we limit ourselves to investigating
DSU of Java applications. Java represents a popular
member of the family of the statically typed object-
oriented programming languages and has multiple
DSU solutions available.

The current state of the art DSU systems that do
not require manual actions from the developers stat-

In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 38-49

ISBN: 978-989-758-262-2

Copyright © 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Using Runtime State Analysis to Decide Applicability of Dynamic Software Updates

ically analyze the code to determine when it can be
updated (Zhao et al., 2014).

In this paper we look at the alternative method for
safely updating the Java application without requiring
the developer to specify the safe points in the code
at which the DSU can update the application without
breaking the runtime state.

The goal of this paper is to propose a system that
automatically decides at runtime if the automatic state
mapping of a given update mechanism is sufficient
for the update. The proposed system is orthogonal to
the DSU solution used for the updates. The practical
evaluation is performed on a prototype which is built
with JRebel updating functionality in mind.

2 REQUIRING
TRANSFORMATIONS

If we look at the changes that can be induced on
Java application classes, some of them can poten-
tially lead to runtime phenomena occurrences if ap-
plied without concern, (Gregersen, 2011), (Gregersen
and Jgrgensen, 2011). However, if the DSU system
applies changes deterministically, the outcome of ap-
plying the change between the old and the new class
is determined only by the DSU and the current run-
time state. This means that every change can poten-
tially cause only a limited number of runtime phe-
nomena. For example, the uninitialized field, can only
cause NullPointerException, which is an example of
the absent application state phenomena. It cannot lead
to other types of runtime phenomena, like for exam-
ple ”phantom objects” phenomena or any other from
the list below. In the paper describing runtime phe-
nomena, (Gregersen and Jgrgensen, 2011), Gregersen
et al. have mapped certain observed phenomena to
the individual class changes that were responsible for
them.

Below we list possible changes to the Java code
and the related runtime phenomena that we will use
throughout this paper. The definitions of the runtime
phenomena are taken from the work conducted by
Gregersen et al., (Gregersen and Jgrgensen, 2011).
Phantom Objects. Are live objects whose classes
have been removed or invalidated by a dynamic up-
date, (Gregersen and Jgrgensen, 2011). Changes that
can introduce phantom objects are for example, re-
moving a class, adding modifier abstract to the class
definition, replacing a class with an interface. Indeed,
if the update adds a modifier abstract to a definition of
a class or replaces it with the interface, it means that
in the new version of the application, no instances of
that class can be instantiated. Any instances of this

class that exist prior the update become phantom ob-
jects that have no place in the correctly behaving Java
application.

Absent State. Is defined as the situation in which ob-
jects or classes having been created in a previous ver-
sion, once migrated to the new version, lacks a por-
tion of the expected state, (Gregersen and Jgrgensen,
2011). Adding an instance or static field added to
class, which might not be initialized during the up-
date is probably the most straightforward example of
introducing the absent state phenomena. There are
several types of changes to the code that can cause
an absent state phenomena. For example, adding a
new subclass with an intent to differentiate between
object using polymorphism can cause it. Since no
objects existing prior the update can be of the added
subclass, differentiating fails despite the fact it might
succeed during a fresh run. If a superclass of a class is
changed, the existing objects are not reconstructed, so
the fields they extend from the new superclass might
not be initialized. Removing modifier static from an
inner class means that it gets an implicit out field that
should point to an outer class instance. However, it
might not be possible to provide it during the update
so the value of the field will stay absent.

Lost State. Takes place when an existing state that
can be used to differentiate between objects is lost.
For example, when an instance field is removed or the
type of the field is changed the information held in the
field prior to update gets completely inaccessible by
the virtue of being removed or overwritten with the
default value of the new type. Changes that lead to
the loss state phenomena are thus removing instance
or static field or changing the field type.

Oblivious Update. Phenomenon is the absence of an
expected runtime effect that would have occurred if
the system was started from scratch. For example, a
change in constructor has no effect on the previously
initialized objects, (Gregersen and Jgrgensen, 2011).
Constructor code change as well as instance or static
initializer changes lead to oblivious update phenom-
ena being observable.

There might be other runtime phenomena that are
observable after updates, but in this paper we focus on
these four phenomena being described and analyzed
in the prior work by Gregersen et al. (Gregersen and
Jgrgensen, 2011). The description of the runtime phe-
nomena given above maps the runtime phenomena to
individual changes that cause them. Naturally, if we
reverse the mapping, then we can map changes to all
potential application level phenomena, these changes
can produce if applied by a given DSU solution.

The phenomena listed in the Gregersen’s work
does not depend on the exact approach used by the

39

ICSOFT 2017 - 12th International Conference on Software Technologies

dynamic update system and are solely dependent on
the runtime state of the application. These phenom-
ena occur only when the application state satisfies cer-
tain conditions, which can be expressed as the queries
to the runtime state that evaluate if a phenomena dic-
tated by the changes might be observed. The non-
determinism of the phenomena and their dependency
of the runtime state is analyzed in the same work
which introduced them, (Gregersen and Jgrgensen,
2011).

Here is an example of a query to the runtime phe-
nomena to occur. If a phenomenon reveals itself on
the access to the instances of a given class initialized
prior the update, the phenomenon is observable if the
query “are instances of the class or any of its sub-
classes present in the application?” returns true given
the runtime state at the update moment.

