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Abstract: An experimental comparison of single-phase active rectifiers for electric vehicle (EV) battery chargers is 
presented and discussed. Active rectifiers are used in on-board EV battery chargers as front-end converters 
to interface the power grid aiming to preserve the power quality. In this paper, four topologies of active 
rectifiers are compared: traditional power-factor-correction; symmetrical bridgeless; asymmetrical 
bridgeless; and full-bridge full-controlled. Such comparison is established in terms of the requirements for 
the hardware structure, the complexity of the digital control system, and the power quality issues, mainly the 
grid current total harmonic distortion and the power factor. Along the paper these comparisons are presented 
and verified through experimental results. A reconfigurable laboratorial prototype of an on-board EV 
battery charger connected to the power grid was used to obtain the experimental results. 

1 INTRODUCTION 

The acceptance of the electric vehicle (EV) around 
the world, represents a new paradigm for the 
transportation sector and for the actual and future 
power grids (Rajashekara, 2013), ( Raghavan, 2012). 
Nevertheless, a full electric mobility scenario is a 
huge challenge that is dependent of key 
technological issues (Ferreira, 2014), (Khaligh, 
2010), (Inoa, 2011). From the point of view of the 
transportation sector, the EV contributes 
significantly to reduce the greenhouse gas emissions, 
mainly through the reduction of the oil consumption 
(Milberg, 2011), (Ferreira, 2013). However, it 
depends on the main electricity sources (Ferreira, 
2013). On the other hand, from the point of view of 
the power grids, the EV represents a new type of 
dynamic electrical appliance that is plugged-in to 
consume energy randomly along the day. Moreover, 
the EV can contribute to worse the power quality 
(Lopes, 2011), (Wirasingha, 2011), (Monteiro, 
2016). Analysing this last aspect, and taking into 
account the global state of the electric mobility, the 
EV should be charged from the power grid 
considering the electrical installation constrains and 
with high levels of power quality, mainly, reduced 
current harmonic distortion and high power factor 
(Monteiro, 2011). Such requirements should be 

considered for on-board and off-board EV chargers 
(Gautam, 2012), (Monteiro, 2014), i.e., when the EV 
is charged from single-phase electrical installations 
(e.g., plugged-in at home) or from three-phase 
electrical installations (e.g., plugged-in at fast 
charging stations) (Clement, 2010). Besides the 
charging process, from the moment that the EV is 
plugged-in to the power grid, using bidirectional 
chargers is possible establish a bidirectional energy 
flow, i.e., the EV can dynamically operate in the 
power grid consuming or delivering energy (Kramer, 
2008), (Monteiro, 2016). This interactivity with the 
power grid is an important key technology to enable 
the electric mobility into smart grids (Monteiro, 
2010), (Escudero-Garzás, 2012). In this context, 
technical solutions to the EV introduction into the 
power grids are presented in (Rei, 2010), 
coordinated strategies for the EV charging aiming to 
maximize the efficiency are presented in (Clement, 
2009), and a comprehensive analysis about the EV 
coordinated and uncoordinated charging strategies is 
presented in (Freire, 2010). 

Concerning EV battery chargers, this paper 
presents an experimental comparison of four active 
rectifiers for on-board EV battery chargers in terms 
of power quality, where the current harmonic 
distortion and the power factor are the main issues 
addressed. A comparison of dc-dc converters 
operating   in   discontinuous   conduction  mode  for  
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Figure 1: Single-phase active rectifiers under comparison: (a) Traditional power-factor-correction (PFC); (b) Symmetrical 
bridgeless; (c) Asymmetrical bridgeless; (d) Full-bridge full-controlled. 

active rectifiers is presented in (Wei, 1998), and a 
comprehensive review of control strategies for 
active rectifiers considering the main advantages and 
disadvantages is presented in (Yang, 1998). Active 
rectifiers are used in EV chargers in order to obtain a 
sinusoidal grid current in phase with the power grid 
voltage. However, comparing with the traditional 
solutions based in the ac-dc diode bridge rectifier, 
the power hardware is much more complex and 
requires a digital control platform, increasing the 
costs and the power density of the implementation. 
The impact of the EV introduction in residential 
electrical installations in terms of power quality is 
presented in (Lambert, 2002). Detailed studies about 
this subject are presented in (Morcos, 2002), where, 
for instance, is shown that the GM EV1 presents a 
total harmonic distortion (THD) that varies from 3% 
to 28.11% and a power factor from 1 to 0.96 
according to the battery state-of-charge. 

