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Abstract: We present Freeze & Crypt, a framework for RAM encryption. Our goal is to protect the sensitive data the
processes keep in RAM against memory attacks, such as coldboot, DMA, or JTAG attacks. This goal is of
special significance when it comes to protect unattended or stolen devices, such as smartphones, tablets and
laptops, against physical attackers. Freeze & Crypt makes use of the kernel’s freezer, which allows freezing a
group of processes by holding them firm in the so-called refrigerator. Inside, frozen processes inescapably rest
at a point in kernel space where they cannot access their memory from user space. We extend the freezer to
make arbitrary process groups transparently and dynamically encrypt their full memory space with a key only
present during en- and decryption. When thawing a process group, each process decrypts its memory space,
leaves the refrigerator and resumes normal execution. We develop a prototype and deploy it onto productively
used mobile devices running Android containers. With this application scenario, we show how our mechanism
protects the sensitive data in RAM against physical attackers when a container or device is not in active use.

1 INTRODUCTION

For decades now, the digital world has been finding
its way deeper and deeper into our business and pri-
vate lives. We leave behind the sensitive traces of
our actions not only in the cloud, or on our persis-
tent storage, but also in main memory. The data ap-
plications keep there, such as credentials, pictures,
passwords, or key material, usually remains in plain-
text (Apostolopoulos et al., 2013; Ntantogian et al.,
2014; Pettersson, 2007; Tang et al., 2012). Espe-
cially in sensitive corporate or governmental domains,
the reliable protection of valuable and possibly clas-
sified data is an important topic. Memory attacks,
such as Joint Test Action Group (JTAG) (Weinmann,
2012), coldboot (Halderman et al., 2009; Huber et al.,
2016; Müller and Spreitzenbarth, 2013), or Direct
Memory Access (DMA) attacks (Becher et al., 2005;
Boileau, 2006; Break & Enter, 2012; Devine and Vis-
sian, 2009), have proven effective in disclosing se-
crets in RAM.

To tackle this problem, we present a framework
for the Linux kernel, Freeze & Crypt (F&C), which
encrypts sensitive data in RAM to solidly protect
unattended devices or workstations. We design F&C
to comply with multiple platforms, kernel versions
and to incur only minimal changes sustaining the ker-
nel’s common operability. Our mechanism allows the

transparent and selective protection of the full pro-
cess space of arbitrary processes running on the sys-
tem. We introduce F&C into the kernel building upon
the existing control groups (cgroups) freezer subsys-
tem. The cgroups mechanism allows the dynamic
formation of groups of processes, also referred to
as cgroups. The different cgroups subsystems en-
force their own policies on cgroups in order to limit
their access to system resources. The freezer subsys-
tem, short freezer, allows the freezing and thawing of
cgroups, i.e., their suspension and resumption.

When freezing a cgroup, the kernel sends a signal
to the processes in the cgroup. Each of those pro-
cesses reacts to that signal by entering the so-called
refrigerator in kernel space. The refrigerator is a loop
which ensures that processes neither execute in user
space nor react to external events. When frozen, the
user space part of a process has no means to access
or alter its memory space. The refrigerator is thus a
proper place to temporarily alter the processes’ mem-
ory without side effects occuring on its user space
part. In particular, we make the processes en- and
decrypt the segments of their memory space, e.g., the
heap, stack, code and anonymous segments, on their
own and in parallel. This makes our approach es-
pecially on multi-core systems very efficient. Upon
thawing a cgroup, the processes decrypt their memory
before we allow them to leave. For the parallelization,
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F&C synchronizes the processes and threads inside
the refrigerator, as they operate on shared resources.
The key we use for en- and decryption of a cgroup
is present only during freezing and thawing and may
change on each freeze.

We demonstrate the utility of our mechanism with
a working, real-life large scale application scenario in
productive use, which is a virtualization platform run-
ning multiple Android containers on one smartphone
(Andrus et al., 2011; Huber et al., 2015). With this
scenario, we show how to employ our mechanism to
protect the memory of Android containers against at-
tackers with full access to the devices, for example,
after theft. This platform is especially suitable, safely
accounting for key management with a Secure Ele-
ment (SE) to prevent brute-force attacks on the en-
cryption key. In particular, our contributions are:
• A generic concept for efficient process memory

en- and decryption in the kernel based on process
groups.

• The development of a prototype and its integration
into a complex mobile device architecture with
key management to thwart physical attacks.

• The real-life application of the prototype on pro-
ductively used smartphones with real users.

• A thorough security and performance evaluation
to demonstrate the practical usability on mobile
devices.

The paper is organized as follows. We first describe
the threat model in 2 before presenting related work
in 3. In 4, we present the design of F&C. We present
an overview of the mobile device architecture and our
extensions to leverage F&C in 5. Next, we elaborate
the implementation of our prototype in 6. Our perfor-
mance and security evaluations can be found in 7 and
8 before the conclusion in 9.

2 THREAT MODEL

We consider an attacker who aims at gaining sensi-
tive data from an unattended and non-tampered de-
vice under protection of F&C. The attacker obtains
physical access to the protected system, has sufficient
time and the ability to access both volatile and persis-
tent memory. For accessing the memory, the attacker
exploits hardware and software vulnerabilities, such
as through DMA, JTAG or coldboot attacks. The at-
tacker is unable to execute evil maid attacks, i.e., to
covertly deploy backdoors on the device waiting for
the user to return. This implies that a device once tam-
pered with is not trusted again, e.g., after theft or loss,
or because the user notices the tampering attempt.

Regarding our application scenario, the adversary
may be in possession of the SE, but lacks knowledge
of the SE’s passphrase and is unable to unveil the se-
crets stored on the SE. Furthermore, the attacker has
no means to break cryptographic primitives.

3 RELATED WORK

In the following, we discuss previous work on mem-
ory protection. Several hardware-based memory en-
cryption architectures, such as Aegis or the XOM
memory architecture, have been proposed (Gutmann,
1999; Lie et al., 2003, 2000; Suh et al., 2007;
Würstlein et al., 2016). Sensitive data of protected
processes is left unencrypted solely in the processor
chip, which is the single trusted component. These
hardware architectures are difficult and expensive to
realize and usually not found on consumer devices.
There also exist processors with extensions to provide
secure enclaves, which can be leveraged to thwart
memory attacks, such as the ARM TrustZone, or Intel
SGX. These enclaves constitute hardware-protected
memory areas to which the OS can move sensitive
data, but are currently still limited, e.g., regarding the
size of the memory areas. Developers need to specifi-
cally design enclave-aware, hardware-dependent soft-
ware and the underlying OS must support the proces-
sor extensions.