The similar query tells if the following runtime
phenomena might be observed: phantom objects be-
cause of the class removed, phantom objects because
of adding abstract modifier to a class, or changing a
class to an interface. Lost state phenomenon is also
described by the similar query: “are instances of the
class or any of its subclasses present in the applica-
tion?”, however it can be specialized further to ana-
lyze if the field of those object instances can be used
to differentiate them.

Oblivious update caused by changing the con-
structor code can be predicted by the same query,
however, if it is caused by changing a static initial-
izer of a class, then a simpler query whether the class
is loaded into the JVM or not is sufficient, since static
initializers are not executed for every object instance.

By describing the queries to determine runtime
phenomena, we implicitly presented a mapping be-
tween the runtime phenomena and the changes that
cause them. The reverse mapping of possible runtime
phenomena caused by the changes to the classes of
the applications can serve as a good first approxima-
tion for the mapping database approach for verifying
the update safety. The further work can improve the
mappings and include more changes to effects map-
pings to cover more updates. The exact implementa-
tion of the mapping that was used in the evaluation of
the approach is discussed further in the paper.

Note, that it is be possible to derive less conserva-
tive queries for specific runtime phenomena, but for
this paper we used the most straightforward ones, usu-
ally saying that the phenomenon is possible to occur
if the instances of the changed class exist on the heap.

The approach described in the Static Analysis for
Dynamic Updates tool paper, (Oleg Selajev and Ka-
banov, 2013) is capable of discovering the atomic
changes that were found to be responsible for the

40

above-mentioned phenomena during the experiment.
The tool compares application classes one by one and
returns the list of individual changes in them. In this
paper we present a runtime state analysis engine that
provides an insight into the runtime state of the appli-
cation and is capable of serving the queries mentioned
above. This runtime state analysis engine forms the
last component of the system required to establish if
an update can lead to the observable runtime phenom-
ena.

The dynamic software update solution that is ca-
pable of discovering the changes that occurred be-
tween the application versions under the update, a
database to map these changes to the corresponding
runtime phenomena, and an analytic engine to inspect
the runtime state can provably establish if the update
is safe from introducing these unwanted effects into
the updated application.

3 A SYSTEM FOR PREDICTING
RUNTIME PHENOMENA

Deciding if the state transformation functions are ad-
equate for a given update is equivalent to analyzing
whether the update will produce runtime phenomena.
The system implementing the dynamic state analysis
to predict if a given update can result in observable
runtime phenomena is orthogonal to the actual DSU
solution performing the update. The architecture of
the integration with DSU solutions is quite straight-
forward. It requires the access to the original and
changed versions of the classes involved in the up-
date before the actual update happening; then it will
run the analysis of the application state on the heap
and determine if applying the update is safe or if any
application level phenomena can be observable after-
ward.

The system to predict a potential faultiness of
a dynamic update consists of the following compo-
nents: an runtime state analysis engine that is able
to respond to queries about the current runtime state;
a class diff tool that determines which changes has
occurred between two versions of the application
classes; a mapping between the changes into the pos-
sible runtime phenomena caused by these changes,
and a world stopper that can pause the JVM to en-
sure that the analysis is sound and the application state
does not change between the analysis and the applica-
tion of the update by the DSU solution.

The overall architecture of the designed system, is
depicted by Figure 1.

Such a system is developed as a standalone com-
ponent separate from both application code and the

Using Runtime State Analysis to Decide Applicability of Dynamic Software Updates

JVM
Genrih

s c
—_ Diff tool = o
= =2 b
S L
2) Oracle 5 g
Native Bl

agent

Figure 1: Architechture of runtime analysis system.

DSU solution that performs updates. It embeds both
the diff tool to compare class files and the runtime
state analysis engine, which uses JVM native agent
capabilities to inspect the runtime state. The arrows
on the Figure 1, show the main communication pat-
terns between the components. Genrih does not act
upon the application itself, but rather integrates with
the DSU solution to obtain changed classes and no-
tify about the update safety. The native agent inside
the system uses the Java Virtual Machine Tool Inter-
face JVMTI), (Oracle, 2017) to gain access to the
runtime state that is not otherwise possible to obtain
from just the Java code. Note that the capabilities of
non-native javaagent or application level code are not
enough to perform the analysis of the Java heap to the
extent necessary.

The rest of this section describes responsibilities
and a possible implementation of each component and
how they all come together to predict the faultiness.

3.1 State Analysis Engine

JVM stores objects on the heap. The memory on
the heap is managed: memory for new objects is
allocated automatically, reachable objects are often
moved around, unreachable instances are garbage
collected and the memory claimed by them can be
reused.

As we saw above the most of the queries to de-
termine the possibility of a phenomena consist of two
questions: 1) is class T loaded into the JVM and 2)
are there initialized and not yet garbage collected in-
stances of the class 7, sometimes including its sub-
classes.

Luckily, we can answer both of these questions
for a given class T by leveraging the JVM tool inter-
face (JVMTI) and a native agent. JVMTI provides a
way to inspect the state of the running JVM program
and influence its execution. Determining if a class is
loaded in the JVM can be done from the JVM itself,
especially if we are not interested in the class load-

ing details and can query just the system class loader.
We can use the findLoadedClass method of the Class-
Loader class to obtain this information.

To count the number of the instances of a class 7,
we can make use of JVMTT’s “iterate through heap”
function that takes a class which instances to iterate
and a callback function to call for every instance. For
our purposes, the callback function just increments a
counter for every found instance. If after the invoca-
tion of the “iterate through heap” with the given class
argument the result is non-zero, there are instances of
the given class.