In this context, the main contribution of this 
paper is an experimental comparison of single-phase 
active rectifiers for EV battery chargers. Section II 
presents the power hardware structure of the active 
rectifiers under comparison, including a comparison 
in terms of required components. Section III 
presents a detailed description of the control 
algorithms. Section IV presents an experimental 
validation of all the active rectifiers under 
comparison. Finally, section V presents the main 

conclusions that can be retrieved from the presented 
comparison. 

2 HARDWARE STRUCTURE OF 
THE ACTIVE RECTIFIERS 
UNDER COMPARISON 

This section describes the hardware structure of the 
active rectifiers under comparison. A reconfigurable 
3.6 kW on-board EV battery charger was used to 
obtain the different structures. Such EV charger is 
composed by a front-end ac-dc converter and by a 
back-end dc-dc converter with a shared dc-link 
capacitor. Figure 1 shows the four single-phase 
active rectifiers under comparison. 

The traditional power-factor-correction (PFC) 
active rectifier (cf. Figure 1(a)) is composed by 
full-bridge diode rectifier followed by a boost dc-dc 
converter. As shown, this active rectifier requires 
five diodes and a single totally controlled 
semiconductor, in this case an insulated-gate bipolar 
transistor (IGBT) is used. The circuit to control the 
IGBT can be directly connect to the control circuit, 
i.e., it is not necessary isolation between the power 
circuit and the control circuit. This can be an 
important advantage of this active rectifier 
comparing with the others. The symmetrical 
bridgeless active rectifier (cf. Figure 1(b)) is 

(b)(a)

(c) (d)
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composed by two legs, each one formed by a diode 
and by an IGBT. Similarly to the previous active 
rectifier, the circuit to control the IGBTs can be 
directly connect to the control circuit, i.e., it is not 
necessary isolation between the power circuit and 
the control circuit, once the emitter of both IGBTs is 
connected to the same point. On the other hand, the 
asymmetrical bridgeless active rectifier (cf. Figure 1 
(c)) is composed by a leg formed by two diodes and 
by a leg formed by two IGBTs. In this active 
rectifier is necessary isolation between the drivers 
circuit of both IGBTs, representing a disadvantage 
of this active rectifier comparing with the previous. 
Finally, the full-bridge full-controlled active rectifier 
(cf. Figure 1 (d)) is composed by two legs, each one 
formed by two IGBTs. In this active rectifier is also 
necessary to establish isolation between the drivers 
of the IGBTs, i.e., only the drivers of the IGBTs S2 
an S4 can be referred to the same point. 

3 CONTROL ALGORITHMS OF 
THE ACTIVE RECTIFIERS 
UNDER COMPARISON  

This section presents a detailed explanation about 
the control algorithms of the active rectifiers under 
comparison. 

3.1 Traditional Power Factor 
Correction (PFC) 

Concerning power quality, the main requirements of 
the EV battery chargers are sinusoidal grid current 
and unitary power factor. The most used active 
rectifier to accomplish with such requirements is the 
traditional PFC, i.e., a full-bridge diode rectifier 
followed by a dc-dc boost converter operating with 
controlled input current and controlled output 
voltage. It is important to note that there are some 
PFC converters that are used only to operate with 
controlled power factor, as example, the flyback 
topology proposed in (Ma, 2010) and the full-bridge 
topology proposed in (Moschopoulos, 2003). An 
extended review about PFC converters based in the 
boost converter is presented in (García, 2003), and a 
concrete case of a PFC boost-type for EV chargers is 
proposed in (Lee, 2011). The PFC active rectifier 
operates in unidirectional mode and is classified as a 
two-level converter, i.e., the voltage between the 
points x and y, identified in Figure 1 (a) can assume 
the levels 0 and +vdc. When the IGBT is off, the 
voltage vxy (collector-emitter voltage in the IGBT) is 

 

Figure 2: Reconfigurable laboratorial prototype of the 
on-board EV battery charger used to obtain the 
experimental results. 

Table 1: Main characteristics of the developed laboratorial 
prototype used for experimental validation. 

Characteristic Value Unit 

Switching frequency 20 kHz 

Sampling frequency 40 kHz 

Power grid voltage 50 V 

Power Grid Voltage THD% 3% - 

Power grid frequency 50 Hz 

Output voltage 100 V 

 
+vdc, and when the IGBT is on, the voltage vxy is 0. 
Therefore, the maximum voltage applied to the 
IGBT is +vdc. The output voltage of the full-bridge 
diode rectifier is the power grid voltage rectified 
and, due to the input inductance and the control 
algorithm, the grid current is sinusoidal and in phase 
with the power grid voltage.  