On the side of software-based implementations,
some methods only protect a specific key, e.g., for
Full Disk Encryption (FDE), in RAM from mem-
ory attacks. Approaches for x86 (Müller et al.,
2010, 2011; Simmons, 2011), as well as for ARM
(Götzfried and Müller, 2013) and hypervisors exist
(Müller et al., 2012). The approaches either store the
key in the CPU/GPU registers, or in the CPU cache,
and implement the cipher on-chip at the cost of per-
formance. These approaches leave all other assets in
RAM unprotected and are hence vulnerable to mem-
ory attacks. Concepts protecting the process space are
either runtime encryption techniques where process
memory is encrypted throughout process runtime, or
techniques which suspend processes in order to en-
crypt their memory, as is ours.

Cryptkeeper (Peterson, 2010) is an extension of
the virtual memory manager to reduce the exposure
of unencrypted data in RAM. The mechanism sepa-
rates RAM into a smaller unencrypted working set of
pages, called the Clear, and an encrypted area, the
Crypt. By the time the Clear fills up, pages are auto-
matically swapped into the Crypt and decrypted on
demand. As a runtime encryption technique, there
is a notable performance impact on the system and
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the mechanism always keeps an undefined amount
of RAM unencrypted. HyperCrypt (Götzfried et al.,
2016a) and TransCrypt (Horsch et al., 2017) transfer
this idea into a hypervisor to transparently encrypt the
full memory of a guest OS.

RamCrypt (Götzfried et al., 2016b) is an encryp-
tion approach on x86 Linux that transparently en-
crypts the memory of running processes. For key-
hiding, RamCrypt stores the memory protecting key
in processor registers. Therefore, deep interference
into the kernel’s page fault handler is necessary to en-
crypt pages and to decrypt them when accessed. Pro-
cesses to be protected have to be marked a priori by
setting a flag inside the ELF program header. They
encrypt anonymous segments only and there also re-
main unencrypted pages in a so-called sliding win-
dow. The cost of encrypting pages on the fly comes
with a notable performance impact. Another problem
common to runtime protection mechanisms is that a
physical attacker gaining privileges on the system can
simply request decryption of encrypted memory.

Hypnoguard (Zhao and Mannan, 2016) en-
/decrypts memory during OS suspension/wakeup.
The mechanism hooks into this procedure at stages
where the OS is not active. At this point, there is
no support for hardware devices, such as displays or
keyboards. Therefore, their design requires to im-
plement highly hardware-specific crypto routines for
hardware accelerators and for drivers to interact with
hardware devices, e.g., for passphrase input. The en-
cryption key is bound to a TPM and encryption is
executed in Intel’s TXT environment. This makes
the approach highly hardware specific and particu-
larly cumbersome for portability and when interact-
ing with different hardware devices. The approach in
(Huber et al., 2017) focuses on the same goal, but con-
stitutes a hardware-independent kernel mechanism,
which can be easily integrated into Linux systems.

Transient Authentication (Corner and Noble,
2003) is also an approach for x86 platforms to protect
processes transparently, but depends on the presence
of a hardware token. The token provides fresh crypto-
graphic keys. The concept comes with two protection
variants, the application-transparent and application-
aware protection. In the first mode, the system sus-
pends and encrypts in-memory pages when the user
removes the token. The only processes that remain
running are tasks for transient authentication and OS
threads. In application-aware mode, the developer
can protect specific applications by utilizing a special
API. This allows to selectively protect chosen assets,
such as an application’s secret key. However, this re-
quires the modification of existing applications.

Approaches specifically tailored to the mobile do-

main have also been developed. Sentry (Colp et al.,
2015) presents a concept for memory protection on
Android devices. The user has to mark sensitive apps
and OS subsystems in the settings menu. When the
device gets locked, the mechanism encrypts specific
memory of the chosen apps. For apps that run while
locked, Sentry reads encrypted memory pages from
RAM, decrypts and keeps them inside the ARM SoC
with cache line locking (Chen et al., 2008). Pages
are encrypted on a page-out before writing them back
to RAM. With increasing background activity and a
full cache, the performance strongly degrades since
the mapping of called-in pages to the cache trig-
gers costly page faults. The approach uses ARM
specific (legacy) mechanisms. Hence, the feasibil-
ity strongly depends on the architecture and platform
specific hardware features. Their prototype on the
mobile device does not support cache locking and
hence no runtime memory encryption.

CleanOS (Tang et al., 2012) is a mechanism in-
tegrated into the Android framework. This approach
only works in combination with trusted, cloud-based
services for key management to which the phone
needs connectivity. The idle eviction mechanism en-
crypts data that is not in active use. Afterwards, the
key is purged on the device and fetched on-demand
from the cloud. The main modifications were made
by the introduction of Sensitive Data Objects (SDOs),
which represent sensitive user data, and a special
garbage collector, eiGC. The latter searches and en-
crypts SDOs that were not used for a specific period
of time. Apps either implement an SDO API to add
and register SDOs, or the framework registers default
SDOs along with heuristics to identify SDOs. Not
only regarding key retrieval and availability concerns,
but also due to the heuristics and workload to adjust
apps, this mechanism represent no reliable scheme.

4 MEMORY PROTECTION
CONCEPT

We first present an overview on F&C’s overall de-
sign and the involved OS components in 4.1. Subse-
quently, we elaborate the synchronization of the pro-
cesses during main memory encryption in 4.2. In the
following, the term encryption also applies for de-
cryption and we differentiate only where decryption
differs from encryption.

