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Abstract: The use of Electroencephalography (EEG) signals in the field of Brain Computer Interface (BCI) has gained 

prominence over the past decade, with the availability of diverse applications especially in the clinical 

sector. The major downside is that the current equipment being used at medical level is specialized, 

complex and very expensive. Our research goals are to further increase accessibility to this technology by 

providing a unique approach in data analysis techniques, which in return will allow the usage of cheaper and 

simpler EEG hardware devices targeted for end users. We use non-invasive BCIs designed on EEG, mainly 

due to its fine temporal resolution, portability and ease of use. The main shortcoming of EEG is that it is 

frequently contaminated by various artefacts. In this paper we provide vital groundwork by identifying and 

categorizing artefacts using low fidelity equipment. This work forms part of a wider project in which we 

attempt to use those artefacts constructively, when others try to filter them out. The main contribution is to 

create awareness of the extent to which artefacts can be encountered, identified and categorized using off-

the shelf equipment. Our results illustrate that we are able to adequately identify and categorize the most 

commonly encountered artefacts in a non-clinical environment, using low fidelity equipment. 

1 INTRODUCTION 

This paper discusses the artefacts of a non-invasive 

BCI (Brain Computer Interface) on the basis of EEG 

(Electroencephalography) where the signals will be 

extracted from the electromagnetic (EM) brain 

functions without the use of muscular activity. 

Initially EEG was targeted for use in clinical 

applications with patients that have medical 

conditions such as Lou Gehrigs disease (Allison et 

al., 2012). However over the past decade the use of 

biomedical signals has also increased significantly in 

non-clinical applications. This has led to the 

development of a number of devices that can be 

controlled by signals emitted from the brain. 

At the present time, human BCI research has 

been developing into two main areas; invasive and 

non-invasive. The most prevalent invasive 

techniques are called Electrocorticography (ECoG) 

or intracortical recordings, which have their 

electrodes in direct contact with the cerebral cortex 

while the most prevalent non-invasive technique is 

called Electroencephalography (EEG) which has its 

electrodes placed along the scalp surface (Dornhege 

et al., 2007). The qualitative difference between 

these areas is that invasive BCI has a much better 

signal quality with higher amplitudes and spatial 

resolutions; it has a high signal-to-noise ratio and is 

less susceptible to artefacts; however it requires a 

surgical intervention for electrode placement. On the 

other hand non-invasive BCI has a much weaker 

signal and is prone to a number of different artefacts. 

However it has an excellent temporal resolution 

(Ball et al., 2009) and does not require any surgery.  

In addition to using non-invasive BCI based on 

EEG, our research also makes use of low cost off the 

shelf equipment. The aim is to increase accessibility 

to this technology by providing a unique approach in 

data analysis techniques, which in return will allow 

the usage of cheaper and simpler EEG hardware 

devices targeted for end users. This paper does not 

imply that the low fidelity equipment being used 

could replace medical equipment; as a matter of fact 

it does not have any certification; therefore it should 

be employed sensitively for non-clinical trials. 

(Frey, 2016) states that “Open-hardware initiative 

does not aim at medical applications, hence it 

should be employed in sensitive contexts.”  

An artefact is a signal that is detected by EEG 

equipment, which is not of cerebral origin but from 
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various different sources. In the context of EEG, 

artefacts are unwanted since they mask the brain 

wave signals; however they could potentially be 

used as a primary interface. According to the 

glossary of the International Federation of Clinical 

Neurophysiology (IFCN), the term artefact is 

described as “A potential difference due to an 

extracerebral source, recorded in EEG tracings”; 

which is expanded to “A modification of the EEG 

caused by extracerebral factors such as alterations 

of the media surrounding the brain, instrumental 

distortion or malfunction, and operational errors” 

(Noachtar et al., 1999). Artefacts have always been 

given great importance in the context of EEG due to 

the undesirable affect that these have on the signal of 

cerebral origin. 

The work presented here is part of a larger EEG-

based project, and thus it is important to recognise 

and understand the artefacts that are detectable. 

These artefacts are usually an unwanted signal in the 

context of EEG; however we are interested in using 

them as part of a control interface. In this paper we 

prepare the groundwork for filtering and using these 

artefacts, through categorization of artefacts, and 

their manifest characteristics, using specific low 

fidelity equipment. 