The native agent approach to leverage iterating
through heap is general enough to cover more com-
plex queries that might be necessary to introduce for
the future enhancements of the system. For example,
if one needs to investigate a removal of the field and
the possibility of lost state phenomenon, a more com-
plex callback that inspects every instance found by the
iterate through heap function to determine if the field
in question has a distinguishing value or not. If all the
objects have the field initialized to the default value
for the field type, removing the field does not actually
lose any data.

The discussion section contains more details about
which queries were implemented in the prototype of
the described system and why.

3.2 Class Diff Tool

The DSU solution must have access to the new ver-
sions of the classes to update the definitions in the
JVM. We can use a simple cache mechanism to store
the bytecode of the loaded classes by the class name.
To reduce the memory footprint we can potentially
ask the DSU solution if the class in question is reload-
able, meaning if there is a possibility that the bytecode
for that will change and avoid storing the bytecode
for classes that won’t be updated. Alternatively, the
caching scheme to disk can be employed, which can
introduce additional performance overhead, which
might not be desirable. However, this becomes an en-
gineering challenge, so for the purposes of this paper
we implement the approach that is just functional.

The class diff tool, (Oleg Selajev and Kabanov,
2013), consumes two sets of classes: old and new; and
produces a list of events that describe how the classes
in the new set differ from their respective counterparts
in the old set.

For the class definitions that are different in the
old version and the new version there are three main
results of the diff analysis: old class does not exist,
new class does not exist and both classes exist. First
two cases are naturally mapped to the class_added and

41

ICSOFT 2017 - 12th International Conference on Software Technologies

class_removed changes respectively. If both class def-
initions exist, class diff tool analyzes them for the dif-
ferences. The class diff tool described in the Static
Analysis for Dynamic Updates paper, (Oleg gelajev
and Kabanov, 2013) does exactly that, it takes two
definitions of a class and returns a list of the events:
new_instance field_added, new _static_method event,
etc. Each individual change event has a reference to
the class and the class member: method, field, initial-
izer, that were affected changed.

The analysis engine can run the diff tool on every
class for which both the old and the new versions are
present and obtain the list of exact changes between
them. Then these lists of changes are mapped to the
possible runtime phenomena they might produce and
fed to the runtime state analysis component to deter-
mine the possibility of the phenomena given the cur-
rent runtime state of the application.

3.3 Changes to Phenomena to Runtime
State Queries

We need to map the exact changes that occurred be-
tween the old and the new versions of the classes in-
volved in the dynamic update. During an update we
have the class definitions for both old and new ver-
sions of the application. The output of the class diff
tool described above is the list of change events that
are found between these versions.

In the current work we investigate the following
changes that were previously found to be causing
the runtime phenomena, (Gregersen and Jgrgensen,
2011). The first column of the Table 1 specifies
the changes, the second lists the runtime phenomena
they can produce, and the third column describes the
queries, which reveal whether the phenomena might
be observable.

Out of the all changes that can lead to runtime phe-
nomena effects and that are recognized by the sys-
tem we designed, we handpicked a subset for the
showcase. While other changes are also interest-
ing,these have been previously recognized to lead to
the runtime phenomena described above, (Gregersen
and Jgrgensen, 2011).

In the future research the mapping for the changes
can be more thorough, however, being able to predict
the faultiness with respect to the runtime phenomena
observation after the dynamic update containing these
changes is a useful result in itself.

The mapping provided above can be directly
translated to the code via a series of if-else statements,
where the class 7T is the class currently being diffed.
When the queries that correspond to the possibility of
observing the runtime phenomena are obtained, the

42

Table 1: Changes to phenomena to queries table.

moved change

stances of class T or
subclasses are on the
heap

Change type Phenomena Analysis queries

Class T Phantom objects: in- Class T is loaded and in-
made abstract | stances of class T are stances of T are on the
change on the heap heap

Class T re- | Phantom objects: in- | Class T is loaded and

instances of T or sub-
classes are on the heap

Constructor
of class T
changed

Oblivious update: ex-
isting instances have
run previous version
of constructor

Class T is loaded and
instances of T or sub-
classes are on the heap

New instance
field change in
class T

Absent state: old in-
stances of T won’t
have the new field ini-
tialized

Class T is loaded and
instances of T or sub-

classes are on the heap

New static
field change in
class T

Absent state: static
field might not be ini-
tialized

Class T is loaded

Static initial-
izer changed in

Oblivious

new version of static

update:

Class T is loaded

of «class T
changed

stances of T or
subclasses might not
have field of the new

superclass initialized

class T initializer is not
executed
Super class Absent state: in- Class T is loaded and

instances of T or sub-
classes are on the heap
or the hierarchy from the
new superclass to Ob-
ject does not declare any
fields.

Modifier static
removed from

inner class T

Absent state: implicit
field out on instances
of T is not initialized

Class T is loaded and
instances of T or sub-

classes are on the heap

runtimestate analysis engine evaluates them using the
queries it knows how to answer. The result shows
whether the update is safe from the application level
runtime phenomena, with respect to the phenomena
and the changes that we analyze.

3.4 World Stopper

A JVM embodies a multithreaded environment where
different threads, like the garbage collector mutate the
global state all the time. The direct consequence of
this is that to ensure the soundness of the analysis,
we have to synchronize the analysis and the update
with the JVM activities external to the DSU solution
at hand. One way to do this is to rely on the JVM
pausing its work for the internal bookkeeping. How-
ever, this might not be utterly portable, so the more
direct solution is to use the JVMTI thread suspend-
ing functionality and iterate over all threads that are
not involved into the dynamic update. Stopping the
threads for the analysis bears an obvious performance
overhead, which we measure in the practical part of
the current research.