4.1 Design of Freeze & Crypt

Based on the Linux kernel’s cgroups freezer, F&C
allows the dynamic creation of cgroups containing
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the processes and threads whose memory space we
encrypt. From here on, we subsume processes and
threads under the term task and only differentiate
when relevant. For every cgroup, we use an arbitrary
key for each encryption pass. We differentiate mem-
ory segments upon the following categorization:

text. The executable, read-only code of a task.
data. Writable, as well as read-only data belonging

to the task’s code.
bss. Zero-initialized, writable data.
heap. A task’s dynamically allocated memory.
stack. Local variables of functions and their parame-

ters, etc.
anonymous mappings. Large, dynamic memory

allocations a task can map into its process space and
share with others.

file mappings. Files that are mapped to memory. For
example, large writable files, but also read-only
files, such as shared libraries. We further make it
possible to choose between regular and non-regular
mappings, as well as between their access permis-
sions. Non-regular mappings are, e.g., memory-
mapped devices, DMA or Inter-Process Communi-
cation (IPC) resources.

special mappings. The timers, vectors, vdso and
vsyscall segments. They contain no confidential
user data. The kernel manages these segments
as system-wide shared kernel resources providing
them to tasks as kernel interfaces.

Except for special mappings, a task can load or store
confidential information in all other segments. F&C
thus allows to select all other segments for encryption
except the special mappings. Depending on the use
case, fewer segments can be critical and thus omitted
for encryption. We outline the critical segments for
our use case in 5.

4.1.1 States of a Cgroup

1 depicts the four different states of a cgroup along
with its tasks. On the system, we have an arbitrary
number of cgroups in any of the states, as well as non-
protected tasks which can potentially become part of a
freezer cgroup or form a new cgroup. F&C allows us
to create disjoint cgroups, to freeze or thaw multiple
cgroups at the same time, and to assign different keys.

Thawed. In the default state, multiple tasks are
running, such as Task1 in 1, and the cgroup holds no
key. The cgroups mechanism ensures the inclusion
of future child tasks to the cgroup by default. The
arrows demonstrate that tasks execute their code in
user space, access their memory segments and possi-
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Figure 1: The four states of the freezer along with the be-
havior of tasks in the different states.

bly jump between kernel and user space when making
system calls.

Freezing. After starting the freeze, the cgroup
goes into the state freezing and has an arbitrary en-
cryption key assigned. Tasks in the refrigerator go
into an uninterruptible state and dwell inside until the
cgroup is thawed. Task1 already entered the refrigera-
tor and is currently encrypting its memory segments.
The arrow for the running Task2 shows that it is just
jumping from its execution in user space to kernel
space into the refrigerator. In the refrigerator, the user
space part of a process has no means to access or al-
ter its memory. The tasks are agnostic of incoming
IPC or external events, such as kill signals, which they
process after thawing.

Frozen. After finishing the encryption, the cgroup
is frozen and does not hold any key. Its tasks are all
in the uninterruptible state, stuck in the refrigerator in
kernel space off the run-queue. Once scheduled, the
tasks immediately call the scheduler again to switch
to another task. All tasks have encrypted the previ-
ously specified memory segments.

Thawing. After starting the thaw, the cgroup is in
the state thawing and decrypts with the same key as
used for freezing. The cgroup brings its tasks into
a waking state. When scheduled, the tasks simul-
taneously decrypt their segments before leaving the
refrigerator. Task1 is about to decrypt its segments,
while Task2 has already finished. We retain Task2 in
the refrigerator for synchronization until all tasks of
its cgroup finish decryption. This causes depending
tasks to be released simultaneously.

4.1.2 Extension of the Freezer

We extend the freezer’s initialization, freezing and
thawing functionalities to manage the protection of
cgroups. 2 illustrates these functionalities with a se-
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Figure 2: Extensions (bold) to the initialization, freezing
and thawing procedures of a cgroup with its tasks in F&C.

quence diagram. Bold elements stand for the new
functionality we introduce to the freezer.

Initialization of F&C. Privileged processes in
user space can manage the cgroups functionality via
an interface to the kernel, which allows for creating
cgroups and adding or removing tasks. To initialize a
freezer cgroup, a privileged process adds tasks to the
cgroup, here TaskX and TaskY. We extend the interface
by the option to associate the freezer with an arbitrary
key and the list of memory segments to be encrypted.
The concept intentionally leaves the key management
open to the specific use case F&C gets applied. The
key can, for example, originate from password deriva-
tion, a TPM or an SE, as described in our application
scenario in 5.

Freezing Procedure. As depicted in 2, a privi-
leged process starts the freeze and thaw of cgroups.
The freezer changes its state and signals its tasks to
enter the refrigerator. Every task notifies the freezer
after finishing its encryption. When the freezer has
received all encryption notifications, the cgroup goes
into the state frozen and the freezer purges the en-
cryption key. To erase potentially remaining sensitive
remnants, the freezer also zeroes out pages freed by
running or terminated processes, as well as the used
cipher kernel structures and the relevant kernel stack
range in memory after the encryption. Finally, the
freezer notifies user space about the terminated en-
cryption of the cgroup. The standard freezer only re-
veals and becomes aware of its state when user space
requests the actual state. In F&C, the subsystem ac-
tively manages its state to be able to purge the key and
other remnants as early as possible. We also actively
notify user space, e.g., entities managing the cgroups
encryption, about the change of state. We show the
usefulness of this feature in our application scenario.
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Figure 3: Relationship of processes and threads, their mem-
ory mappings and sharing of resources.

Thawing Procedure. Before triggering the thaw-
ing of a cgroup and therefore starting the decryption,
a privileged process passes the corresponding key to
the freezer. The freezer wakes every included task.
When scheduled, this normally causes a task to leave
the refrigerator. In our mechanism, the tasks first
decrypt their previously encrypted memory segments
and notify the freezer. Unlike the original freezer, we
do not immediately switch to the state thawed, but
wait until the last task finishes decryption and notifies
the freezer before switching states. Then, the tasks
safely leave the refrigerator when scheduled and re-
sume their execution. The freezer purges the decryp-
tion key, other remnants and notifies user space. The
key is hence only present in the freezer during en- and
decryption.

4.2 Synchronization of Tasks

Since the tasks of a freezing cgroup enter the refrig-
erator in parallel and share resources, we synchro-
nize their concurrent encryption. The kernel’s mem-
ory management is responsible for resource sharing.
Shared resources can be Address Spaces (ASs) and
physical pages, as shown in 3. The virtual AS consists
of the different memory segments referring to physi-
cal pages in memory. Virtual ASs, i.e., processes, can
share physical pages. In the following, we first focus
on the shared ASs before addressing shared pages.