2 EMPIRICAL INVESTIGATION 

OF EEG ARTEFACTS USING 

OFF-THE-SHELF EQUIPMENT 

Our work is concerned with exploring the 

capabilities and limitations of low cost off the shelf 

equipment which in return will facilitate and 

increase accessibility for EEG applications. We aim 

to compensate for the low fidelity aspect of this 

equipment with enhanced software filtering and 

analysis. This particular part of the work sets the 

foundations for further work by investigating the 

way in which various artefacts are detected, 

identified and categorized with low fidelity 

equipment.  

A way in which an electrode (input1) is 

connected relative to another electrode (input2) is 

called a derivation. A collection of derivations are 

called a montage and there are several different ones 

in popular use. The intention of using a specific 

montage is to keep the experiments tractable and to 

avoid unnecessary complexity.  Moreover other 

types of montage; even the more complex such as 

Laplacian and Common Average Reference; can be 

derived from the collected data, since montage 

reformatting is achieved by performing a simple 

mathematical operation. In fact (Fisch, 1999) states 

that “for this reason, digital EEG systems store the 

original EEG signal in a referential montage 

containing all electrodes”. This is of course possible 

as long as all the electrodes that need to be 

combined have in some way been referred to each 

other in the original recording.  

For instance when labelling a channel montage 

as Fp1-A1, a mathematical expression is being 

created which implies that the signal displayed will 

be Fp1 minus A1. If a recording has been obtained 

from Fp1-A1 and Fp2-A1 then Fp1-Fp2 can be 

derived from:  

(Fp1 - A1) - (Fp2 – A1) =  

Fp1 - Fp2 + A1 - A1 = Fp1 - Fp2 

(1) 

Although montage reformatting is possible to be 

performed instantaneously, this is ideally used for 

recorded sessions and is not suggested for real-time 

streaming. 

2.1 Equipment Used 

The work reported herein is based on an OpenBCI1 

32-bit board connected with an Electro-Cap2 using 

the international 10/20 system for scalp electrode 

placement in the context of EEG experiments. A 

basic overview of the equipment being used is 

shown in Figure 1. 

 

Figure 1: OpenBCI Board and Electro-CAP. 

The OpenBCI 32-bit’s board microcontroller is the 

PIC32MX250F128B3 which includes a 32-bit 

processor with a maximum speed of 50MHz; storage 

of 32KB of memory and is Arduino compatible.  

The board uses the ADS12994 IC developed by 

Texas Instruments, which is an 8-Channel, 24-Bit, 

simultaneous sampling delta-sigma, Analogue-to-

                                                           
1 http://openbci.com/ 
2 http://electro-cap.com/ 
3 http://www.microchip.com/wwwproducts/en/en557425 
4 http://www.ti.com/product/ADS1299 
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Digital Converter used for bio potential 

measurements such as in EEG and 

Electrocardiography (ECG). The 24-bit resolution 

gives a huge range of microvolts (µV) that covers +- 

187mV (187000µV); the working is shown in 

section 2.2. When considering that EEG data ranges 

are typically between +-100µV, it illustrates that it is 

able to provide a broad spectrum of flexibility and 

scalability. Moreover this chip is capable of 

supporting up to 16,000Hz although the transfer of 

that much data through an Arduino would be 

impracticable. There is the ability to use the SD card 

for faster sample rates, which is discussed below. 

The board comes with eight bio potential input 

channels which can be increased to sixteen channels 

with the addition of a Daisy Module; which plugs 

itself onto the existing OpenBCI 32-bit board. Our 

current experiments do not make use of the daisy 

module, although future experiments may need these 

extra channels. 

The system comes with a pre-programmed USB 

dongle for wireless communication which 

communicates with the low cost RFDuino5 

RFD22301 microcontroller built on the OpenBCI 

board. This microcontroller can communicate 

wirelessly with any device compatible with 

Bluetooth Low Energy (BLE). In addition a local 

Secure Digital (SD) slot is built-in the board, which 

gives it the ability to store recorded data on SD 

memory card. This is particularly useful when 

requiring improved portability and highest data 

rates. 