3.2 Symmetrical and Asymmetrical 
Bridgeless 

In the previous item, section 3.1, it was introduced 
the traditional PFC composed by a full-bridge diode 
rectifier followed by a dc-dc boost converter, i.e., an 
active rectifier that requires two power stages. 
However, these stages can be rearranged in order to 
form an active rectifier without the full-bridge diode 
rectifier. Such topologies are identified in the 
literature as bridgeless or dual-boost. A review about 
active rectifiers with single stage is presented in 
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(Huber, 2008). The main bridgeless active rectifiers 
identified in the literature are the symmetrical and 
asymmetrical (Martinez, 1996), (Lim, 1999). 
Comparing with the traditional PFC, bridgeless 
active rectifiers requires one more IGBT, but less 
three diodes. However, it should be noted that the 
hardware project of such topologies is more complex 
once is required the double of the IGBTs drivers. On 
the other hand, comparing both bridgeless structures, 
the symmetrical bridgeless has as main advantage 
comparing with the asymmetrical the simplicity of 
the IGBTs drivers as well as the Impossibility of 
short circuits in the same leg when both IGBTs are 
on. A comparison between the symmetrical and the 
asymmetrical bridgeless active rectifiers, 
highlighting the benefits of the symmetrical is 
presented in (Choi, 2007). Comparing with the 
traditional PFC, the switching losses are very similar 
once each IGBT is switched during each half-cycle 
of the power grid voltage (positive and negative) and 
the IGBT of the traditional PFC is switched in both 
half-cycles. Similarly to the traditional PFC, 
symmetrical and the asymmetrical bridgeless active 
rectifiers operate in unidirectional mode, but can be 
controlled to produce three distinct voltage levels, 
i.e., the voltage vxy can assume the values +vdc, 0 and 
–vdc. For the symmetrical bridgeless active rectifier, 
during the positive half-cycle of the power grid 
voltage, when the IGBT S1 is on and the IGBT S2 is 
off, the voltage vxy is 0, and when both IGBTs are 
off the voltage vxy is +vdc. On the other hand, during 
the negative half-cycle of the power grid voltage, 
when the IGBT S1 is off and the IGBT S2 is on, the 
voltage vxy is 0, and when both IGBTs are off the 
voltage vxy is -vdc. For the asymmetrical bridgeless 
active rectifier the reasoning is the same, only 
changing the position of the IGBTs. For both 
converters, the maximum voltage applied to each 
IGBT is +vdc. 

3.3 Full-Bridge Full-Controlled 

The full-bridge active rectifier is composed by two 
legs of IGBTs. This active rectifier can produce 
three distinct voltage levels, i.e., the voltage vxy can 
assume the values of –vdc, 0 and +vdc. During the 
positive half-cycle of the power grid voltage, when 
the IGBTs S1 and S3 are off and the IGBTs S2 and S4 
are on, the voltage vxy is 0 (changing the state of all 
the IGBTs the voltage vxy is also 0), and when the 
IGBTs S2 and S3 are off and the IGBTs S1 and S4 are 
on, the voltage vxy is +vdc. During the negative 
half-cycle of the power grid voltage, when the 
IGBTs S1 and S3 are off and the IGBTs S2 and S4 are 

on, the voltage vxy is 0 (changing the state of all the 
IGBTs the voltage vxy is also 0), and when the 
IGBTs S2 and S3 are on and the IGBTs S1 and S4 are 
off, the voltage vxy is –vdc. The maximum voltage 
applied to each IGBT is vdc. The main advantage of 
this active rectifier comparing with the previous is 
the possibility to operate in bidirectional mode, i.e., 
the EV charger can be used to transfer energy from 
the batteries to the power grid. This is an important 
characteristic considering the future scenarios of 
smart grids. 

4 EXPERIMENTAL VALIDATION 

This section presents the experimental validation 
considering the active rectifiers described in the 
previous items. The reconfigurable laboratorial 
prototype of the on-board EV battery charger used to 
obtain the experimental results is shown in Figure , 
and the main characteristics of the experimental 
validation are presented in table I. The experimental 
results were obtained in laboratorial environment 
with a Tektronix TPS 2024 digital oscilloscope. 