4.2.1 Shared Address Spaces

A task can spawn threads and fork new processes.
The kernel assigns a forked process its own AS. When
spawning, the parent process shares its AS with the
spawned thread. 3 illustrates the sharing of ASs for
the tasks of process A and B. Our goal is to ensure that
every AS is encrypted by exactly one task to avoid
multiple encryptions of the same AS. Without syn-
chronization, sharing tasks would encrypt the same
AS repeatedly when entering the refrigerator.

4 focuses on the chronological sequence tasks run
through in the refrigerator with process A and B be-
longing to the same cgroup. Upon freezing, the tasks
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Figure 4: Synchronization of tasks entering and leaving the
refrigerator during freeze and thaw.

enter the refrigerator at an undefined point in time in
an order determined by the scheduler. The first task
to enter the refrigerator, here Task2 of process A and
Task1 of process B, predetermines the segments to be
encrypted. The last entering tasks, TaskX and TaskY
respectively, encrypt the previously identified mem-
ory segments. Only the last task can safely encrypt
the segments, because at that time all other tasks shar-
ing the AS have entered the refrigerator. The first task
thus identifies the segments for the last arriving task
to earliest possible start encryption. We ensure that
encryption does not start unless all segments are iden-
tified. As depicted in 4, TaskY of process B encrypts
its AS in parallel to TaskX. In reverse, only the first
scheduled, waked task of a process decrypts the seg-
ments. Once all tasks have finished decryption, we
allow them to leave the refrigerator.

4.2.2 Shared Physical Pages

The tasks use virtual addresses during their encryp-
tion. However, the physical pages effectively en-
crypted can be shared between process boundaries
complicating the encryption process. Hence, we have
to determine whether the page to be encrypted is
shared before encrypting it in order to prevent the
corruption of other ASs. Shared pages are contained
in more than one AS and can be further categorized.
First, these can simply be pages intended to be read-
only for all tasks. Second, these can be writable
Copy-On-Write (COW) pages, which are shared be-
tween processes for the time they only read the page.
Third, shared pages can represent shared memory for
IPC, where distinct processes work on the same set
of physical pages. Fourth, pages could have been
merged via the kernel’s Kernel Samepage Merging
(KSM) mechanism, which searches identical pages in
process space and merges those pages to one shared
page to save memory. Before a task encrypts a shared
page, we ensure that the page is not referenced by
other tasks possibly not part of the cgroup or not yet
in the refrigerator. Our mechanism thereby ensures

encryptingthese shared pages only once and not du-
plicating them by COW. When thawing, an encrypted
page can always be decrypted as long as no other task
is currently decrypting it.

5 APPLICATION SCENARIO

We demonstrate the capability of F&C on mobile de-
vices in practical use. We use Nexus 5 smartphones
running multiple Android containers based on a virtu-
alization platform (Andrus et al., 2011; Huber et al.,
2015; Wessel et al., 2015). When the mobile device
is actively used, one Android container is in fore-
ground, while one or more containers run in back-
ground. We encrypt background containers and only
leave actively used containers unencrypted. After the
device is idle for a certain period, we ensure to en-
crypt all containers in order to protect all sensitive
data from memory attacks. Like on common smart-
phones, we require users to re-authenticate in order to
start or resume a suspended, encrypted container. The
architecture suits our mechanism, because it builds on
an SE with two-factor authentication for secure cryp-
tographic key management, e.g., a smartcard via NFC
or a microSD. Using an SE prevents brute force at-
tacks on the RAM encryption keys, but can weaken
usability when re-authenticating. However, the usage
of an SE was the preferred choice due to the high se-
curity requirements for our productive scenario. For
other use cases, our system can easily be adapted to a
less secure, but more usable scheme, such as PIN or
password based key derivations or swipe patterns.

We first describe relevant components of the virtu-
alization platform and our extensions to leverage F&C
in 5.1. Then, we describe how we employ F&C to
protect the containers’ sensitive data in memory in
5.2. 5.3 details how we handle background events
for frozen containers, such as incoming phone calls
or alarms.

5.1 Components and Extension of the
Virtualization Platform

5 shows the relevant components of the virtualization
platform, including our extensions. The illustration
depicts a scenario with running containers C0..X on
top of trusted components in user and kernel space.
C1..X are isolated Android user containers with apps,
for example, a private and a business container. We
assume that incoming sensitive data for C1..X is en-
crypted and that encryption terminates inside C1..X.
C0 is a minimal, hardened and trusted management
container providing functionality to virtualize hard-
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Figure 5: Most relevant components and extension of the
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ware devices for C1..X and not containing any sensi-
tive user data. Hence, we do not encrypt C0’s RAM
contents. C0 has a Trusted GUI app where the user
provides the SE’s passphrase (PIN).

C0..X are embedded into separate namespaces on
kernel level. Linux namespaces provide processes
within a namespace with their own view on the sys-
tem’s resources, such as IPC, PID, or network names-
paces. This isolates processes from different names-
paces making them unaware of other namespaces and
IPC takes place through well-defined channels only
(Huber et al., 2015). The Container Management
(CM) assigns each started C0..X to a different cgroup,
coherent to the distinct namespaces. The platform
uses the CPU, memory and devices cgroups subsys-
tems to regulate the containers’ access to hardware
resources. In user space, the CM manages the con-
figuration, startup and switching of containers. Con-
tainers store their persistent data in images protected
with kernel-based FDE. Therefore, the platform uses
wrapped, persistent disk encryption keys C1..X FDE
that can only be unwrapped using the SE.

We extend the CM with functionality to config-
ure F&C and to generate, wrap and unwrap the RAM
encryption keys C1..X RAM using the SE. 5 depicts
the scenario where C1, in bold face, is in foreground,
while the other containers are in background. The il-
lustration shows the freezer using unwrapped key C1
RAM, which indicates that the system has locked C1,
is about to switch to C0 and encrypting C1 in back-
ground. Meanwhile, the FDE module solely keeps
the unwrapped keys C0,1 FDE. The kernel does not
require the keys C2..X FDE, because C2..X are frozen
and cannot access their filesystem. After freezing C1
completes, the CM also removes C1’s key C1 FDE
from the kernel. The scenario allows for omitting con-
tainers from RAM encryption, e.g., containers with-
out corporate secrets.