Stopping the JVM for the analysis adds the benefit

Using Runtime State Analysis to Decide Applicability of Dynamic Software Updates

of knowing exactly what methods are currently ac-
tive on the stack. If a method body or its signature
have been changed in the update and the method is
currently running, applying the update can lead to
various unwanted side-effects. For example, if the
update removed a method which currently executing
code tries to call, the best the system can do is to
throw a NoSuchMethodErrors to communicate inabil-
ity to locate the method in the updated code. Stopping
the world for analysis allows the system to inspect if
methods that have been changed are currently active.
Such runtime check alone can simplify the type safety
of the update process by preventing the updates that
modify the currently active methods from being ap-
plied. However, in the spirit of not intervening with
the update process, one can emit a notification that a
currently active method is changed and possible side-
effects including among others exceptions about class
members not found.

3.5 A Prototype to Enhance JRebel

We implemented a prototype of the system to predict
runtime phenomena after update is applied dynami-
cally. We call the prototype Genrih and it is integrated
with JRebel dynamic updating functionality.

The general workflow of performing a dynamic
update with the runtime state analysis is illustrated in
the Figure 2.

The runtime state analysis system marked as Gen-
rih in the Figure 2 receives a request from the DSU so-
lution that an update is available and the list of classes
that are going to be involved in the current update.
These classes are diffed to obtain the exact changes in
the update. The system then stops all the activity in
the JVM using the world stopper described above. At
this moment no state can be mutated in the applica-
tion, so we run the analysis of the heap by evaluating
the queries that are mapped to the changes. The dy-
namic update proceeds as follows, if the update is run-
time phenomena free at the current point in time, we
signal the DSU solution to continue with the update
and replace the class definitions involved. After this
process finishes, we can resume the paused threads
and report that the update has successfully finished.

Otherwise, Genrih still resumes the threads, but
schedule the analysis after a small random delay up to
500 ms hoping that the runtime state of the application
will have changed by then, removing the objects that
are responsible for the possible phenomena after the
update. If the following analysis runs show that the
state has not changed enough, and the runtime phe-
nomena are still possible, Genrih emits a notification
for the developer saying what runtime phenomena is

possible and what change is causing it and if known,
which objects contain the state leading to the observ-
able difference in behavior.

In the actual system which enhances the existing
development time DSU solutions, after showing the
notification, Genrih should allow the system to pro-
ceed with the update, not to stall the development pro-
cess.

The exact details of how the DSU solution we in-
tegrate with is performing the update are orthogonal
to the safety evaluation. Thus, we can treat it as a
black box. The only integration points that we are in-
terested in are:

e asignal that the update is available;
e a list of the classes involved in the update;

e the functionality to signal if Genrih determined
whether the update is safe to apply.

These requirements are relatively humble, and the
integration with an existing DSU solutions is not com-
plex.

Genrih implements the runtime state analysis en-
gine, the mapping functionality of class changes to
potential side effects, the integration with JRebel, and
the use of a class diff tool.

The next chapter describes the experiment of up-
dating a real-world game application with the run-
time analysis system capable of predicting runtime
phenomena occurring because of these changes to the
code.

4 EXPERIMENT

We have evaluated the designed system on the update
scenarios of a Space Invaders game that Gregersen
et al. have used to prove the existence of the run-
time phenomena, (Gregersen and Jgrgensen, 2011).
The choice of the application for the experiment is
influenced by the lack of the systematic benchmarks
or analysis of the development time DSU solutions.
Also, reusing a code base that certainly contains
several versions of the application different enough
to produce runtime phenomena after the updates, is
more relevant to the current work than performing the
experiment on an arbitrary code.

The performed experiment was designed to pro-
vide information about two hypotheses:

1. The system can predict that an update will not
cause side effects or provide an immediately qual-
ified feedback regarding possible runtime phe-
nomena.

2. When or if the runtime state at the update time
will not lead to the side effects, the system carries

43

ICSOFT 2017 - 12th International Conference on Software Technologies

DSU solution | |Genrih

notifies about upcoming update |

request changed classes

provides changed classes

old code,

|D1ff tool | |0rac1e

Runtime|

new code

list of changes

changes => potential phenomena

list of phenomena

list of possible phenomena

queries state

>

state information

feedback on runtime phenomena

green/red light for the update

run the update

DSU solution | |Genr1h

>

Runtime|

|D1ff tool

|0rac1e

Figure 2: Update process with Genrih.

the update out without the considerable overhead.

The experiment process follows the given proce-
dure. Two versions of the Space Invaders game are
manually investigated to find out the changes that cor-
respond to the update. Both versions of the game are
started to determine what is the expected behavior of
the program.

After some state is reached using the old version
of the code, we update the code base to the new ver-
sion and build the application without stopping the
use of it. If the update is successful, we try to observe
the runtime phenomena predicted by the manual code
analysis. If we observe the side effects, we consult the
output of Genrih to verify that the phenomena were
predicted, and the notification of its effects is present.

Although the experiment procedure is not auto-
mated and relies on manually constructing pre-update
runtime state, it does mimic typical application devel-
opment scenarios, which are the main interest of this
work.

The first part of the experiment determines that
updating an application with JRebel without consid-
ering the runtime phenomena can indeed crash the ap-
plication. The application under test is the Space In-
vaders game, the versions of which differ in how they
assign the color of the Shot object. In the old version,
the color is a constant Color. YELLOW returned from
a shot.getColor() method.