An additional feature which is included in the 

OpenBCI board is a 3-axes accelerometer from ST 

with model LIS3DH6. This accelerometer is capable 

of 16 bit data output and of measuring accelerations 

with output data rates from 1 Hz to 5.3 kHz. This 

can prove to be quite useful; such as, for sensing 

change in orientation of the head or sensing rough 

motion. In these cases the value from the 

accelerometer would suggest that motion artefacts 

would be within the EEG data. In our experiments 

this information was not required, since the board 

was firmly placed on the desk. However in the 

future we are planning on using the OpenBCI 

Ultracortex MK4 cap, which has the ability of 

attaching the board to the actual headset, where the 

data from the accelerometer would be extremely 

valuable. Figure 2 depicts a graphical representation 

of these components. 

 

                                                           
5 http://www.rfduino.com/ 
6 http://www.st.com/en/mems-and-sensors/lis3dh.html 

 

Figure 2: OpenBCI Board Components. 

The Electro-Cap being used in our experiments has 

the fabric which is made from elastic spandex and 

has recessed pure tin wet electrodes directly attached 

to the fabric. The term wet electrodes type, implies 

that the use of an electrolyte gel is required to make 

effective contact with the scalp; otherwise it may 

result in impedance instability. 

2.2 Experimental Setup 

The EEG signals where sampled at 250Hz (this 

being OpenBCIs default value) while the sampling 

precision was 24-bit. The recordings where stored 

anonymously as raw data in text, comma separated 

value (csv) files. Eight EEG electrodes where used 

in different regions of the scalp according to the 

International 10-20 System as shown in Figure 3. 

This system is the de facto standard for the 

placement of electrodes along the head. Each 

electrode is assigned a letter to identify the lobe and 

a number to identify the hemispheric location. The 

letters F, P, T and O stand for Frontal, Parietal, 

Temporal and Occipital lobes. In addition, letter C 

refers to the central area of the brain. The even 

numbers represent the electrodes positioning on the 

right hemisphere, while the odd numbers represent 

the electrodes positioning on the left hemisphere. 

The Xz stands for a zero and represents an electrode 

placed on the midline such as Fz, Cz and Pz. In 

addition the letter A can represent the reference 

electrode which will measure the potential 

difference between itself and the other electrodes 

and/or the ground electrode for common mode 

rejection. 

The equipment we are using supports the use of 

eight electrodes. The electrode positions Fp1, Fp2, 

C3, C4, T5, T6, O1 and O2 are selected because 

they provide good coverage for detecting these 

artefacts. These are referenced to the electrode A1 as 

follows: Channel 1: Fp1; Channel 2: Fp2; Channel 

3: C3; Channel 4: C4; Channel 5: T5; Channel 6: 

T6; Channel 7: O1; Channel 8: O2 as shown in 

Figure 3. A referential montage was selected to 
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analyse how artefacts are exposed with this setup, 

even though no single reference electrode is ideal for 

all situations. Nonetheless and if required, other 

types of montage can be reconstructed from the 

chosen montage by executing a simple mathematical 

operation; as previously explained. The reference 

electrode was placed on the left earlobe A1 as shown 

in Figure 4. 

 

Figure 3: Electrode placement following the International 

10-20 system. 

EEG signals where obtained from a healthy human 

subject; male in the age group between 30 and 40 

years old and on three different sessions with a few 

days apart. Before the start of the experiments, the 

subject was asked to calm down in a seated position 

and relax for a few minutes. The subject was seated 

one meter away from the equipment. The researcher 

and his equipment where situated on the left side of 

the subject. Then, the subject was instructed on a 

series of tests such as muscle movement that are 

designed to detect the artefacts which are discussed 

in Section 3.  

Three trials where conducted for these 

experiments. The first session results and recordings 

where archived. The second session was done on a 

separate day with the same conditions of the first 

session and the results where archived for 

comparisons. These two sessions were carried out to 

familiarize the user with the equipment and the 

methodology of the experiments. The third session 

was done a day later with the same conditions of the 

first and second session and the results are shown in 

this paper. During the recording the subject received 

a 2 second beep sound to perform the requested trial 

and a 1 second beep sound to stop. 

 

 

Figure 4: Referential Montage used. 