5.2 Container Protection and Key
Management

For the encryption of C1..x, we consider all selectable
memory segments described in 4.1 relevant for our
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Figure 6: Chronological sequence for starting, freezing and
thawing containers along with key management operations.

scenario except the following:

Read-only Executable File-mapped Segments.
This is shared library code, which does not contain
sensitive user data in our system, but solely shared
constant data. Since each container features a full
userland, C1..x include separate libraries, e.g., libc.
The data segments of libraries do not fall in this
category and are hence encrypted.

Writable Non-regular File-mapped Segments.
These segments represent memory areas of
memory-mapped devices, IPC resources, or DMA
files where drivers share memory with hardware
devices. Encrypting such memory can corrupt the
memory space on most platforms, because, for
example, hardware devices are not aware of the
encryption.

All other segments must be protected, because pro-
cesses might store or load sensitive data there. The
diagram in 6 describes the procedure for protecting
C1..X’s sensitive data. The illustration shows the steps
of starting, encrypting and decrypting Ci.

Start Ci. To start Ci, we enter the PIN of the
present SE in the Trusted GUI of foreground C0. The
GUI passes the information to start Ci with the PIN
to the CM. The CM randomly generates a fresh key
Ci RAM using the kernel random number generator
seeded with hardware entropy based on hardware ran-
dom numbers. The CM unlocks the SE and uses it to
wrap the generated key Ci RAM. At this point, the CM
holds both the wrapped and unwrapped key Ci RAM.
The unwrapped key is stored to be able to immedi-
ately encrypt Ci without user interaction and without
the SE when locking or switching back to C0. Re-
versely, the wrapped key is stored for the next decryp-
tion pass of Ci using the SE. Next, the CM starts Ci in
foreground, which brings C0 to background. There-
fore, the CM creates Ci’s namespaces, configures its
cgroups and mounts its images. The CM also speci-
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fies the segments to be encrypted. Starting Ci includes
unwrapping Ci’s disk encryption key Ci FDE using
the SE to provide the key to the FDE module for ac-
cessing the encrypted data image, omitted in 6.

Freeze Ci. We freeze and hence encrypt Ci’s
RAM when the user actively switches back to C0, or
when the user or the system locks Ci, causing a switch
back to C0. According to 6, the CM then suspends Ci
and immediately switches to C0. The CM provides
the freezer with the stored, unwrapped key Ci RAM
and starts Ci’s freeze. This triggers F&C, which en-
crypts Ci. In the meantime, the CM purges its stored,
unwrapped key Ci RAM from user space. After the
encryption, the freezer purges its utilized key Ci RAM
in the kernel and notifies the CM. The CM then purges
the no longer required, unwrapped key Ci FDE in user
and kernel space. We destroy the encryption keys by
overwriting them in RAM and by flushing the corre-
sponding caches. After that, the CM stores only the
wrapped RAM and disk encryption keys, leaving no
trace of Ci’s volatile and persistent data. All confi-
dential assets in kernel memory are deleted and the
non-encrypted segments contain no confidential in-
formation. In other use cases, the entity managing the
encryption can purge further assets in kernel at this
point if present, e.g., IPSec credentials (a kernel level
VPN mode).

Thaw Ci. Only to start and to thaw Ci, i.e., when
decrypting and putting Ci to foreground, the user has
to provide the PIN of the SE to the Trusted GUI.
The CM unwraps the wrapped key Ci RAM using
the SE and provides the freezer with the unwrapped
key Ci RAM. Afterwards, the CM triggers the thaw.
The freezer decrypts Ci, purges its utilized key in the
kernel and notifies the CM. Then, the CM resumes
Ci, switching it to foreground. To simplify matters,
6 omits that the CM also unwraps the wrapped key
Ci FDE and provides it to the FDE module before
thawing Ci. The CM keeps its user space copy of the
unwrapped key Ci RAM for the next freeze. At this
point, the CM could also generate a new unwrapped
key Ci RAM with a wrapped counterpart for the next
freeze. This would prevent replay attacks swapping
old portions of encrypted RAM. However, such sce-
narios are not part of our threat model and we consider
this threat negligible.

5.3 Background Activities

The CPU sleeps on suspended smartphones. For
background activities, devices sustain their connec-
tion to external sources via hardware components and
via interrupt controllers. In case of an event, e.g.,
causing a notification, the CPU and hence processes

get woken. In our case, events for encrypted con-
tainers are similarly processed by the kernel and due
to the hardware device virtualization, events are for-
warded to the virtualization infrastructure. This en-
ables us to handle background activities for frozen Ci.

Hardware devices are either virtualized in user
space or in the kernel on our platform. User space
virtualized devices, such as the radio interface, have
multiplexers in C0. We thus receive incoming short
messages and phone calls for possibly frozen Ci via
C0. We extend the architecture by adding function-
ality to notify the user of events for frozen Ci in C0
using Android notification intents. After thawing the
container, the user is able to take the call and to re-
ceive the message right after thawing. The same holds
for devices virtualized in the kernel, such as the alarm
or networking functionality. We track expired alarms
and incoming network traffic for frozen Ci in the ker-
nel and raise a notification in C0.

In practice, only the notification handling for in-
coming network traffic is confined on our proto-
type. Apps mainly use the Google Cloud Messag-
ing (GCM) infrastructure and receive data, such as
instant messages, only when the system reports back
to GCM. After thawing, the intended function of the
apps however continues seamlessly and apps quickly
receive their data. For full network notification han-
dling, we could virtualize the connection manage-
ment for Ci in C0. Another possibility is to use our
backend to which the CM connects. The backend
then notifies the device and handles the remote con-
nections, e.g., to the GCM services. The trusted con-
nection would have to be established on behalf of Ci
in C0 or in the backend. Our current solution keeps
the used connection credentials safe inside frozen Ci.

6 IMPLEMENTATION

In this section, we describe the implementation of our
prototype for the Linux 3.4 up to recent ARM and
x86 kernel versions. We start with the management
of F&C from user space. Afterwards, we focus on
the extensions we make to memory management and
on the synchronization of tasks during freezing and
thawing. Then, we elaborate the procedure used by a
task to encrypt its memory space.