In the new version of the code, Shot class has
an instance field: Color color that is initialized to

44

Color.GREEN at the end of the only constructor for
the class and returned from the getter. The default
value for the color field is null and all objects initial-
ized within the new version of the game running have
the field Initialized during the regular constructor exe-
cution. If the color field happens to be null, at the mo-
ment the redrawing routine asks for it, the NullPoint-
erException is thrown and the program crashes. Both
versions of the game work if they start from scratch,
and the shot objects flying through the screen have
correct colors: yellow and green respectively.

When there are no shots visible on the screen
when JRebel updates the application, the update suc-
ceeds. The shots that are fired afterward are green.
However, if the shots are visible on the game field
during the update, the game crashes with the Null-
PointerException, because the shots do not have the
color initialized.

If this update is triggered with Genrih performing
runtime state analysis, it correctly logs the possibil-
ity of the absent state phenomenon on the pre-update
shots instances. This feedback together with the ex-
ception stack trace is sufficient to identify the update
of the crash reasonably.

The next phase of the experiment involved signifi-
cantly updating Space Invaders code, going to another
major revision of the game. The functional changes in
the update add barrier entities that have to be drawn
on the field and make the aliens move and shoot back.

Updating from the initial version of the game to

Using Runtime State Analysis to Decide Applicability of Dynamic Software Updates

the new shooting version of the game with JRebel
brings no visible runtime phenomena. The game pro-
ceeds as expected, having the new behavior in place.
However, updating the game back to the old version
of the code, which has no information about aliens be-
ing able to shoot, crashes the program with a NoSuch-
MethodETrror, because the method Aliens.fire(), called
from the main game loop is not present anymore.

With the runtime analysis system, the update for-
ward to the shooting version of the code goes in the
following fashion. The forward update determines the
new instance fields in the Game class with the follow-
ing declarations.

private Shots alienShots = new Shots();
private Barriers barriers = new Barriers();

The runtime analysis shows that there is one Game
object on the heap, so the update is postponed due to
possible absent state on the Game object after the up-
date. However, since after the update, the application
does not crash this false positive feedback is easily
ignored.

The downgrade from the shooting version of the
game to the basic one crashes with the NoSuchMeth-
odError and the notification from Genrih: “Threads
are currently running method Game.gameLoop() that
is changed. Unpredictable update can happen”. To-
gether with the NoSuchMethodError stack trace, that
originates in the Game.gameLoop() method, this in-
formation is sufficient to consider the DSU being re-
sponsible for the crash, not the application logic.

An important additional observation is that, how-
ever, most of the time some thread is executing the
Game.gameLoop() method, there is a small window
of time, during the game tick, when it is not on the
stack. Then the update proceeds without triggering
errors. The dependency of the updates on the current
runtime state and given that Genrih can predict if the
update will cause no runtime phenomena opens pos-
sibilities to stall the update process until the runtime
state changes so the runtime phenomena are impossi-
ble. We discuss such advancements of Genrih in the
discussion section.

The following updates to even more complicated
Space Invaders versions occurred in the similar fash-
ion. Without the runtime analysis, adding features
and state to the code are handled by existing JRebel
well. The downgrades often result in the NoSuch-
MethodErrors caused by calling methods that no
longer exist in the new version from the old version
of the method still running during the update. Which
is the result of not checking the if the updated code is
currently actively executed on in the program.

The experiment shows that the designed system
provides immediate feedback on the runtime phenom-

ena using an existing stock DSU solution. This feed-
back and the nature of errors originated in the runtime
phenomena clearly indicate that these errors are due
to updating the application rather than the code itself.
Debugging the issue with such feedback that strongly
suggests the origin of these errors in the updating pro-
cess is more straightforward than without it.

More detailed analysis of the experimental results
is presented later in the discussion section.

S PERFORMANCE ANALYSIS

This chapter describes the performance overhead of
automatically determining the applicability of the
state transfer functions of a DSU during the dynamic
update. The designed system:

e requesting the list of classes involved in the up-
date,

e running the diff on the old and the new version of
the classes to find the exact changes,

e querying the runtime state analysis engine about
the current runtime state for possible runtime phe-
nomena caused by the changes (for every changed
class).

Requesting the changed classes and diffing the re-
sult can be done in parallel with running the applica-
tion so the impact of these actions is negligible and
the complexity of the operations is linear in the num-
ber of classes changed.

Performing the state analysis is more complex.
First of all, it must happen when the application is
paused so that the state will remain unchanged be-
tween the analysis and the actual moment of the up-
date.

The runtime state analysis engine offers the fol-
lowing API for the queries:

boolean isClassLoaded(String className)
boolean hasInstances (String className)
boolean hasFieldInitializer(Class klass,
String fieldName)
boolean hasNonDefaultFieldValues (
String className,
String fieldName)
boolean isMethodRunning(String classname,
String methodName)

This chapter focuses on analyzing the perfor-
mance of the implementation of the runtime state
analysis engine used in the experiment. The main
measurements indicate how much time do individual
calls to these methods take and the results can be ex-
trapolated to estimate how much time can a single
analysis run take. Given that the number of possible
queries are limited and is linear in the number of

45

ICSOFT 2017 - 12th International Conference on Software Technologies

changed classes, the extrapolation is straightforward.