2.3 Processing 

The data that was transmitted from the RFDuino 

module found on the OpenBCI board is considered 

as ‘raw’ EEG data in ADC counts. These where 

transferred as 24-bit integer, since it’s the native 

format used by the ADS1299 chip. Since this is an 

unusual format, it was immediately converted via 

the OpenBCI open-source JAVA function 

‘interpret24bitAsInt32’ into a 32-bit signed integer 

(Audette, 2014).  

Subsequently the scale factor was required, 

which is the multiplier used to convert the EEG 

values from counts to scientific units like volts. This 

is found by following the formula in the ADS1299 

datasheet table number 7: 

Scale Factor = VREF / (223-1) / Gain * 1000000 (2) 

The datasheet also states that the voltage 

reference input is hardware bound to 4.5volts, while 

we used the maximum and default gain factor of 24-

bit. Thus the formula (2) can be reformed into: 

Scale Factor = 4.5v / (223-1) / 24 * 1000000 (3) 

Hence the scale factor value is 0.02235 per 

count. Therefore the 32-bit signed integer is 

multiplied by the scale factor and we get the EEG 

data values in microvolts (µV). This is the actual 

stored data in the csv file. The full scale of +- 

187mV (187000µV) discussed in Section 2.1 is 

achieved by 223 * 0.02235 = +-187485.388µV. 

As previously mentioned the ADS1299 chip is 

capable of a sample rate of up to 16,000Hz; however 

in our experiments we used OpenBCIs default rate 

of 250Hz especially when considering that the data 

was being transmitted wirelessly through the 

RFDuino module. 
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The captured raw data was imported in 

MATLAB R2014a7 via the csvread command into a 

MATLAB matrix and any unnecessary rows and 

columns were removed. These consisted of the first 

five rows which are superfluous comments; the first 

column which stored the sample index / packet 

counter and the last three columns which stored the 

auxiliary data of the accelerometer. 

The MATLAB array was later imported into 

EEGLAB8 for processing and for offline qualitative 

and quantitative analysis. The first process was to 

apply a 50Hz (60Hz in some countries) notch filter 

to eliminate the environmental electrical 

interference, which was only omitted for the 

50/60Hz artefact experiment. In addition a high pass 

filter was applied at 0.5Hz to remove the DC offset 

and a low pass filter of 49Hz was applied to remove 

any signal harmonics and unnecessary frequencies 

which are not beneficial in our experiments. As an 

alternative a band-pass filter of 0.5Hz-49Hz could 

have been chosen, however it was not selected since 

this type of filter does not attenuate all frequencies 

outside the range. In fact the filter’s frequency 

response function is not very steep; it doesn’t 

completely cut-off at the required frequency, but 

instead it rolls off more gently with the frequency.  

The result from this processing yields a rich EEG 

signal for our experiments which can be analysed 

with different tools. The screenshots presenting the 

EEG signal (see Figures 5-15) where plotted by 

using the EEGLAB Plot: Channel Data (Scroll) 

menu option. The frequency-time domain 

screenshots where produced by the Time-Frequency 

transforms: Channel-time frequency menu option. 

The plot Event Related Spectral Power (ERSP) was 

employed since it is a statistical measure; the mean 

of a distribution of single-trial time/frequency 

transform (Neuper & Klimesch, 2006). In our 

processing we used the Fast Fourier Transform 

(FFT) option; 400 time points for the time-frequency 

decomposition and the frequency was set between 

one and forty which provides us with enough 

information for artefacts detection. The baseline was 

set to the default of 0 for pre-stimulus and the single 

trial DIV baseline option was used. Subsequently the 

choice of channel number and time range in relation 

to the experiment being analysed where entered 

(such as Channel 1 for FP1; time range 5000ms – 

9000ms).  

The spectrogram frequency-domain screenshots 

were produced in Matlab; outside of EEGLAB. The 

                                                           
7 https://www.mathworks.com/products/matlab.html 
8 https://sccn.ucsd.edu/eeglab/ 

data was filtered using Butterworth filter design of 

the second order. First a notch filter was used 

followed by a low pass and a high pass filter; with 

the same values used for EEGLAB. The actual code 

for the filtering and the spectrogram are shown in 

the appendix section. 