6.1 Interaction with User Space

In order to pass the key and the list of segments from
user space to the kernel, we create additional files in
the cgroups virtual filesystem. We read the key and
list of segments we receive from user space via file
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Figure 7: Linux memory management data structures and
modifications highlighted in gray colors.

handles similar to the existing freezer state change
functionality. However, getting notified in user space
about changes in filesystems (inotify) does not
work with the cgroups virtual filesystem’s pseudo
files. Instead, user space must periodically read
the state file to check whether the freezer changed
state. To avoid this polling, we use eventfd and
the cgroups notification API to explicitly notify user
space when freezing and thawing terminates.

6.2 Memory Management

A process and its spawned threads share the kernel
structures which describe a task’s memory layout. 7
shows relevant components the Linux kernel uses for
memory management and how the tasks share re-
sources. The illustration outlines the sharing of re-
sources on the example of process A and B. Each
task has its own process descriptor for process man-
agement which contains, e.g., the name and PID. We
temporarily modify the light gray colored compo-
nents during encryption, like Virtual Memory Areas
(VMAs) and Page Table Entrys (PTEs). Medium-
gray colors denote components to which we newly
introduce functionality for handling shared resources.

The process descriptor points to a memory de-
scriptor, which describes the virtual memory layout of
a process. The memory descriptor tracks the number
of users it has, i.e., the number of threads that share
the memory descriptor with the parent process. We
extend the memory descriptor to additionally count
the number of frozen sharing tasks which are tasks
that have already entered the refrigerator. This way,
the tasks are able to determine whether they are the
first or last one to enter the refrigerator. The mem-
ory the descriptor points to is reflected by a linked
list of VMAs representing the memory segments we
selectively encrypt. For the encryption, we make non-
writable VMAs temporarily writable.

The memory descriptor keeps a reference to a
Page Global Directory (PGD) used for translating a
process’ virtual addresses to corresponding physical

addresses. Based on a page walk from the PGD
traversing the Page Upper Directory (PUD) and Page
Middle Directory (PMD), we determine the PTE cor-
responding to a virtual address if mapped, i.e., if the
page exists in main memory. A PTE has several
values tracking the page’s state, e.g., if the page is
shared between processes, or if the process has ac-
cessed or written the page. By writing a physical
page, the kernel also possibly modifies the PTE’s val-
ues. Before the encryption of a physical page, we
thus save the PTE’s values and restore them right af-
ter the page’s encryption. This especially prevents
file-backed pages accidentally being made persistent
through the page cache by not setting the dirty flag.

A present PTE maps one physical page by refer-
encing a so-called page descriptor, which describes
one specific physical page in memory and which di-
rectly points to the page’s physical address. We set a
flag in the page descriptor indicating a lock on phys-
ical pages in memory during encryption. By locking
the page, we make sure that the locking task obtains
exclusive page access. Furthermore, we extend the
page descriptor with the functionality to mark a page
as encrypted. With this functionality and page lock-
ing, we ensure that tasks encrypt pages only once. To
keep track of the entities referencing the page, the
page descriptor holds a reverse map to referencing
VMAs. Since VMAs have a back reference to their
memory descriptor, we are aware of all tasks, possibly
outside the cgroup, referencing the page described.
This allows us to determine whether the shared pages
a task references may be encrypted or not.

6.3 Synchronization of Tasks

A task entering the refrigerator first saves its current
task state. We then increment a cgroup-wide barrier
we newly introduce, which counts the tasks enter-
ing the refrigerator. When thawing, the barrier forces
thawing tasks to wait in the refrigerator until decryp-
tion of the whole cgroup completes. In the next step,
we increment the frozen user count of the task’s mem-
ory descriptor. The first user, i.e., the first task, identi-
fies the memory segments in the process space, which
were selected for encryption. After possibly identify-
ing the memory segments, a task goes as usual to the
state TASK UNINTERRUPTIBLE. If the process is not
yet encrypted, the task checks if it is the last entering
user of the memory descriptor. If yes, the task marks
the memory descriptor as encrypted and encrypts the
identified memory segments. After that, or in cases
where the task was not the last user of the memory
descriptor, the task notifies the freezer about being
frozen. Then, the common freezer procedure executes.

Freeze & Crypt: Linux Kernel Support for Main Memory Encryption

25



The task flags itself FROZEN and ends up in a loop,
checking if its cgroup is frozen or not. When sched-
uled, the frozen task executes the common function-
ality and indicates the scheduler to switch to another
task.

When thawing a cgroup, the freezer wakes the
cgroup’s tasks, leaves the frozen state, and each task
clears its FROZEN flag. The tasks normally leave the
refrigerator and restore their previous process state.
However, our mechanism handles the decryption of
the tasks before leaving. For this purpose, thawing
tasks first decrement the frozen user counter. This en-
sures that only the first thawing task using the mem-
ory descriptor decrypts the associated memory space.
Otherwise, the task skips decryption. In the next step,
every task decrements the cgroup-wide barrier. The
last task about to leave the refrigerator completes the
barrier. All other tasks waiting at the barrier are fi-
nally free to leave the refrigerator. The last task also
notifies the freezer about the terminated decryption of
the whole cgroup.

6.4 Process Space Encryption

For the encryption in main memory with the ker-
nel crypto API, we apply the asynchronous bit-sliced
AES CTR implementation using NEON instructions
with a 256 bit key size. The CTR mode achieves
especially high performance on multi-core systems
through its parallelization. We use the physical page
addresses as Initialization Vectors (IVs), resulting in
distinct IVs for each encrypted block. During the
encryption, a task iterates over the previously iden-
tified VMAs of its memory descriptor. The task first
checks the VMA’s write permissions. If a VMA is
not writable, the task makes the VMA writable. The
task then encrypts the VMA page by page. After en-
crypting the whole VMA, the task restores the VMA’s
write permissions, if necessary.

The page level encryption procedure starts by
checking if the physical page to be encrypted is
present in main memory. We skip non-present pages.
We hence do not encrypt swap, as swapped pages are
considered non-present. For the encryption of swap,
we refer to standard Linux swap encryption. On a
present page, the task tries to get our lock. Failing
indicates that the page is already being encrypted by
another task. Hence, the task skips the encryption of
this page. The next step differs depending on whether
we are in the en- or decryption process. Unlike in
the decryption case where we can continue to decrypt
a page right away, we are obliged to make sure the
page is ready for encryption. We first check if the
page descriptor was already marked as encrypted. In

this case, the task releases the lock and skips the page.
If the page was not already encrypted, the task checks
if the page descriptor is referenced more than once.
Multiple references indicate that the page is shared.
If there is only one PTE referring to that page, the
task immediately considers the page ready for encryp-
tion. Otherwise, the task must specifically check the
page’s readiness for encryption, because it is shared
across AS boundaries. Another task of the cgroup
considering that page for encryption will ensure the
page’s encryption later if the page is exclusively used
by the cgroup. Simply encrypting a shared page with-
out further inquiries would cause COW, which repli-
cates that page and encrypts only the copy. On the
other hand, preventing the page fault triggering COW
would corrupt the AS of other processes if the page
is not ready. The task releases the lock on the page if
the page is not ready and skips it.