The machine where the benchmarks were run has
the following configuration: MacBook Pro (Retina,
13-inch, Early 2013) with the 2,6 GHz Intel Core
i5 processor, 8 GB 1600 MHz DDR3 memory, and
a flash storage hard drive. Java version ”1.8.0”,
Java(TM) SE Runtime Environment (build 1.8.0-
b132), Java HotSpot(TM) 64-Bit Server VM (build
25.0-b70, mixed mode) was used to perform the ex-
periments.

The benchmark was run from a JVM process with
the heap size of 1GB. During the benchmark, about
70% of the heap was filled with the objects of dy-
namically generated classes to model the real world
performance. We also started 32 background threads
to provide the load for the isMethodRunning query
comparable to a real world use.

To perform benchmarks we utilized Java Mi-
crobenchmark Harness (JMH), (Shipilev, 2017). The
benchmark was configured to measure the average
time of the execution of an operation based on 10
sample properly warmed runs. Table 2 shows the out-
put of a random run of the benchmark using 10 itera-
tions.

Table 2: Runtime queries benchmark.

Benchmark Score | Error Units
isClassLoaded 0.001 | +0.000 | ms/op
fieldInitializer 0.761 | £ 0.062 | ms/op
hasInstances 1.430 | £ 0.343 | ms/op
nonDefaultFields | 1.513 | + 0.306 | ms/op
isMethodRunning | 0.099 | + 0.014 | ms/op

The time growth is linear of the number of the in-
stances the system has to traverse. For a million of
active object instances, it takes consistently under 60
ms. Varying heap size did not influence the timing on
the heap sizes up to 3 GB.

The results suggest that the overhead of running a
performance check on an incrementally small update
to the application code is sub-second. During the ex-
periment with the Space Invaders game, the updates
were postponed by 500 ms if the runtime state does
not allow to perform it immediately. The analysis did
not noticeably slow down the user experience.

6 DISCUSSION

The current research concentrates on the design of a
runtime state analysis system for the JVM that can au-
tomatically determine if the state transformation func-
tions of a given DSU solution can satisfy a given up-
date. It does so by analyzing the individual changes

46

that the update consists of and querying the runtime
state to verify if the declared capabilities of the DSU
can handle the scenario at hand.

The proposed system tackles foremost the updates
in the development, where the changes to the applica-
tion are frequent and typically smaller than the dif-
ference between two releases of the application. The
main benefit of such system is that the developer af-
ter introducing the change would likely run the exact
piece of code that was changed to verify the correct-
ness of the introduced functionality. As such, any in-
compatibilities in the runtime state representations in
the old and new code have a much higher chance of
being stumbled upon and producing a runtime phe-
nomena of the update.

Sometimes the inability to apply an update dy-
namically can be noticeable. The incomplete update
can lead to application errors or crashes. Others, how-
ever, are subtle and have less obvious consequences.
The errors require developers to investigate the code
base to determine the cause of the occurring behav-
ior. That is counterproductive to the core idea of
the DSU for the development environments, which is
save time.

In the previous section, we showed a series of dy-
namic updates of a sample Java application, the Space
Invaders game, that illustrated two things. First, the
runtime phenomena occur during the dynamic up-
dates, and the updating systems can lack the sophisti-
cation to distinguish a safely applicable update from
those that will result in a system crash or invalid run-
time state of the application. Since the problem of
automatic state transformations is not solvable in the
general case, (Gupta et al., 1996), any system not re-
quiring manual intervention of the programmer has
blind spots for the particular changes and will break
the update. This also one can always design an ap-
plication whose behavior after being updated differs
from the behavior of a clean run of the new version.
One straightforward way to do this is to rely on the
application level data to differentiate between the be-
haviors. For example, to kill the application process if
a certain marker class is already loaded. The old ver-
sion of the code will then load the class, and proceed
to wait for the user input. The new version of the ap-
plication checks if the marker class is already loaded
and decides whether to kill itself. The only way to
solve issues like that is to specify the state transforma-
tion functions manually. However, it is imperative to
avoid the manual intervention from the developer dur-
ing the updates, since it removes all the time-saving
benefits of the dynamic updates.

Second, that our proposed state analysis engine
can predict the applicability of the update by query-

Using Runtime State Analysis to Decide Applicability of Dynamic Software Updates

ing the runtime state efficiently.

Without the runtime analysis system, even a mi-
nor update can result in application crashes as the ex-
periment section showed in the example of dynamic
updates applied with JRebel.

The non-deterministic nature of such errors, due
to runtime phenomena being dependent on the run-
time state at the moment of the update complicates
debugging and makes verification of code correctness
time-consuming work.

Using the runtime analysis and feedback system
described in this paper, can significantly decrease the
frustration of encountering unexpected behavior in
the updated application.

Indeed, as the experiment showed, we can deter-
mine that the state transformation functions do not
satisfy the update at hand. Additionally due to the
knowledge of what changes the update consists of and
which objects are on the heap or active methods on
the stack might produce the runtime phenomena, we
preventively notify the developer about the upcoming
errors, reducing how unexpected these are.

The list of runtime phenomena the system can pre-
dict covers the changes to Java programs previously
identified to be capable of producing runtime phe-
nomena: adding or removing static and instance fields
of the objects, changing actively running methods or
the hierarchy of the loaded classes. The updates per-
formed during the experiment show several signifi-
cant runtime phenomena types and show we can apply
the knowledge of the capabilities of the state transfor-
mation functions of a particular DSU solution with
regards to these.

To utilize the described system with an arbitrary
DSU, one needs information regarding which individ-
ual class changes are supported by the default state
transformations of the DSU.

Additionally, the system can potentially be con-
figured to postpone the updates from happening un-
til the runtime phenomena are not possible: until the
runtime state transformations are manageable by the
DSU at hand.