For the traditional PFC active rectifier, Figure  
shows the power grid voltage (vg), the dc-link 
voltage (vdc), and the grid current (ig) during a time 
interval of 50 ms. As expected, the grid current (ig) 
is sinusoidal and in phase with the power grid 
voltage (vg), and the dc-link voltage (vdc) is 
controlled. As it can be seen, the grid current (ig) has 
lower THD% than the power grid voltage (vg) due to 
the control algorithm, i.e., instead of use the real 
instantaneous values of power grid voltage a 
phase-locked loop (PLL) algorithm is used. Figure  
shows the harmonic spectrum of the grid current and 
a measured THD% of 3.25%. 

For the symmetrical bridgeless active rectifier, 
Figure 5 shows the power grid voltage (vg), the 
dc-link voltage (vdc), and the grid current (ig) during 
a time interval of 50 ms. As for the previous active 
rectifier, the grid current (ig) is sinusoidal and in 
phase with the power grid voltage (vg), and the 
dc-link voltage (vdc) is controlled. In this case, the 
grid current (ig) has also lower THD% than the 
power grid voltage (vg) due to the PLL algorithm. 
Nevertheless, in this case grid current (ig) has a 
THD% greater than with the traditional PFC active 
rectifier. Figure 6 shows the harmonic spectrum of 
the grid current and a measured THD% of 5.88%. 
For the asymmetrical bridgeless active rectifier,  

Figure 7 shows the power grid voltage (vg), the 
dc-link voltage (vdc), and the grid current (ig) during  
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Figure 3: Experimental results of the traditional power 
factor correction topology: Power grid voltage (vg); 
Dc-link voltage (vdc); Grid current (ig). 

 

Figure 4: Experimental results of the traditional power 
factor correction topology: Harmonic spectrum of the grid 
current and measured THD%. 

a time interval of 50 ms. Similarly to the previous 
case, the grid current (ig) is sinusoidal and in phase 
with the power grid voltage (vg), the dc-link voltage 
(vdc) is controlled, and the grid current (ig) has lower 
THD% than the power grid voltage (vg) due to the 
PLL algorithm. Comparing with the symmetrical 
bridgeless active rectifier, this active rectifier 
presents a grid current (ig) with higher THD%. 

Figure 8 shows the harmonic spectrum of the grid 
current and a measured THD% of 5.98%. Finally, 
for the full-bridge active rectifier, Figure 9 shows 
the power grid voltage (vg), the dc-link voltage (vdc), 
and the grid current (ig) during a time interval of 
50 ms. In the same way as the previous cases, the 
grid current (ig) is sinusoidal and in phase with the 
power grid voltage (vg), the dc-link voltage (vdc) is 
controlled, and the grid current (ig) has lower THD% 
than the power grid voltage (vg) due to the PLL 
algorithm. The grid current (ig) of this active rectifier 
presents the lower THD% considering all the active  

 

Figure 5: Experimental results of the symmetrical 
bridgeless topology: Power grid voltage (vg); Dc-link 
voltage (vdc); Grid current (ig). 

 

Figure 6: Experimental results of the symmetrical 
bridgeless topology: Harmonic spectrum of the grid 
current and measured THD%. 

rectifiers under comparison. Figure 10 shows the 
harmonic spectrum of the grid current and a 
measured THD% of 2.13%. 

5 CONCLUSIONS 

An experimental comparison of single-phase active 
rectifiers for EV battery chargers was presented. 
Four topologies of active rectifiers were considered 
for comparison: traditional power factor correction 
(PFC); symmetrical bridgeless; asymmetrical 
bridgeless; and full-bridge full-controlled. 
Considering the hardware structure, the PFC 
requires less IGBTs, but more diodes, and the 
full-bridge full-controlled requires more IGBTs but 
no one diode. Moreover, the full-bridge 
full-controlled allows the operation mode in 
bidirectional mode, which can be an important 
feature for EV battery chargers in a smart grid  
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Figure 7: Experimental results of the asymmetrical 
bridgeless topology: Power grid voltage (vg); Dc-link 
voltage (vdc); Grid current (ig). 

 

Figure 8: Experimental results of the asymmetrical 
bridgeless topology: Harmonic spectrum of the grid 
current and measured THD%. 

scenario. Analysing the power quality issues in 
terms of the grid current THD%, the full-bridge 
full-controlled is the best, presenting the lower value 
(2.13%), and the bridgeless asymmetrical is the 
worst, presenting the higher value (5.98%). Along 
the paper the comparison between the active 
rectifiers is presented through experimental results 
using a reconfigurable developed laboratorial 
prototype of an on-board EV battery charger. 
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