In case the page is ready, the task marks it as en-
crypted. Before writing the page, the task stores the
PTE’s flags. These flags indicate whether the page
is, e.g., writable, dirty, or young. The task checks
whether the page is writable or not, because writing
a read-only page implies COW in the triggered page
fault. Since the task made sure the page is only used
within the cgroup, it circumvents the page fault and
makes the PTE writable before encryption. In the next
step, the task encrypts the physical page and subse-
quently restores the PTE’s flags. This ensures that
PTE flags remain unaltered. The task finally unlocks
the page.

7 PERFORMANCE AND
STATISTICS

In this section, we present our performance results
and statistics on the tasks, VMAs, and pages en-
crypted with F&C in our application scenario. We
configured the platform to run two full-fledged An-
droid 5.1.1 containers in addition to the management
container on top of a single Linux 3.4 kernel (4 KB
page size; as on stock Android, no swap or KSM).
This resembles a realistic scenario with a private and
business domain. For the evaluation, we intentionally
encrypt the both containers to challenge F&C with
multiple, large cgroups. For common use, encrypt-
ing only the business container processing corporate
secrets may be a more appropriate choice with higher
usability. We adhered to the selection of segments for
encryption as described in 5.1.

We identified six test users to productively utilize
F&C for one working week on their commonly used
Nexus 5 smartphones running the virtualization archi-
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Figure 8: Performance of container freezes (crosses) and
thaws (circles) in relation to the number of encrypted pages.

tecture to generate our statistics (Quad-core 2.3 GHz
Krait 400 CPU). To deploy F&C on the phones, we
provided chosen users a remote update with our mod-
ified kernel and virtualization layer. The users were
able to seamlessly continue utilizing their two con-
tainers with their data and dozens of apps, e.g., so-
cial, business, mail, or media apps. Thawed contain-
ers continued running stable, even after a long freeze.
The evaluation period also incorporated a number
of especially challenging test cases with background
events, where users stressed the memory limit or re-
ceived phone calls in a frozen container. With these
test cases, we verified that F&C reliably works even
when the system is under heavy load, that the phone is
still practically usable and that it remains fully stable.

To gather the statistics, we introduced a perfor-
mance profiling mechanism to F&C. We measured
the most important figures in the kernel during en-
cryption, such as the duration of the encryption or the
number of encrypted pages. 8 illustrates the measured
en- and decryption times in relation to the number of
pages. The black crosses and gray circles refer to con-
tainer freeze and thaw times in milliseconds. In total,
we have more than 730 container en- and decryption
samples where our users run arbitrarily many apps
on the smartphone for an indefinite period of time.
The more apps run, the more pages are present, the
more pages we encrypt. On average, about 142,500
pages were encrypted in parallel on the four avail-
able cores requiring 2,468 ms for freezing and 2,266
ms for thawing. In extreme cases where the Android
low memory killer is triggered active and a container
exhausts all of its resources, the duration increases
roughly to fairly, still practicable, 4,000 ms. When
starting the freeze of Ci, the CM directly and quickly
switches back to C0 (Huber et al., 2015). This means
that a user intending to switch to another container
Cj can start entering the SE’s passphrase in C0 dur-
ing Ci’s encryption in background. Since typing takes
some time, the additional cost of a switch usually

amounts to only the time required for thawing Cj.
Both trendlines in 8 point out the linear growth in en-
cryption times and show that decryption is faster than
encryption. This is reasonable due to the additional
synchronization effort during encryption. The vari-
ance originates from the many different events and
processes that the kernel schedules in this complex
system. The measured encryption time comprises the
instant of writing to the freezer state file until user
space receives the notification from the freezer. In be-
tween, the performance mainly depends on the syn-
chronization inside the cgroup and on the scheduler.
In sum, our solution is suitable for daily use in en-
vironments where protection of sensitive data plays a
crucial role.

1 shows further statistics. On an average en-
cryption cycle, 1,043 tasks were running, including
52 processes spawning 991 threads. This points out
the large size of the cgroups and that users were
running many apps. The second row shows that
during freezing, the 52 encrypting tasks identified
27,410 VMAs, where 13,391 were subject to en-
cryption. The remaining 14,646 VMAs represent
the non-sensitive segments. Freezing tasks altogether
had about 380,500 virtual pages mapped on aver-
age. When multiple PTEs point to the same physi-
cal page, there are numerous duplicate pages. This
is why the total number of encrypted physical pages,
about 142,500, is on average clearly smaller and many
pages, about 238,000, could be skipped. The average
number of encrypted pages accounts for about 560
MB of memory. The bottom row shows the classifica-
tion of the encrypted pages into the different VMAs.
Most pages are either part of file-backed or anony-
mous segments. Only a small number of pages be-
long to the stack, heap, data and text segments. A
future improvement would thus be to zero out and un-
map file-backed segments instead of encrypting them.
This comes later at the cost of runtime performance,
but is probably only hardly perceptible and can clearly
improve suspension and resumption.

To measure the effects of F&C on power con-
sumption, we separately conducted power measure-
ments. The additional battery drain depends on the
frequency of suspending and resuming containers.
During the power measurements in the kernel, we au-
tomatically switched between the two user contain-
ers and the management container, suspending and re-
suming in 10s intervals for a 100 times. We indepen-
dently repeated that experiment 5 times with charged
phones, varying started applications and used a fixed
key (to omit user-interaction). We measured a battery
drain of about 2.5% without and no more than 4.0%
with F&C. There is hence little perceptible effect on
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Table 1: Statistics on the average number of tasks, VMAs,
pages and the types of encrypted pages.