This approach will use the runtime analysis to de-
termine if the update might lead to the phenomena and
apply only safe updates. Otherwise, the update is not
continued and rescheduled after a short delay. When
a window of opportunity appears when the runtime
state changes and the state transformation capabilities
of the DSU fit it better.

The exact details of such a setup require more re-
search. Using the proposed system to analyze the
practical data for applying development time DSU so-
lutions will provide the necessary experimental data
for the research of the production systems.

The ability to predict the runtime phenomena by
observing the current runtime state of the applica-
tion allows us to make the daunting task of devel-
oping DSU friendly applications easier. Moreover,
the ability to identify updates that are complicated
for the DSU solutions can be used to collect a corpus
of update scenarios for a comprehensive DSU bench-
mark for Java programs. The existing research of the
unified DSU benchmarks concentrates on the updates
of the production systems written in lower level lan-
guages.

Dynamic Software Update is a complex problem,
so any advancement in making it more widespread is
a good step forward. Which makes the current work
of enhancing the availability of DSU solutions that
provide essential information about the predictability
and applicability of an update significant.

7 RELATED WORK

Here we summarize prior work on dynamic software
updates focusing on alternative DSU approaches or
on the work emphasizing the safety of the updates to
provide the context for this paper.

The field of analyzing the safety of the dynamic
updates is not particularly new, but the work is mostly
focused on safeguarding the updates to the production
and mission critical systems. Such goal requires rig-
orous proof of the safety criterias and is not focusing
on making the updating system easy and fast to use.

Gregersen et al. have identified which changes to
the Java programs can lead to observable runtime phe-
nomena (Gregersen and Jgrgensen, 2011).

Bazzi et al. research the state mapping problem
for DSU and try to limit that to make practical auto-
matic solutions possible, (Bazzi et al., 2009).

Zhao et al. devise an automated static analysis
system, (Zhao et al., 2014), that suggests safe points
to developers, which can be run on the arbitrary appli-
cations without prior specification of the original safe
points.

There also exist multiple dynamic software up-
date solutions for the JVM programs, (Subramanian
et al., 2009), (Gregersen and Jgrgensen, 2009). For
example, one of the newer ones, Rubah uses bytecode
rewriting to enable dynamic update on the stock JVM,
(Pina et al., 2014). The state is transformed either ea-
gerly leveraging the parallelism of the JVM to achieve
a speedup or lazily after the update. However, Rubah
requires programmers help to make applications up-
datable, which makes it less attractive for the devel-
opment time updates.

Then there is JRebel, a state-of-the-art DSU solu-

47

ICSOFT 2017 - 12th International Conference on Software Technologies

tion for JVM capableof reloading all changes to the
application, (Kabanov and Vene, 2014). However,
JRebel does not implement any non-trivial measures
to ensure runtime phenomena free updates, which
made JRebel a perfect candidate for a stock DSU so-
lution to be enhanced with Genrih.

Rather than trying to devise a generic solution ca-
pable of updating the running application at any mo-
ment of time, another approach to sanitizing dynamic
updates, is to allow developers to specify the “qui-
escence” safe points in the application code. For
some application architectures, like the event-driven
systems, such approach, is incredibly straightforward
and does not require extensive changes to the appli-
cation architecture. Hayden et al. integrated multi-
threaded quiescence into Kitsune and experimented
with updating a real life event driven system to evalu-
ate the performance of the approach. The results sug-
gest that in an event-driven system it is relatively easy
and fast to catch all the threads into a safe point, (Hay-
den et al., 2012b).

Another Hayden et al. work focuses on techniques
for establishing the correctness of the dynamic up-
dates, (Hayden et al., 2012a). They present a method-
ology for automatically verifying the correctness of
dynamic updates using specifications provided by de-
velopers. The main approach lies in the provably cor-
rect merge transformation of the old and new versions
of the code into a merged entity; that is later analyzed
both statically and using a symbolic executor for the
correctness of the dynamic update.

Giuffrida et al. introduced a system for live up-
dates that uses time-travelling snapshot techniques to
maintain the balance and transfer the runtime state
back and forth between two versions of the code,
(Giuffrida et al., 2013). Their approach also trades
the time for an update for its safety, and not particu-
larly applicable to the development time DSU.

The main focus of the existing research on DSU is
concentrated either on making the production system
updates more timely and safe by introducing manu-
ally or statically determined safe points, or encourag-
ing to create the DSU aware applications by follow-
ing a certain programming approach. However, to the
best of our knowledge, inspecting runtime state of a
statically typed object-oriented runtime to determine
if an update is safe has not been previously discussed
in details.

8 CONCLUSION

In this paper, we investigated an approach to the
safety of the dynamic software update of the statically

48

typed object-oriented programs. Previous research
has determined that applying updates to the running
code on the fly can result in the visible application-
level side effects due to the runtime phenomena oc-
curring after the update. The main reason for the phe-
nomena to occur is breaking application assumptions
about the runtime state because the update cannot au-
tomatically convert all the runtime state.

The main contribution of the current research
work is the design and the implementation of a run-
time analysis system that can automatically decide if
the state transformation functions of the given DSU
is sufficient for the current update. It is orthogonal
to the actual solution performing the dynamic update
and depends on just a handful of information about
the update mechanics. The analysis system takes into
account the exact changes an update consist of and
the current runtime state to determine what runtime
phenomena can be observed if the update is applied
immediately.