3 ARTEFACTS - RESULTS 

Although a number of research papers have been 

published showing different types of artefacts such 

as (AYDEMIR et al., 2012) and (Begum, 2014); 

these were presented with a “black box” approach or 

using medical equipment, or otherwise, mentioned 

in a different context. What we present in this paper 

are results that are relevant to our own specific low 

fidelity hardware. 

An EEG device is very sensitive and it is easily 

susceptible to disruption from other electrical 

activities. Moreover some artefacts are easily 

distinguishable while others closely resemble 

cerebral activity and are very challenging to be 

recognized. Artefacts are usually categorized as 

physiological (biological) and non-physiological 

(extra physiological) (Fisch, MD, 2000). The 

classification mentioned below is not rigorous; for 

instance, if the subject makes a movement, this may 

lead to artefacts originating as electrode artefact. 

Even though signal artefacts caused by non-brain 

wave signals can be problematic when studying 

brain waves directly, the signal artefacts themselves 

could be used directly as command signals within an 

interface. 

3.1 Physiological Artefacts 

Physiological artefacts are bioelectrical signals that 

are generated from the user’s body excluding the 

brain. These are usually embedded along the 

electrical cerebral bio-signals in an EEG session. 

The physiological artefacts include, but are not 

limited to: 

3.1.1 Ocular Artefacts 

Ocular artefacts are essentially a result from the 

eyeball acting as a dipole which becomes pertinent 

when it develops into a moving electrical field such 

as when the subject opens and closes his eyes and/or 

the EMG potentials from muscles in and around the 

orbit. These generate signals that are detected 

predominantly by electrodes Fp1/Fp2 and F7/F8. 
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1) Blink: blink/blinking which is the most 

common ocular artefact, occurs spontaneously and is 

very challenging for the subject to control even for 

short periods of time. When the subject blinks, the 

eyeball triggers an instinctive upward movement 

(Bells phenomenon) and hence produces a positive 

potential in the frontal lobe which is displayed in 

EEG as a transient, diphasic, synchronous slow 

wave (Misra & Kalita, 2005) (Stern, 2005) 

(Sovierzoski et al., 2008) as shown in Figure 5. This 

image also shows that, the faster the blink the 

shorter the wavelength, as depicted by the first blink 

occurrence which was faster than the second blink. 

When the subject performs a number of repetitive 

blinks, the displayed EEG could mimic a triphasic 

wave or resemble rhythmic delta activity as shown 

in Figure 6. Additional and more frequent blinking 

can simulate theta activity as shown in Figure 7. 

 

Figure 5: Ocular Artefact - Eye Blink predominantly on 

Electrodes Fp1 and Fp2 (Plot, ERSP, and Spectrogram). 

 

 

 

 

 

 

 

Figure 6: Ocular Artefact – Repetitive Eye Blinks (Plot, 

ERSP, and Spectrogram). 

 

Figure 7: Ocular Artefact – More Repetitive Eye Blinks 

(Plot, ERSP, and Spectrogram). 

2) Eye Flutter: Eye Flutter produces an ocular 

artefact that is more rhythmic, with higher frequency 

and lower amplitude as shown in Figure 8. 
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Figure 8: Ocular Artefact – EyeFlutter (Plot, ERSP, and 

Spectrogram). 

3) Lateral Eye Movement: Lateral Eye 

movement artefact is mostly detected in a bipolar 

longitudinal montage using Fp1-F7 and Fp2-F8 and 

may start off with a single sharp muscle potential 

called lateral rectus spike. In this type of montage a 

left lateral eye movement will have a positive 

potential in electrode F7 and an opposite negative 

potential in electrode F8. In our referential montage, 

the frontal origin of eye movement artefacts 

remained indistinguishable due to the reference 

electrode (A1) being contaminated by eye 

movements (Fisch, MD, 2000). 

4) Slow Roving Eye Movement: Slow Roving 

eye movement differs from lateral eye movement 

since no saccades occur; consequently resulting in 

no abrupt changes. On a bipolar montage these are 

reflected as smooth lateral movements with phase 

reversing. On a referential montage using low 

fidelity equipment, this artefact was not detected. 

3.1.2 Muscle Artefacts - EMG 
(Electromyography) Activity 

EMG activity produces artefacts that are due to 

muscle contraction and are the most common and 

significant noise source in the context of EEG. 