Tasks Total Threads Processes

1,043 991 52

VMAs Total Skipped Encrypted

27,410 14,019 13,391

Pages Total Skipped Encrypted

380,545 238,090 142,455

Pages
Encrypted

File-
backed

Anony-
mous

Text/Data/
Stack/Heap

142,455 71,606 68,976 1,873

power consumption with normal phone use.

8 SECURITY EVALUATION

We first discuss the security aspects of F&C itself
and then extend the considerations to our application
scenario. According to the threat model, we assume
that the attacker gains full access to all volatile mem-
ory. This enables the attacker to obtain and analyze a
full memory dump with the encrypted sensitive data.
F&C encrypts the pages of the selected memory seg-
ments in RAM using AES in CTR mode and uses
its unique physical address as IV for each page en-
cryption. Identical pages are consequently encrypted
with a different outcome and since the attacker can-
not break cryptographic primitives, encrypted pages
reveal no sensitive information. After encrypting a
cgroup, we purge the key used in the freezer, as well
as other AES remnants and freed pages. When the key
is removed in user space as well, the adversary has
no means to decrypt protected pages. This means that
the analyst can only attempt to obtain sensitive data in
non-encrypted pages and segments. F&C allows the
selection of all memory segments for encryption, ex-
cept the special segments containing no confidential
information. For encrypted segments, we leave only
those pages unencrypted which are shared with unen-
crypted, running processes. When making sure that
processes which share sensitive data with other pro-
cesses are contained in the frozen cgroups, we leave
no sensitive pages unencrypted.

Regarding our application scenario, the goal of the
attacker is to obtain the containers’ confidential data
both from persistent storage and RAM. The security
of the platform itself, e.g, for C0 and the CM, was al-
ready discussed in (Huber et al., 2015). According to
2, an attacker obtains physical access to the mobile
device, implying that the adversary has the hardware,

software, and thus all memory under control. We en-
crypt containers when the user actively switches them
to background, locks the phone, or leaves it idle for a
specific time. The attack starts either when the device
with encrypted containers is left unattended or gets
stolen. Containers share no sensitive data with other
entities, because the memory usage of physical pages
is tied to container boundaries. Since we encrypt all
relevant memory segments (see 5), we fully cover the
containers’ sensitive data in RAM. F&C purges the
unwrapped RAM encryption key in the kernel. Persis-
tent memory is always encrypted due to FDE where
the kernel stores the unwrapped FDE key. In our ap-
plication scenario, the unwrapped FDE key in the ker-
nel and the unwrapped RAM encryption key in user
space are the only assets not protected through the en-
cryption. However, at the moment the container en-
cryption terminates, the CM purges these unwrapped
keys, preventing the attacker from decrypting any per-
sistent and volatile memory. The wrapped key com-
plements can only be unwrapped using the SE. The
attacker is possibly in possession of the SE, but lacks
knowledge of the passphrase and cannot brute-force
the SE. Hence, wrapped encryption keys are securely
stored in main memory. This means that we need no
special key storage, such as CPU registers. The CM
only keeps the unwrapped key counterpart in RAM
during encryption and when the container is unen-
crypted. Relocating the unwrapped key for that time,
e.g., to the ARM TrustZone, does not increase the se-
curity, as sensitive data is in plaintext anyway.

Smartphones are suspended most of the time
implying that the containers are already encrypted.
When actively used, background containers remain
encrypted and the foreground container gets either
suspended by the active user or the system after a
short idle-time. As evaluated in 7, the encryption pro-
cess terminates quickly even for full containers. This
means that the time frame to extract valuable data still
in plaintext is impractical even when the attacker al-
ready starts the attack while the device is locking. Be-
ing in possession of the device, the attacker can hence
only wait for incoming data, such as short messages
or network traffic. Since sensitive data is generally
end-to-end encrypted and encryption terminates in-
side the container, the attacker has no means to deci-
pher that data. Unencrypted data, for example, short
messages, can already be intercepted before it reaches
the mobile device. In case of a violent offence, we as-
sume that the victim was actively using a container.
In this case, the background containers are protected
while the actively used container remains unprotected
if the system does not trigger the lock or if the victim
does not manage to lock the device. The adversary
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has no influence on processes of frozen containers,
memory contents are not shared between containers
and the key to decrypt pages of frozen containers is
not present. A stolen device that was tampered with
in the absence of its unsuspecting owner, for exam-
ple, to intercept the key when the user returns, was not
part of our threat model. We assured to leave no sensi-
tive data behind by reading out process space as privi-
leged user and by analyzing memory dumps of locked
devices with the tool Volatility and with coldboot at-
tacks, such as in (Huber et al., 2016). On common de-
vices, we easily recovered lots of sensitive data, such
as exchange passwords, FDE keys and further creden-
tials. Even though in knowledge of the sensitive as-
sets, we had no means to detect any sensitive data on
devices protected by F&C.

9 CONCLUSION

We presented F&C, a novel mechanism for the en-
cryption of sensitive data in main memory along with
its successful application to protect mobiles device
from physical attackers. F&C builds upon the freezer
functionality of the Linux kernel making processes
en- and decrypt their memory efficiently in parallel
with a transient key. We synchronized the encrypt-
ing processes, ensured that frozen processes do not
touch their memory and that external events, such as
IPC, are deferred. The prototype we developed can be
employed throughout different platforms, kernel ver-
sions and allows the selection of keys, processes and
memory segments to be encrypted from user space.
We extended an existing mobile device platform that
runs multiple Android containers to integrate our pro-
totype on smartphones. The platform allowed us to
combine its virtualization and secure key manage-
ment infrastructure with F&C in order to realize a
fully functional system that thwarts physical attack-
ers. We encrypted the containers that are not in ac-
tive use and in order to maintain their full functional-
ity, we inform the user with notifications about back-
ground events. In our security and performance eval-
uation, we showed that the encryption provides strong
security for unattended devices and containers not in
use. The average en- and decryption time of less than
2.5 seconds makes the prototype practical for daily
use, especially in environments where the confiden-
tiality of data plays a major role. We seek to inte-
grate F&C into further scenarios on both embedded
and desktop systems, for example into hypervisors to
protect the full memory of different guest OSs.
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Götzfried, J., Dörr, N., Palutke, R., and Müller, T. (2016a).
HyperCrypt: Hypervisor-Based Encryption of Kernel
and User Space. In 11th International Conference
on Availability, Reliability and Security (ARES), pages
79–87.
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