We provided a construction of a mapping for the
types of changes to a Java program that has been iden-
tified as capable of breaking the update by introducing
an observable runtime phenomena. We implemented
a prototype of the system that is capable of predict-
ing the possibility of these phenomena occurring. The
system prototype was integrated with JRebel dynamic
updating functionality for the Java applications.

The main result of the system work is that it qual-
ifies the DSU friendliness for the particular updates.
At the same time, it provides preemptive feedback de-
scribing the runtime phenomena possibly caused by
the update. Together these function can eliminate a
major time waste the existing dynamic software up-
date solutions for the development environment are
susceptible to — debugging errors introduced by the
runtime phenomena of the dynamic updates.

REFERENCES

Bazzi, R. A., Makris, K., Nayeri, P., and Shen, J. (2009).
Dynamic software updates: the state mapping prob-
lem. In Proceedings of the 2nd International Work-
shop on Hot Topics in Software Upgrades (HotSWUp
’09). ACM, , NY, USA, , Article 7, 2 pages. DOI=.

Erlang (2017). Erlang reloading documentation.
http://www.erlang.org/doc/reference_manual/
code_loading.html. Accessed: 2017-05-17.

Giuffrida, C., lorgulescu, C., Kuijsten, A., and Tanenbaum,
A. S. (2013). Back to the future: fault-tolerant live
update with time-traveling state transfer. In Proceed-
ings of the 27th USENIX conference on Large Installa-
tion System Administration (LISA’13), pages 89-104,
Berkeley, CA, USA. USENIX Association.

Using Runtime State Analysis to Decide Applicability of Dynamic Software Updates

Gregersen, A. R. (2011). Implications of modular systems
on dynamic updating. In Proceedings of the 14th in-
ternational ACM Sigsoft symposium on Component
based software engineering (CBSE ’11). ACM, , NY,
USA,. DOI=10.1145/2000229.2000254, pages 169—
178.

Gregersen, A. R. and Jgrgensen, B. N. (2009). Dynamic up-
date of java applications - balancing change flexibility
vs. programming transparency. J. Softw. Maint. Evol.,
21(2):81-112.

Gregersen, A. R. and Jgrgensen, B. N. (2011). Run-time
phenomena in dynamic software updating: causes
and effects. In Proceedings of the 12th Interna-
tional Workshop on Principles of Software Evolu-
tion and the 7th annual ERCIM Workshop on Soft-
ware Evolution (IWPSE-EVOL ’11). ACM, , NY, USA,.
DOI=10.1145/2024445.2024448, pages 6-15.

Gupta, D., Jalote, P., and Barua, G. (1996). A formal
framework for on-line software version change. IEEE
Trans. Softw. Eng, 22(2):120-131.

Hayden, C. M. (2012). Clear, correct, and efficient dynamic
software updates. Ph, 3543.

Hayden, C. M., Magill, S., Hicks, M., Foster, N., and
Foster, J. S. (2012a). Specifying and verifying
the correctness of dynamic software updates. In
tools, e. V. S. T. T. E. ., Joshi, R., Miiller, P., and
Podelski, A., editors, Proceedings of the 4th inter-
national conference on Verified Software: theories,
pages 278-293. Springer-Verlag, Berlin, Heidelberg,.
DOI=10.1007/978-3-642-27705-4_22.

Hayden, C. M., Saur, K., Hicks, M., and Foster, J. S.
(2012b). A study of dynamic software update quies-
cence for multithreaded programs. In /2). IEEE Press,
Piscataway, NJ, USA, pages 6—10. Proceedings of the
4th International Workshop on Hot Topics in Software
Upgrades (HotSWUp.

Kabanov, J. and Vene, V. (2014). A thousand years of
productivity: the jrebel story. Softw: Pract. Exper.,
44:105-127.

Oleg éelajev, R. R. and Kabanov, J. (2013). Static analy-
sis for dynamic updates. ACM, New York, NY, USA.
Proceedings of the 9th Central & Eastern European
Software Engineering Conference in Russia (CEE-
SECR ’13).

Oracle (2017). Jvmti documentation.
http://docs.oracle.com/javase/8/docs/platform/jvmti/
jvmti.html#whatls. Accessed: 2017-05-17.

Pina, L., Veiga, L., and Hicks, M. (2014). Rubah:
Dsu for java on a stock jvm. In Proceedings
of the 2014 ACM International Conference on Ob-
Jject Oriented Programming Systems Languages &
Applications (OOPSLA ’14). ACM, , NY, USA,.
DOI=10.1145/2660193.2660220, pages 103—119.

Shipilev, A. (2017). Java microbenchmark harness.
http://openjdk.java.net/projects/code-tools/jmh/. Ac-
cessed: 2017-05-17.

Subramanian, S., Hicks, M., and McKinley, K. S. (2009).
Dynamic software updates: a vm-centric approach.
SIGPLAN Not, 44(6):1-12.

Wiirthinger, T. (2010). Wimmer. In /0). ACM, New York,
NY, USA,. DOI=, pages 10-19, L Dynamic code evo-
lution for Java. In Proceedings of the 8th International

Conference on the Principles and Practice of Program-
ming in Java (PPPJ. C. and Stadler.

Zhao, Z., Ma, X., Xu, C.,, and Yang, W. (2014). Auto-
mated recommendation of dynamic software update
points: an exploratory study. In Proceedings of the
6th Asia-Pacific Symposium on Internetware on Inter-
netware (INTERNETWARE 2014). ACM, , NY, USA,.
DOI=10.1145/2677832.2677853, pages 136-144.

49