Although EMG in itself is useful for 

electromyography; they are considered noise in 

EEG, since they overlap and obscure the EEG signal 

due to their higher amplitude and frequency. If, 

however, this signal is passed through a low-pass 

filter set at 35Hz or less, this will change their form 

and caution is required since these may transpire as 

beta activity or like abnormal epileptiform spikes. 

The extent of a muscle artefact depends on the 

duration of the muscle activity, which might be less 

than a second and/or throughout the entire session 

(Stern, 2005) (Fisch, MD, 2000) (Misra & Kalita, 

2005). 

1) Surface EMG: Surface EMG activities 

generally occur in regions with underlying muscle 

such as the masseter and temporalis muscle, which 

affect the frontal and temporal electrodes. These 

may also disseminate and diffuse to other channels. 

Electrodes Fz, Cz and Pz can provide a reasonably 

pure EEG signal. Figure 9 shows an EMG effect 

when the subject clenches his teeth. ERSP 

screenshot doesn’t show any recognizable activity. 

 

Figure 9: Muscle Artefact – Clench Teeth (Plot, ERSP, 

and Spectrogram). 

2) Glossokinetic: Glossokinetic is an artefact 

arising from the movement of the tongue. It is 

similar to the eyeball movement in ocular artefacts, 

though less sharp. The tongue functions as a dipole 

where the tip acts as a negative with respect to the 

positive base. This results in the surging of diffuse 

delta like activity, which is frequently supplemented 

by muscle artefact. The tongue has a DC potential 

and equipment running on DC amplifiers will not 

record its potential as is the case in the equipment 

being used for this experiment.  

Figure 10 shows the effect of swallowing in our 

subject which affects the oropharyngeal muscle. 

This experiment could have been included in the 

Surface EMG section, since no tongue potential is 

being recorded, but is being listed here for 

classification reasons. 
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3) Intermittent Photic Stimulation (IPS): 

Intermittent Photic Stimulation (IPS) / is a 

photomyogenic / photomyoclonic response to a 

visual stimulation where the subject eyes are 

presented with intermittent flashes of light. This 

results in an involuntary time linked facial muscle 

response to the flash of light which affects the 

frontal and periorbital regions, specifically the 

frontalis and orbicularis muscles (Shamsaei, n.d.). 

At this stage in our work we don’t include this. 

Figure 10: Muscle Artefact – Swallow (Plot, ERSP, and 

Spectrogram). 

3.1.3 Movement Artefacts 

Movement during an EEG session may produce two 

distinct artefacts; instrumental from the movement 

effect on the electrodes and their leads as discussed 

in the Equipment Artefacts section below; and 

biological through the generation of electrical fields 

from muscle contraction; EMG activity; as discussed 

in the Muscle Artefacts section above. 

3.1.4 Cardiac Artefacts 

Electrocardiography (ECG) is the process of 

recording electrical activity from the heart. The heart 

produces a considerable electrical field that spreads 

to the base of the skull, which is detectable in an 

EEG session. This artefact is easily detected in a 

referential montage since there is ample 

interelectrode distance between the reference which 

is located on the ear lobe and the other electrodes 

which are located on the scalp. In addition this 

artefact is most prominent in subjects with a short 

neck. This artefact appears as a QRS complex which 

represents three graphical deflections in an ECG 

diagram. The QRS complex is preceded by a P wave 

and followed by a T wave as shown in Figure 11. 

With clinical EEG equipment using a referential 

montage setup; a poor QRS complex was formed. 

This was due to the distance from the heart where 

the P wave and T wave are not visible (Fisch, MD, 

2000) (Stern, 2005). ECG artefact may be reduced 

or removed by adding a second reference; however 

it will only work if both reference electrodes are able 

to detect a pulse (Spriggs, 2010). Unfortunately we 

were unable to reproduce this artefact using low 

fidelity equipment. It is true that the artefact is a 

poorly formed QRS complex which is most 

prominent in short necks and could have been easily 

concealed within the noise; but that does not negate 

the fact that we should have at least encountered it 

even as a low amplitude signal. We have tried 

several types of filters but without any apparent 

result. We were however able to produce an ECG 

signal on purpose; not as an artefact; with a different 

set-up, which however is beyond the scope of this 

paper.  

 

Figure 11: QRS Complex. 

3.1.5 Pulse Wave Artefact 

Pulse artefact mainly occurs when electrodes are 

placed over a pulsating artery manifesting a regular 

pulse beat. These pulsations instigate periodic slow 

waves that can be misidentified as EEG activity. 

There is a direct link between ECG and pulse waves; 

where the QRS complex happens right before (about 

200ms) the pulse waves. In our experiments the 

electrodes where not placed over a pulsating artery 

and thus it did not show in our experiments. 

3.1.6 Skin Potential 

Skin potentials where discussed in Non-

Physiological Artefacts, explicitly under Equipment 

Artefacts which included Perspiration and Salt 

bridges. 

3.2 Non-Physiological Artefacts 

Non-Physiological artefacts are externally generated 

outside the user’s body such as artefacts arising from 

environmental electrical interference and artefacts 

relating to the equipment being used. 
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3.2.1 Environmental Electrical Interference 

Environmental Electrical Interference: 50/60Hz 

Artefact; The most common electrical interference 

artefacts usually emanate from electrical devices and 

in close proximity to power lines. The greatest 

contributor is the alternating current (AC) with a 

monomorphic frequency of either 60Hz (ex. United 

States) or 50Hz (ex. Europe). These artefacts can be 

introduced either electromagnetically, where the 

strength of the field is determined by the current 

flowing through cables or by the equipment such as 

transformers and TV power supplies; and 

electrostatically due to the capacitance property of 

objects where the subject or electrodes pick up 

capacitance potentials from other sources which are 

in their proximity such as the movement of any 

charged bodies or objects (ex. plastic, rubber, 

synthetic fibres) near the subject (Fisch, MD, 2000) 

(Binnie et al., 1982). Figure 12 shows the effect of a 

50Hz noise on our EEG signal.  

This artefact can be reduced by grounding the 

equipment, moving the subject away from power 

lines and sources that can generate electrostatic 

interference and keeping electrodes impedance to 

less than 5KΩ which is the leading cause of the 

50/60Hz artefact (Spriggs, 2010). Should these 

methods not suffice; the artefact can be eliminated 

by a notch-filter (or similar) which will only remove 

the 50Hz or 60Hz activity from the signal. The filter 

should only be used if necessary. 

Radio Frequency / Mains-Borne: Other electrical 

interferences which are less prominent include 

Radio Frequency when they are modulated in a 

lower frequency and Mains-Borne interference 

arising from fluctuating power supplies. 

Figure 12: Electrical Artefact: 50Hz (Plot, ERSP, and 

Spectrogram). 

 

3.2.2 Equipment Artefacts 

A number of different artefacts can be caused from 

the recording electrodes and the equipment being 

used. Electrode artefacts can manifest as two 

dissimilar waveforms; low frequency rhythms 

amidst a scalp area and brief transient morphology 

which would be limited to one electrode (Stern, 

2005). 

Electrode Pop: Electrode Pop can occur 

occasionally when there is an instantaneous change 

in the electrical potential between the electrode and 

the scalp, where it is typically followed by a sudden, 

high amplitude spike in the EEG recording (Barlow, 

1986) as shown in Figure 13. This may occur when 

electrodes are not firmly attached and/or when direct 

pressure is applied on the electrodes. 

Figure 13: Equipment Artefact: Electrode Pop (Plot, 

ERSP, and Spectrogram). 

Electrode Contact and Lead Movements: A weak 

Electrode Contact and Lead Movements generate a 

different artefact that has a less sustained 

morphology compared to electrode pop as shown in 

Figure 14. The weak electrode contact results in 

impedance instability, which will produce waves 

with fluctuating amplitude and morphology; 

although if there is a context of rhythmic movement 

such as from tremors, the resulting waves may be 

rhythmic as well. Lead movements do not resemble 

any true EEG activity where the morphology of the 

wave is incoherent (Stern, 2005). 

Salt Bridge: A Salt Bridge artefact can occur 

when smearing the electrolyte gel between two 

electrodes or by applying an excessive amount of 

electrolyte gel, which may result in an inadvertently 

overlap, thus creating a short circuit between the 

electrodes. This artefact is usually channel specific 

and manifested as a low amplitude wave compared 

to the background. Salt bridge artefact will 
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eventually be prevented by use of dry electrodes; 

which we plan to do in our future experiments. 

Perspiration: Perspiration artefact although not 

as stable, is similar to a salt bridge artefact where the 

salinity between electrode locations will merge the 

affected electrodes as a single entity. It is usually 

manifested as a slow wave that is typically greater 

than 2 seconds in duration which is out of the 

frequency scope of EEG (Stern, 2005) (Fisch, MD, 

2000). 

 

Figure 14: Equipment Artefact: Electrode Contact and 

Lead Movement (Plot, ERSP, and Spectrogram). 

Salt Bridge and Perspiration artefacts can be easily 

recognized in an EEG session and should be 

resolved prior to commencement. The salt bridge 

artefact is eliminated by cleaning the excess 

electrolyte between the affected electrodes and 

wiping the subjects forehead with a spirit solution, 

while the perspiration artefact can be eliminated by 

providing a cooler environment and reducing the 

emotional stress of the subject. The experiments 

reported here where based on a referential montage, 

where these artefacts where not present. The lack of 

these findings suggests that an electrolyte bridge is 

only present amongst electrodes such as in a bipolar 

montage. 

4 CONCLUSION 

Non-invasive BCIs designed on EEG provides fine 

temporal resolution, portability and ease of use 

however the signal is frequently contaminated by 

various artefacts. EEG processing and analysis 

require accurate information and it is vital that these 

artefacts are recognized and classified so that it 

would be possible to eliminate or prevent them from 

occurring, or otherwise, attempt to use them 

constructively. 

Previous investigations in this research area 

where made using expensive medical EEG 

equipment and were usually categorized using 

different type of montages, which made it 

challenging for comparisons. Moreover only a few 

of these artefacts have been documented 

successfully using low fidelity equipment and this 

documentation has been ad hoc and not categorized 

properly.  

Due to the proliferation of cheap EEG 

equipment, including user-made equipment such as 

(Wang et al., 2016), an evident necessity to validate 

the equipment’s suitability was present. Moreover in 

recent times, a number of researchers and end-users 

are using low fidelity equipment as a “black box” 

approach (Lecoutre et al., 2015), without any 

qualitative testing on the equipment being used.  

Part of our contribution was to create awareness 

of what type of hardware components are being 

utilized in low fidelity equipment, vis-à-vis the 

results achieved. This would ultimately facilitate the 

possibilities of using off-the-shelf EEG equipment 

as a cheap alternative to medical EEG equipment. It 

is important to note that this paper does not imply 

that low fidelity equipment should replace medical 

equipment; our purpose is to assess the suitability of 

such equipment for non-clinical trials. 

In this paper, a successful approach in identifying 

and classifying artefacts using low fidelity 

equipment on a referential montage is presented. 

The promising results achieved show that the most 

common artefacts observed in a non-clinical 

environment are being effectively identified and 

categorized while using the aforementioned 

equipment.  

5 FUTURE WORK 

Future research work includes the capability of low 

fidelity equipment, to accurately capture Mu and 

Alpha waves/rhythms which can be processed to 

perform tasks such as motor control functions. Some 

initial results are shown in Figure 15, where the 

Alpha waves are predominantly seen in the occipital 

lobe, specifically on O1 and O2 electrodes, whereas 

the Mu waves are predominantly found around the 

central area of the brain known as “central sulcus”, 

specifically on C3, Cz and C4 electrodes in our 

figure. In addition we are also interested in exploring 

the idea of using some of these artefacts 
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constructively in concurrence with actual brain wave 

signals. 

 

Figure 15: Initial results for Alpha & Mu Waves. 
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APPENDIX 

Matlab code that includes filtering used for 

displaying spectrogram screenshots. 

 
fs = 250;  

nfl = 49; 

nfh = 51; 

fl = 49; 

fh = 0.5; 

order = 2; 

 

%Butterworth notch filter 

[bn,an]=butter(order,[nfl 

nfh]/(fs/2),'stop'); 

 

%Butterworth low pass filter 

[b,a]=butter(order,lp/(fs/2),'low'); 

 

%Butterworth high pass filter 

[b,a]=butter(order,fh/(fs/2),'high'); 

 

%Spectrogram 

spectrogram(eegdata_f,hanning(256),2

55,[1:40],250,'yaxis'); 
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